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Abstract: With the rapid development of smart medical care, copyright security for medical images
is becoming increasingly important. To improve medical images storage and transmission safety,
this paper proposes a robust zero-watermarking algorithm for medical images by fusing Dual-Tree
Complex Wavelet Transform (DTCWT), Hessenberg decomposition, and Multi-level Discrete Cosine
Transform (MDCT). First, the low-frequency sub-band of the medical image is obtained through the
DTCWT and MDCT. Then Hessenberg decomposition is used to construct the visual feature vector.
Meanwhile, the encryption of the watermarking image by combining cryptographic algorithms,
third-party concepts, and chaotic sequences enhances the algorithm’s security. In the proposed
algorithm, zero-watermarking technology is utilized to assure the medical images’ completeness.
Compared with the existing algorithms, the proposed algorithm has good robustness and invisibility
and can efficiently extract the watermarking image and resist different attacks.

Keywords: DTCWT; MDCT; Hessenberg decomposition; zero-watermarking; medical image

1. Introduction

With the advancement of Internet technology and the continuous maturity of big
data, digital technology is extensively infiltrating the medical field. Every day, numerous
medical images are communicated and transmitted via the network, and medical images
are vulnerable to illegal tampering, copying and leaking, and other issues during this
transmission process [1,2]. Therefore, it has become an urgent problem to protect the
privacy of patients and prevent the personal information on patients’ medical images from
being leaked [3,4]. As an important information security technology, digital watermarking
is utilized for the authentication of image integrity and copyright protection. Therefore,
medical image-watermarking technology based on digital watermarking can solve the
above problems effectively [5,6].

Medical image-watermarking technology hides patients’ personal information in the
corresponding medical image, thereby protecting patients’ privacy and ensuring the safe
transmission of this information [7]. However, medical images have their unique charac-
teristics. Most medical images are single-channel, grayscale images. The slight change in
highly similar background tissues may represent a certain disease. Any subtle change may
cause distorted medical images and affect doctor’s diagnosis [8,9]. Therefore, the particular-
ity of medical images makes it difficult for traditional medical image digital watermarking
algorithms to solve these problems. To diminish watermarking’s impact on the original
medical images, it is essential to design a lossless watermarking algorithm [10,11].

The zero-watermarking technology uses important features of the image to construct
the feature vector. Zero-watermarking, without altering the original medical image, can
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well overcome the issue of the invisibility and robustness of the watermarking restricting
each other [12]. Hence, zero-watermarking is very appropriate for medical images’ copy-
right protection. As an effective method of medical images protection, zero-watermarking
has become a popular research topic in the medical field. Xiao et al. proposed a novel
algorithm based on enhanced singular value decomposition and cellular neural networks.
They combined a neural network with homogenized singular values to solve the problem of
diagonal distortion [13]. Wu et al. introduced a robust watermarking algorithm for medical
images. They used Contourlet transform to obtain multi-scale image features and then
Discrete Cosine Transform (DCT) to generate feature vectors of low-frequency sub-bands.
This algorithm has shown excellent utility in medical fields [14]. Qin et al. combined
Curvelet-DCT with RSA pseudo-random sequence and used the Curvelet-DCT to construct
feature vectors by extracting the medical image with the most concentrated energy. They
encrypted the watermarking with the RSA algorithm, which strengthened the protection
of patient privacy [15]. Wu et al. utilized Curvelet transform, Discrete Wavelet Transform
(DWT), and Singular Value Decomposition (SVD) to present a method for medical images,
which integrated Curvelet transform and DWT to obtain image characteristics and used
the benefits of subdivision block to further enhance the stability of the algorithm [16]. Xue
et al. used Nonsubsampled Shearlet Transform (NSST) and Hessenberg decomposition to
propose a zero-watermarking algorithm, which constructed a feature matrix by performing
operations, such as NSST transformation and block Hessenberg decomposition, on the
image combined with QR codes to form a zero-watermarking, which effectively improved
the robustness against rotation and cropping attacks [17]. Liu et al. utilized Dual-Tree
Complex Wavelet Transform (DTCWT) and DCT transformation to introduce a scheme for
medical images. This algorithm used DTCWT-DCT transformation to construct feature
sequences. Furthermore, logistic chaos encryption technology was utilized to enhance
the algorithm’s security [18]. Xia et al. used FoRHFMs to design a zero-watermarking
algorithm. They extended IoRHFMs to FoRHFMs and effectively improved numerical
stability and enhanced the algorithm’s robustness [19]. Vaidya et al. used hybrid transform
to present a watermarking scheme. This algorithm combined the outstanding features
of Lifting Wavelet Transform (LWT), DWT, and Local Binary Pattern (LBP) in the hybrid
domain and has better robustness and imperceptibility to image attacks [20]. Fang et al.
introduced a watermarking algorithm. They added the Scale Invariant Feature Transform
(SIFT) for data preprocessing and used an optimized Bandelet and DCT (Bandelet-DCT) to
extract visual features. The algorithm is robust under different attacks [21].

