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Abstract: Based on a successive convex programming method, an alternating iteration algorithm
is proposed for solving a parameter-dependent distributionally robust optimization. Under the
Slater-type condition, the convergence analysis of the algorithm is obtained. When the objective
function is convex, a modified algorithm is proposed and a less-conservative solution is obtained.
Lastly, some numerical tests results are illustrated to show the efficiency of the algorithm.
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1. Introduction

In stochastic programming, the involved random variables usually satisfy certain
distribution. However, in the real world, the certain distribution may be unknown or only
the part of it is known. Distributionally robust optimization (DRO) method happens to be
an effective way to solve such uncertain problems.

The study of the DRO method can be traced back to Scarf’s early work [1], which is
intended to address potential uncertainties in supply chain and inventory control. In the
DRO method, historical data may not be sufficient to estimate future distribution, therefore,
a larger distribution set containing the true distribution can adequately address the risk
of fuzzy uncertainty sets. The DRO model has been widely used in operations research,
finance and management science, see [2–6] for recent development and further research.
However, most of the ambiguity set of DRO are independent of decision variable.

Recently, Zhang, Xu and Zhang [7] have proposed a parameter-dependent DRO model,
where the probability of the underlying random variables depends on the decision variables
and the ambiguity set is defined through parametric moment conditions with generic cone
constraints. Under Slater-type conditions, the quantitative stability results are established
for the parameter-dependent DRO. By recent developments from the variational theory,
Royset and Wets [8] have established convergence results for approximations of a class
of DRO problems with decision-dependent ambiguity sets. Their discussion covers a
variety of ambiguity sets, including moment-based and stochastic-dominance-based ones.
Luo and Mehrotra [9] have obtained formulations for problems that feature distributional
ambiguity sets defined by decision-dependent bounds on moments. Until recently, DRO
with decision-dependent ambiguity sets has been an almost untouched research field. The
few studies [7–9] on DRO with decision-dependent ambiguity sets are mostly theoretical
achievements and the algorithms for solving such DRO are not related.

In this paper, for the parameter-dependent DRO model in [7], we propose an alternat-
ing iteration algorithm for solving it and propose a less-conservative solution strategy for
its special case.
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As far as we are concerned, the main contributions of this paper can be summarized
as follows. Firstly, we carry out convergence analysis for alternating iteration algorithm.
Under the Slater constraint qualification, we show that any cluster point of the sequence
generated by the alternating iteration algorithm is an optimal solution of the parameter-
dependent DRO. Notice that the proof of the convergence of successive convex program-
ming method in [10] cannot cover our convergence analysis, since the uncertain set in
Equation (1) depends on x, therefore our convergence analysis can be seen an extension of
the proposition in [10]. Secondly, when the corresponding objective function is convex, a
less-conservative DRO is constructed and a modified algorithm is proposed for it. At last,
numerical experiments are carried out to show the efficiency of the algorithm.

The paper is organized as follows. Section 2 demonstrates the structure of the algo-
rithm for the parameter-dependent DRO and establishes the convergence of the algorithm.
In Section 3, the modified algorithm is proposed for a special case of DRO and the less-
conservative solution is obtained. In Section 4, some numerical test results are illustrated to
show the less conservative property of solutions obtained by the modified algorithm.

Throughout the paper, we use the following notations. By convention, we use Rn×n

and Sn×n to denote the space of all n× n matrices and symmetric matrices respectively. For
matrix A ∈ Sn×n, A � 0 means that A is a negative semidefinite symmetric matrix, ‖x‖
denotes the Euclidean norm of a vector x in Rn. For a real-valued function ϕ : Rn → R,
∇ϕ(x) denotes the gradient of ϕ at x.

2. DRO Model and Its Algorithm

Consider the following distributionally robust optimization (DRO) problem:

(P)
min

x
sup

P∈P(x)
EP[ f (x, ξ(ω))]

s.t. x ∈ X,
(1)

where X is a compact set of Rn, f : Rn×Rk → R is a continuously differentiability function,
ξ : Ω → Ξ is a vector of random variables defined on probability space (Ω,F , P) with
support set Ξ ⊂ Rk, for fixed x ∈ X, P(x) is a set of distributions which contains the true
probability distribution of random variable ξ, and EP[·] denotes the expected value with
respect to probability measure P ∈ P(x).