In the currently proposed methods for zero-watermarking, robustness is the focus of
research. Most algorithms are less robust to geometric attacks. This is because geometric
attacks changed the position of the attacked medical image in relation to the original
medical image, making the zero-watermarking information seriously out of sync with
medical images and resulting in an extremely difficult extraction of zero-watermarking.
Therefore, how to extract feature vectors that can resist geometric attacks and make the
algorithm well robust without altering the original image is an important issue to be solved
urgently [22].

To address the above problems, this paper proposes a new method of zero-watermarking
based on the combination of DTCWT and Hessenberg decomposition. This method uses
DTCWT and Multi-level Discrete Cosine Transform (MDCT) to obtain the low-frequency
sub-band of the medical image and constructs the feature vector through Hessenberg
decomposition. The proposed algorithm utilizes chaos technology and the nature of hash
function to encrypt the watermarking image and enhance the security of the watermarking.
Experimental results show that effective resistance to various attacks is achieved by the
proposed algorithm, with better robustness compared to other watermarking algorithms.

Overall, the main contributions of this paper can be summarized as:

(1) We proposed a novel zero-watermarking algorithm for medical images using DTCWT,
MDCT, and Hessenberg decomposition.
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(2) The paper used DTCWT extract multi-directional and multi-scale features to better
describe the feature information of medical images. In addition, when medical images
are attacked, the proposed algorithm can show better orientation optionality and
translation invariance and effectively improve the robustness against translation
attacks.

(3) The authors utilized the MDCT to take full advantage of the energy concentration
characteristics of DCT, giving the algorithm fastness and accurate feature extraction
capabilities.

(4) The proposed algorithm used Hessenberg decomposition to effectively improve
the execution efficiency and has good rotational invariance, which exhibits strong
robustness against geometric attacks.

2. Basic Theory
2.1. DTCWT

Due to the unique physical structure of real DWT, DWT has multi-resolution properties,
but it still suffers from disadvantages, such as insufficient translation sensitivity and
direction selectivity. To solve these disadvantages of the DWT, Kingsbury et al. [23,24]
proposed DTCWT. DTCWT uses a two-way DWT structure of a binary tree, where one tree
corresponds to the real part of the DWT, and the other tree corresponds to the imaginary
part of the DWT. DTCWT uses a low-pass filter and a high-pass filter bank, the real part and
the imaginary part are respectively subjected to multi-scale sub-band decomposition at the
same time, and then, multi-scale and multi-directional sub-band coefficients are obtained.

Figure 1 shows the realization structure of the DTCWT. Among them, l(n) and h(n) are
the low-pass and high-pass filters, respectively. In the transformation process, one part uses
filters {l1(n), l2(n)} for row transformation and then uses filters {h1(n), h2(n)} for column
transformation. The other part uses filters {h1(n), h2(n)} for row transformation and then
uses filters {l1(n), l2(n)} as columns transformation. Through the DTCWT, transform ob-
tained one low-frequency sub-band and three high-frequency sub-bands, respectively. The
sum or difference of each pair of sub-bands can constitute two low-frequency sub-bands
and six high-frequency sub-bands, of which six high-frequency complex sub-bands, respec-
tively, describe the detailed information of the directions ±15◦,±45◦,±75◦, respectively.
Sub-bands can reflect the changes in the image in different directions at different scales to
better describe the specific features of the image [25].
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The DTCWT has remarkable multi-resolution properties and also has translation
invariance and efficient calculation efficiency, thereby improving the watermarking’s ro-
bustness against geometric attacks.

2.2. DCT

DCT is an orthogonal transformation based on real numbers, which has a higher
calculation speed [26]. The formulas for two-dimensional discrete cosine sine transform
(2D-DCT) is as follows:

F(m, n) = a(m)a(n)
N−1

∑
x=0

N−1

∑
y=0

f (x, y) cos
(2x + 1)mπ

2N
cos

(2y + 1)nπ

2N
(1)

a(m) =


√

1
N , m = 0√
2
N , m = 1, 2, . . . , N − 1

a(n) =


√

1
N , n = 0√
2
N , n = 1, 2, . . . , N − 1

(2)

Among them, m = 0, 1, · · · , N − 1; n = 0, 1, · · · , N − 1. f (x, y) represents the image
and has dimensions N × N; F(m, n) represents the frequency coefficients.

The frequency coefficient distribution of the image after the DCT is shown in Figure 2.
The DCT transforms the image data into the frequency domain, which is divided into
direct current coefficient (DC) and alternating current coefficient (AC). The DC coefficient
represents the mean value of the brightness of the image. A large part of the image
information focuses on the upper left corner. Therefore, DCT has a strong ability to
concentrate information, and it can better relieve the correlation between image pixels
and concentrate the image energy mainly in the low-frequency coefficients of the DCT
spectrum, so it is broadly applied in the image compression field [27,28].
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Figure 2. DCT coefficient frequency distribution diagram.

Traditional algorithms are to perform a whole DCT or a block DCT on the original
image. Such a transformation cannot take full advantage of low-frequency coefficients
and cannot reflect the energy concentration characteristics [29]. Therefore, the proposed
algorithm utilizes MDCT. We first performed one-level DCT on the original image, and then,
we blocked the low-frequency coefficients and perform two-level DCT on each sub-block
matrix. The result of the multi-level DCT is shown in Figure 3.
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As can be seen from Figure 3, the energy after multi-stage DCT is better concentrated
in the upper left corner, which is more conducive to feature extraction. Therefore, a
reasonable multi-level DCT can fully utilize the energy concentration property of the DCT,
accordingly obtaining more data with larger values, and the MDCT can optimize the
algorithm’s performance and give the algorithm have the ability to extract features quickly
and accurately.

2.3. Hessenberg Decomposition

The Hessenberg decomposition is a specific type of decomposition. The elements
below the sub-diagonal of the matrix H after the upper Hessenberg decomposition are all
zero [30]. Hessenberg decomposition is to factorize matrix A by orthogonal transformation.
The decomposition process can be shown as follows:

H = (P1P2P3 · · · Pn−3Pn−2)
T A(P1P2P3 · · · Pn−3Pn−2)

⇒ H = QT AQ
⇒ A = QHQT

(3)

where Q is the orthogonal matrix obtained in QR decomposition; H is the upper Hessenberg
matrix, as shown in Formula (4), and for any i > j + 1, its element hij = 0. P is the
Householder matrix, which satisfies Formula (5).

Where u is a non-zero vector in the set Rn, In represents the identity matrix of n× n.

H =


h11 h12 · · · h1n

h21 h22
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...
...

. . . . . . h(n−1)n
0 · · · hn(n−1) hnn

 (4)

P =
(In − 2uuT)

uTu
(5)

Hessenberg decomposition is an intermediate step of QR decomposition, and this is
because QR decomposition has lower computational complexity than other decomposition
ways. Thus, compared with other decomposition methods, the computational complexity
of Hessenberg decomposition is relatively low, which effectively improves the execution
efficiency of the algorithm [31].

The image is decomposed by Hessenberg, the redundant information will be removed,
and a few values can be represented for the entire image. The image after Hessenberg
decomposition has better stability; even when the image is geometrically distorted by
rotation and cropping, the value will still not be changed dramatically. Hence, Hessenberg
decomposition is frequently applied in the watermarking domain.

Hessenberg decomposition enhances the safety and computational efficiency of the
watermarking and extracts important features of the image to construct a more robust
zero-watermarking.
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3. Zero-Watermarking Algorithm
3.1. Watermarking-Generation Algorithm

The key to the watermarking-generation algorithm is extracting image features with-
out altering the original medical image. In this paper, the use of DTCWT can make the
generated zero-watermarking contain more directional feature information and has good
translation invariance. MDCT is conducive to concentrating the image energy. Hessenberg
decomposition extracts essential detail features of the image so that the image has rotation
invariance, thus enhancing the algorithm’s robustness and computational efficiency.

We assume the original medical image as I = { f (i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ M} and the
binary watermarking image as W = {w(u, v)|1 ≤ u ≤ N, 1 ≤ v ≤ N }. The step by step of
algorithm is shown below.

(1) Chaotic sequence generation by logistic mapping and logistic chaotic position
scrambling was applied to the binary watermarking image to generate a scrambled binary
watermarking image BW, and the scrambled key is K1.

(2) We performed a two-level DTCWT transform on the original medical image I to
obtain the low-frequency sub-band LL2.

(3) We computed a DCT on LL2 to obtain D1 and then divided D1 into non-overlapping
sub-blocks of size 8 × 8 and marked sub-block as Sm, m = 1, 2, . . . , N.