In this paper, we consider the case when P(x) is constructed through moment condition

P(x) := {P ∈P : EP[Ψ(x, ξ(ω))] ∈ K}, (2)

where Ψ is a random map which consists of vectors and/or matrices with measurable
random components, and P denotes the set of all probability distributions/measures in
the space (Ω,F ) andK is a closed convex cone in a finite dimensional vector and/or matrix
spaces. If we consider (Ξ, B) as a measurable space equipped with Borel sigma algebra B,
then P(x) may be viewed as a set of probability measures defined on (Ξ, B) induced by
the random variate ξ. To ease notation, we will use ξ to denote either the random vector
ξ(ω) or an element of Rk depending on the context.

When Ξ is a finite discrete set, that is, Ξ = {ξ1, · · · , ξN}, for some N, (2) can be written as

P(x) =

{
(p1, · · · , pN) :

N

∑
j=1

pjΨ(x, ξ j) ∈ K, pj ≥ 0,
N

∑
j=1

pj = 1

}
. (3)

In this section, we consider the DRO model (1) with P(x) defined by (3). In this case,

EP[ f (x, ξ(ω))] =
N

∑
j=1

pj f (x, ξ j) and EP[Ψ(x, ξ(ω))] =
N

∑
j=1

pjΨ(x, ξ j).
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In [10], a successive convex programming (SCP) method for a max–min problem with
fixed compact set is proposed. However, the SCP method in [10] cannot be used to solve (1)
directly, since P(x) in (1) depends on x.

Based on the SCP algorithm, we propose an alternating iteration algorithm for solving (1).
In the algorithm proposed, the optimal solution is obtained by alternative iteration of solu-
tions of inner maximum problems and outer minimum problems in (1). For convenience, let

C =
{
(p1, · · · , pN) ∈ RN : pj ≥ 0, j = 1, 2, · · · , N,

N

∑
j=1

pj = 1

}
.

We know from the algorithm that if the algorithm stops in finite steps with Ck+1 = Ck
or vk ≤ tk, then xk is an optimal solution of (1). In practice, problem (6) can be solved by
its dual problem. In the case when an infinite sequence is produced, we use the following
theorem to ensure the validity of the algorithm.

We introduce a notation, which is used in the proof of the convergence of the Algorithm
in Table 1. Let P, Q ∈P , the total variation metric between P and Q is defined as (see, e.g.,
page 270 in [11]),

dTV(P, Q) := sup
h∈H

∣∣EP[h(ξ)]−EQ[h(ξ)]
∣∣, (4)

where,

H :=

{
h : Rk → R : h is B measurable, sup

ξ∈Ξ
|h(ξ)| ≤ 1

}
, (5)

Using the total variation norm, we can define the distance from a metric P ∈P to a
metric set P ⊂P , that is,

dTV(Q,P) := inf
P∈P

dTV(Q, P).

We next provide the convergence of the Algorithm in Table 1.

Table 1. The Alternating Iteration Algorithm.

1. Set k = 0 and C0 = {P̂} with P̂ ∈ C satisfying {x ∈ X : EP̂[Ψ(x, ξ)] ∈ K} 6= ∅.
2. Solve the outer problem

min
x,t

t

s.t. EP[ f (x, ξ(ω))] ≤ t, ∀P ∈ Pk(x)
x ∈ X,

(6)

and obtain the solution (xk, tk), where Pk(x) = {P ∈ Ck : EP[Ψ(x, ξ)] ∈ K}.
3. Solve the inner problem

max
P

EP[ f (xk, ξ)]

s.t. EP[Ψ(xk, ξ)] ∈ K, ∀P ∈ C
(7)

and obtain the solution P̂k and the optimal value vk.
4. Let Ck+1 = Ck ∪ {P̂k}.
5. If Ck+1 = Ck or vk ≤ tk, then a solution of (1) is found and the algorithm stops. Otherwise set
k = k + 1 and goto 2.

Theorem 1. Let {xn} be a sequence generated by Algorithm in Table 1 and x0 be a cluster point.
If (a) (x, P) 7→ EP[ f (x, ξ)] and (x, P) 7→ EP[Ψ(x, ξ)] are both continuous on X × C, (b) for
x ∈ X, f (x, ·) and Ψ(x, ·) are finite valued and continuous on Ξ, (b) 0 ∈ int {EP[Ψ(x0, ξ)]−K :
P ∈ C}, then x0 is an optimal solution of problem (1).