(4) The DCT was performed on Sm to obtain DSm, m = 1, 2, . . . , N.
(5) We next used Hessenberg decomposition for each sub-block DSm, extracted the

maximum element in the upper Hessenberg matrix of each sub-block, and recorded it
as Hmax

m , m = 1, 2, · · · , N and then calculated the overall mean value Havg according to
Formula (6).

Havg =

r
∑

i=1
Hmax

r

r
(6)

(6) We generated a binary eigenvector L by comparison of the maximum value element
Hmax

r and the overall mean value Havg. The calculation formula is as follows:

L =

{
1, Hmax

r > Havg

0, Hmax
r ≤ Havg (7)

(7) We utilized an XOR operation to generate zero-watermarking from the BW and the
feature vector L and saved it on the third-party platform. The formula appears as follows:

Key = BW ⊕ L (8)

Figure 4 displays the watermarking-embedding process.
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3.2. Watermarking-Extraction Algorithm

During the extraction process, the attacked medical image is represented as
I′ = { f ′(i, j)|1 ≤ i ≤ M, 1 ≤ j ≤ M}. The step by step of algorithm is shown below.

(1) We performed steps 2 to 6 in Section 3.1 to generate the feature vector L′ from the
attacked medical image I′.

(2) We next performed the XOR operation between the feature vector L′ and the
zero-watermarking Key to obtain the watermarking image BW ′. The formula appears
as follows:

BW ′ = Key⊕ L′ (9)

(3) We restored the logistic chaotic position restoration of the obtained scrambled
watermarking image BW ′ according to the key K1 to obtain the decrypted watermarking
image W ′.

Figure 5 displays the watermarking-extraction process.
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4. Experiments and Results
4.1. The Experimental Description

In the experimental process, we selected different parts and types of medical images
for testing. The experimental results show that the proposed watermarking algorithm
has good robustness on various medical images. The simulation outcomes are given in
this paper using five medical images as examples. The original medical image chooses a
grayscale image of pixels 128 × 128 in Figure 6. The watermarking image of pixels 64 × 64
in Figure 7a. The key to chaotic encryption is x0 = 0.6, µ = 4, and Figure 7b displays the
encrypted watermarking image. The watermarking image can be seen to become chaotic,
and no valid information can be extracted from it, so it has high concealment, which
significantly improves the security of the watermarking. Figure 8 is a watermarked medical
image that has not been attacked, showing the obtained watermarking. Observation shows
that the medical image has not changed visually before and after the watermarking is
embedded. This shows that the embedding of the watermarking does not affect the original
medical image, which is in line with the zero-watermarking requirement.
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4.2. Robustness Experiment

The proposed algorithm utilizes a zero-watermarking method, so only the robustness
of the algorithm needs to be checked. To examine the robustness of the method in this paper,
the normalized correlation coefficient (NC) was applied to assess the degree of resemblance
of watermarking images, and the peak signal-to-noise ratio (PSNR) was utilized to assess
the attack damage to the image [32]. The calculation formulas are described in the following:

NC =

N
∑

u=1

N
∑

v=1
W(u, v)×W ′(u, v)√

N
∑

u=1

N
∑

v=1
W2(u, v)×

N
∑

u=1

N
∑

v=1
W ′2(u, v)

(10)

PSNR = 10× log(
2552 ×M×M

M
∑

x=1

M
∑

y=1
( f (x, y)× f ′(x, y))2

) (11)

Among them, W(u, v) is the original watermarking image pixel value, W ′(u, v) is the
extracted watermarking image pixel value, and N is the watermarking image size. f (x, y)
and f ′(x, y), respectively represent the pixel values at the corresponding coordinates of the
original medical image and the tested medical image and the image of size M × M. In the
following specific experiments, we conducted common attacks and geometric attacks on
different medical images.
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4.2.1. Common Attacks

• Gaussian Noise Attacks

We applied various extents of Gaussian noise attacks to different medical images.
Figure 9 shows the results under the Gaussian noise attack. It can be seen that the original
medical image blends in with the noise when the noise strength is 0.3, but the extracted
watermarking image is distinguishable. Table 1 shows that as the noise strength becomes
more intense, the quality of the image declines significantly. With noise strengths of 0.5,
medical images maintain PSNR values of about 4 dB, and the NC values at this time are
still as high as 0.97. Overall, the proposed algorithm has excellent performance.
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Figure 9. Attacked medical images and restored watermarking images under Gaussian noise 30%:
(a,a1) brain and extracted watermarking image; (b,b1) chest and extracted watermarking image; (c,c1)
fundus blood vessels and extracted watermarking image; (d,d1) hand and extracted watermarking
image; and (e,e1) breast and extracted watermarking image.