Proof. Since Cn is an increasing sequence of sets and C is a compact set, we have limn→∞ Cn
= cl[∪∞

n=1Cn] := C+. Since x0 is a cluster point of {xn}, there exists an subsequence of {xn}



Mathematics 2022, 10, 1175 4 of 12

converging to x0. Without loss of generality, for simplicity, we assume that x0 is the limit
point of {xn}. We know from step 2 in the algorithm that xn is an optimal solution of

min
x

sup
P∈P(x)∩Cn

EP[ f (x, ξ(ω))]

s.t. x ∈ X.
(8)

Let Ŝn(x) and v̂n(x) denote the optimal solution set and optimal value of

sup
P∈Pn(x)

,EP[ f (x, ξ)]

respectively, Ŝ(x) and v̂(x) denote the optimal solution set and optimal value of

sup
P∈P(x)∩C+

EP[ f (x, ξ)],

respectively. Then, we have from (8) that:

v̂n(xn) ≤ v̂n(x) for any x ∈ X. (9)

We proceed the rest of the proof in three steps.

Step 1. We next show
lim

n→∞
v̂n(xn) = v̂(x0). (10)

Let P̂n ∈ Ŝn(xn), by compactness of C+, {P̂n} has cluster points. We assume P̂∗ is a
cluster point of {P̂n}, then there exists a subsequence {nk} ⊆ {n} such that P̂nk converges
to P̂∗ weakly as k→ ∞ and P̂∗ ∈ C+. Under conditions (a) and (b), we have

v̂nk (xnk ) = EP̂nk
[ f (xnk , ξ)]→ EP̂∗ [ f (x0, ξ)] ≤ v̂(x0)

as k→ ∞. Hence, we have
lim sup

n→∞
v̂n(xn) ≤ v̂(x0). (11)

Since Pn(xn) = P(xn) ∩ Cn 6= ∅, we have form condition (a) that P(x0) ∩ C+ 6= ∅,
which means that Ŝ(x0) 6= ∅. Let P∗ ∈ Ŝ(x0), we next show that there exists a sequence
{P̂n} with P̂n ∈ Pn(xn) such that P̂n converges to P∗ weakly as n→ ∞. Under conditions
(b) and (c), we know from [Theorem 2.1] in [7] that there exist positive constants γ and
ν ∈ (0, 1) such that:

dTV(Q,P(xn)) ≤ γ‖xn − x0‖ν

for all Q ∈ P(x0) and n large enough, which means that for P∗ ∈ Ŝ(x0),

dTV(P∗,P(xn) ∩ Cn) ≤ dTV(P∗,P(xn)) + dTV(P∗, Cn) ≤ γ‖xn − x0‖ν + dTV(P∗, Cn) (12)

for n large enough. Let P̂n = ΠP(xn)∩Cn(P∗), then by (12), we have P̂n converges to P∗

weakly as n converges to infinity. Consequently, under condition (b),

v̂n(xn) ≥ EP̂n
[ f (xn, ξ)]→ EP∗ [ f (x0, ξ)] = v̂(x0)

as n→ ∞ and hence,
lim inf

n→∞
v̂(xn) ≥ v̂(x0). (13)

Combining (11) and (13), we have v̂(xn) converges to v̂(x0) as n→ ∞.
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Step 2. We next show for any fixed x ∈ X,

lim
n→∞

v̂n(x) = v̂(x). (14)

Since limn→∞ Cn = C+, we have limn→∞ P(x) ∩ Cn = P(x) ∩ C+.
Then under conditions (a) and (b), similarly to the proof of step 1, we have v̂n(x)

converges to v̂(x) as n→ ∞.

Step 3. Combining (9), (10) and (14), we have

v̂(x0) ≤ v̂(x) for any x ∈ X, (15)

which means that, x0 is an optimal solution of

min
x

sup
P∈P(x)∩C+

EP[ f (x, ξ(ω))]

s.t. x ∈ X.
(16)

By step 3 in algorithm, we have

sup
P∈P(xn)∩C+

EP[ f (xn, ξ)] ≤ sup
P∈P(xn)∩C

EP[ f (xn, ξ)] = EP̂n+1
[ f (xn, ξ)] ≤ sup

P∈P(xn)∩C+
EP[ f (xn, ξ)],

which means that

sup
P∈P(xn)∩C+

EP[ f (xn, ξ)] = sup
P∈P(xn)∩C

EP[ f (xn, ξ)].

Then by the proof in step 1, letting n→ ∞, we have v̂(x0) = supP∈P(x0)∩C EP[ f (x0, ξ)].
Consequently, by (15), we have

v̂(x0) ≤ v̂(x) ≤ sup
P∈P(x)∩C

EP[ f (x, ξ)]

for all x ∈ X. Therefore, x0 is an optimal solution of (1). �

Remark 1. In [10], without any constraint qualifications, the proof of the convergence of SCP
method is obtained. However, in our proof, since the uncertain set in (1) depends on x, the Slater
condition ensures the proof. We know from the above proof that if the uncertain set in (1) independent
on x, the Slater condition can be omitted. Therefore our convergence analysis can be seen an extension
of the proposition in [10].

3. Less Conservative Model and a Modified Algorithm

In this section, we consider a special case of (1) and provide a less-conservative model.
In the case when Ξ = {ξ1, · · · , ξN} and the ambiguity set is

P(x) :=
{

P ∈P : EP[ξ − µ0]
TΣ−1

0 EP[ξ − µ0] ≤ γ1
EP
[
(ξ − µ0)(ξ − µ0)

T]− γ2Σ0 � 0

}
, (17)



Mathematics 2022, 10, 1175 6 of 12

where γ1 and γ2 are nonnegative constants, µ0 ∈ Rk and Σ0 ∈ Sk×k is positive semidefinite,
the model (1) is the following problem:

min
x∈X

max
(p1,··· ,pN)∈RN

EP[ f (x, ξ)]

s.t. ∑N
j=1 pjg1(ξ j) � 0,

∑N
j=1 pjg2(ξ j) � 0,

pj ≥ 0, j = 1, · · · , N,

∑N
j=1 pj = 1,

(18)

where

g1(ξ) =

[
−Σ0 µ0 − ξ

(µ0 − ξ)T −γ1

]
and

g2(ξ) = (ξ − µ0)(ξ − µ0)
T − γ2Σ0.

The model has been investigated in [2]. As shown in [2], the constraints in (18)
imply that the mean of ξ lies in an ellipsoid of size γ1 centered at the estimate µ0 and the
centered second moment matrix of ξ lies in a positive semidefinite cone defined with a
matrix inequality.

However, in the constraints of (18), not all ξ j lies in the ellipsoid of size γ1 centered at
the estimate µ0. In practice, we may be only interested in the ξ j which lies in the ellipsoid
and omit the ones outside the ellipsoid. Consequently, we propose a less-conservative DRO
model, that is

min
x∈X

max
(p1,··· ,pN)∈RN

EP[ f (x, ξ)]

s.t. pjg1(ξ j) � 0,

pjg2(ξ j) � 0,

pj ≥ 0, j = 1, · · · , N,

∑N
j=1 pj = 1.

(19)

In the above model, if the ξ j does not lie in an ellipsoid of size γ1 centered at the esti-
mate µ0 or does not satisfy the matrix inequality g2(ξ j) � 0, the corresponding constraints
are vanished. Moreover, we can choose γ1 and γ2 such the feasible set of the inner problem
is not empty, for example, for the first constraint, let γ1 = max{(ξ j − µ0)

TΣ−1
0 (ξ j − µ0) :

j = 1, 2, · · · , N}. Compare with model (18), the model (19) is less conservative since the
feasible set of the inner maximum problem is smaller.

Let Q be a set of probability distributions defined as

Q =

{
(p1, · · · , pN) ∈ RN : pjgi(ξ j) � 0,

N

∑
j=1

pj = 1, pj ≥ 0, j = 1, · · · , N, i = 1, 2

}
. (20)

Next we give a modified alternative solution algorithm for (19):
The above algorithm is based on the algorithm in Pflug and Wozabal [10] for solving

a distributed robust investment problem and a cutting plane algorithm in Kelley [12] for
solving convex optimization problems. A similar algorithm has been used in Xu et al. [5] to
solve a different DRO model and the proof of the convergence is omitted. In the following,
we provide convergence analysis of the modified alternative solution algorithm based on
Theorem 1.

Theorem 2. Let {xn} be a sequence generated by Algorithm in Table 2 and x0 be a limit point.
If for each ξ ∈ Ξ, f (·, ξ) is continuously differentiable and convex on X, then x0 is an optimal
solution of problem (19).
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Table 2. The Modified Alternating Iteration Algorithm.

1. Let P0 = (p0
1, · · · , p0

N) ∈ Q and Q0 := {P0} and x0 ∈ X. Set k = 0.
2. Solve the outer minimization problem

min
x,t

t

s.t. x ∈ X,

∑N
j=1 pk

j [ f (xk, ξ j) +∇x f (xk, ξ j)
>(x− xk)] ≤ t, for Pk = (pk

1, · · · , pk
N) ∈ Qk

(21)

and obtain the solution (xk+1, tk+1).
3. Solve the inner maximization problem

max
(p1,··· ,pN)∈RN

∑N
j=1 pj f (xk+1, ξ j)

s.t. pj

[
−Σ0 µ0 − ξ

(µ0 − ξ)> −γ1

]
� 0

pj[(ξ − µ0)(ξ − µ0)
>] � γ2Σ0,

pj ≥ 0, j = 1, · · · , N,

∑N
j=1 pj = 1

(22)

and obtain the solution (Pk+1, vk+1).
4. Let Qk+1 = Qk

⋃{Pk+1}. If Qk+1 = Qk or vk+1 ≤ tk+1, then stop, else let k := k + 1, go to 1.

Proof. The proof is similar as the proof of Theorem 1. Since Qn is an increasing sequence
of sets and Q is a compact set, we have limn→∞Qn = cl[∪∞

n=1Qn] := Q+.
Let Ŝn(x) and v̂n(x) denote the optimal solution set and optimal value of

sup
(p1,··· ,pN)∈Qn

N

∑
j=1

pj[ f (xn−1, ξ j) +∇x f (xn−1, ξ j)
T(x− xn−1)]

respectively, Ŝ(x) and v̂(x) denote the optimal solution set and optimal value of

sup
(p1,··· ,pN)∈Q+

N

∑
j=1

pj f (x, ξ j)

respectively. Then we have

v̂n(xn) ≤ v̂n(x) for any x ∈ X. (23)

Let (pn
1 , · · · , pn

N) ∈ Ŝn(xn), by compactness of Q+, {(pn
1 , · · · , pn

N)} has cluster points.
We assume (p∗1 , · · · , p∗N) is a cluster point of {(pn

1 , · · · , pn
N)}, then there exists a subse-

quence {nk} ⊆ {n} such that (pnk
1 , · · · , pnk

N ) converges to (p∗1 , · · · , p∗N) weakly as k → ∞
and (p∗1 , · · · , p∗N) ∈ Q+. Then we have

v̂nk (xnk ) = ∑N
j=1 pnk

j [ f (xnk−1, ξ j) +∇x f (xnk−1, ξ j)
T(xnk − xnk−1)]

≤ ∑N
j=1 pnk

j f (xnk , ξ j)→ ∑N
j=1 p∗j [ f (x0, ξ j)] ≤ v̂(x0)

as k→ ∞. Hence, we have
lim sup

n→∞
v̂n(xn) ≤ v̂(x0). (24)

On the other hand, for (p∗1 , · · · , p∗N) ∈ Ŝ(x0), (p∗1 , · · · , p∗N) ∈ Q+, which means that
∃ (pn

1 , · · · , pn
N) ∈ Qn such that

(pn
1 , · · · , pn

N)→ (p∗1 , · · · , p∗N)
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as n→ ∞. Therefore, we have

v̂n(xn) ≥
N

∑
j=1

pn
j [ f (xn−1, ξ j) +∇x f (xn−1, ξ j)

T(xn − xn−1)]→
N

∑
j=1

p∗j f (x0, ξ j) = v̂(x0) (25)

as n→ ∞. Combining (24) and (25), we obtain

lim
n→∞

v̂n(xn) = v̂(x0).

The else of proof follows from the proof of Theorem 1.

Remark 2. Notice that the Slater condition is not used in the proof, since the uncertain set in (1) is
independent on x, the Slater condition can be omitted.

4. Numerical Tests

In this section, we discuss the numerical performance of proposed alternating iteration
algorithm for solving (18) and (19). We do so by applying the alternating iteration algorithm
to a news vender problem [4] and provide comparative analysis of the numerical results.

Suppose the company has to decide the order quantity xj of a product to meet the
demand ξ j and the news provider trades in j = 1, · · · , n products. Before knowing the
uncertain demand ξ j, the news vender orders xj units of product j at the wholesale price
cj > 0. Once the demand ξ j is known, it can be quantified min{xj, ξ} at the retail price of
vj. Any stock that have not been sold (xj − ξ j)+ are cleared by the remedy price hj. Any
unsatisfied demand (ξ j − xj)+ is lost. The total loss of the news vendors can be described
as a function of the order decision x := (x1, · · · , xn)>:

L(x, ξ) = c>x− v>min(x, ξ)− h>(x− ξ)+ = (c− v)>x + (v− h)>(x− ξ)+, (26)

where non-negativity and minimum operators are applied to the component method. We
study the risk aversion of the news vendor problem on two models:

(H1) min
x∈X

sup
P∈P

EP[U(L(x, ξ))], (27)

and
(H2) min

x∈X
sup
P∈Q

EP[U(L(x, ξ))], (28)

where U(w) := ew/10 is an exponential distribution function,

P =

{
(p1, · · · , pN) ∈ RN :

N

∑
j=1

pjgi(ξ j) � 0,
N

∑
j=1

pj = 1, pj ≥ 0, j = 1, · · · , N, i = 1, 2

}
.

andQ is defined as in (20). Notice that for the news vender problem, problems (18) and (19)
are just (H1) and (H2) respectively.

The data are generated as follows: for i-th product, wholesale, retail and remedy
prices are cj = 0.1(5 + j− 1), vj = 0.15(5 + j− 1) and hj = 0.05(5 + j− 1) respectively; the
product demands vector ξ is characterized by a multivariate log-normal distribution with
the mean µ = (µ1, · · · , µn), µj = 2, j = 1, · · · , n. In the execution of the algorithm, we use
an ambiguity set Q in (20) with γ1 = 0.1 and γ2 = 1.1. The mean and convariance matrix
µ0 and Σ0 are calculated to be generated through a computer. The experiments are carried
out through Matlab 2016 installed on a Dell notebook computer with Windows 7 operating
system and Intel Core i5 processor. The SDP subproblems in Algorithms are solved by
Matlab solver “SDPT3-4.0” [13].
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The computation results are shown in the Tables 3 and 4 and Figures 1–5 below
sequentially. In Tables 3 and 4, we show the average cpu time (Times(s)), iteration (Iter)
and optimal values (Optimal Vlue) of each test problem with different sample sizes.

From the Tables 3 and 4 and Figures 1–5, we can roughly see that problems (H1) and
(H2) can be solved by the alternating iteration algorithm. We know from Figures 1–5 that
when using the algorithm to solve (H1) and (H2), the number of iterations and time of
solving (H1) are basically more than that of solving (H2). Moreover, the optimal values
of (H2) is smaller than the ones of (H1). Since the DRO model is usually used to describe
an upper bound of uncertain optimization problems, the smaller the optimal value of the
DRO model, the less conservative the DRO model is. Therefore, (H2) is a less conservative
DRO model. However, according to Figure 3, (H1) is more robust than (H2) because the
curve shown by (H1) is more stable.

Table 3. The performance of (H1).

n Time (s) Iter Optimal Value

2 31.234226 48 0.9669
4 44.774935 66 0.9663
6 52.961924 72 0.9616
8 52.583319 69 0.9578
10 56.231204 74 0.9659
12 65.792619 85 0.9629

Table 4. The performance of (H2).

n Time (s) Iter Optimal Value

2 28.848998 48 0.9483
4 32.741311 50 0.7441
6 38.559070 57 0.7603
8 41.873316 57 0.8045
10 61.811460 76 0.8577
12 63.149645 75 0.8433
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Figure 1. Comparative analysis of (H1) and (H2) on Time(s).
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Figure 5. Comparative analysis of Optimal Value from (H2).

The numerical results show that, in order to obtain a conservative total loss in the news
vender problem, solving DRO model (H2) by the alternating iteration algorithm usually
performs better than solving DRO model (H1). However, in our observations, when we
only focus on the robustness, DRO model (H1) may be the better choice. We provide the
links to the source codes as follows: https://pan.baidu.com/s/1dSmMUynZqi5LzWgn6
aUUoQ?pwd=xn44 (accessed on 25 January 2022).

5. Conclusions

In this paper, we carry out convergence analysis for an alternating iteration algorithm
for a distributionally robust optimization problem where the ambiguity set depends on
decision variables. Convergence analysis of the alternating iteration algorithm are obtained
under the Slater-type condition, which can be seen an extension of the result in [10]. When
the objective function is convex, a modified alternating iteration algorithm is proposed for
obtaining a less-conservative solution of DRO and the convergence analysis is established.
Finally, we discuss the numerical performance of proposed alternating iteration algorithm
for obtaining a conservative total loss in the news vender problem. We can undertake
similar analysis when the ambiguity set in DRO is constructed in other ways such as
Kullback–Leiblor divergence [14], Wasserstein metric [15,16] etc. We leave all these for
future research as they are beyond the focus of this paper.
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