Table 1. The result under Gaussian noise attacks.

Name
Noise 1% Noise 5% Noise 15% Noise 30% Noise 50%

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC

Medical image A 21.3809 1.0000 14.6856 1.0000 10.7088 0.9877 8.6252 0.9753 7.9512 0.9754
Medical image B 21.8515 1.0000 15.2301 1.0000 10.9588 0.9753 8.7182 0.9753 7.4081 0.9753
Medical image C 17.7054 1.0000 11.0908 1.0000 7.3532 0.9877 5.6276 0.9753 4.6856 0.9754
Medical image D 19.4994 1.0000 12.8283 1.0000 8.4299 0.9753 6.0647 0.9753 4.7484 0.9754
Medical image E 18.1251 1.0000 11.5601 1.0000 7.4808 0.9877 5.4692 0.9753 4.3108 0.9754

• JPEG Compression Attacks

In order to improve transmission efficiency and reduce the amount of transmitted
information, images are generally compressed during transmission. JPEG compression
is mainly to remove redundant information from medical images. The result of the com-
pression attack on the medical image is in Figure 10. Even if the image produced obvious
blocky effects, the watermarking image could still be extracted correctly. Table 2 shows
that the mean NC values are over 0.95 even when the compression quality falls to 2%. In
summary, the proposed algorithm has better robustness under compression attacks.
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Figure 10. Attacked medical images and restored watermarking images under JPEG compression 2%:
(a,a1) brain and extracted watermarking image; (b,b1) chest and extracted watermarking image; (c,c1)
fundus blood vessels and extracted watermarking image; (d,d1) hand and extracted watermarking
image; and (e,e1) breast and extracted watermarking image.

Table 2. The result under JPEG compression attacks.

Name
Compress 2% Compress 5% Compress 9% Compress 15% Compress 25%

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC

Medical image A 20.707 0.9628 22.0045 0.9877 23.6216 0.9503 24.9075 0.9629 26.7087 0.9628
Medical image B 22.557 0.9877 24.6316 0.9753 26.9914 0.9754 28.9971 0.9628 31.0536 0.9754
Medical image C 23.2354 0.9877 25.2333 0.9877 28.5905 0.9877 30.9748 0.9877 33.1253 0.9753
Medical image D 26.1048 0.9877 26.4586 0.9753 32.8437 1.0000 34.6839 1.0000 35.0334 1.0000
Medical image E 24.0996 0.9877 24.4521 0.9753 29.9548 1.0000 32.1558 0.9877 34.9622 1.0000

• Median Filter Attacks

Figure 11 shows the experimental results under the median filter attack. As can be
seen from the figure, when the median filter is (7 × 7), and the attack is repeated 20 times,
the medical image becomes a white elliptical outline, it has a huge change in shape and
detail. However, the extracted watermarking image is still very clear. Table 3 indicates that
as the window size and filtering time increase, the NC values show a downward trend, but
the NC values can still reach above 0.9. Therefore, the algorithm exhibits strong robustness
under median filter attacks.

Table 3. The result under median filter attacks.

Name

Parameter (3 × 3) Parameter (5 × 5) Parameter (7 × 7)

10 Times 20 Times 10 Times 20 Times 10 Times

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC

Medical image A 20.91 0.9504 20.3341 0.9377 17.2479 0.9126 16.6834 0.9123 15.917 0.9124
Medical image B 26.5736 0.9754 26.02 0.9629 22.609 0.9753 22.1802 0.9754 19.9116 0.9753
Medical image C 35.49 1.0000 35.2661 1.0000 32.6347 0.9877 32.3348 0.9877 31.4819 0.9877
Medical image D 38.0348 1.0000 37.2862 1.0000 28.0059 0.9629 26.3181 0.9753 24.288 0.9629
Medical image E 35.173 1.0000 34.9371 1.0000 29.2758 0.9877 28.4422 0.9877 26.391 0.9877
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Experiments demonstrate that the algorithm is consistently more robust under com-
mon attacks of various strengths. Because the DTCWT has excellent denoising property 
and direction selectivity, and the low-frequency sub-bands obtained after MDCT and Hes-
senberg decomposition have strong stability, the proposed algorithm shows excellent ro-
bustness in resistance to common attacks. 

Figure 11. Attacked medical images and restored watermarking images under (7 × 7), 20 times
median filter attacks: (a,a1) brain and extracted watermarking image; (b,b1) chest and extracted
watermarking image; (c,c1) fundus blood vessels and extracted watermarking image; (d,d1) hand
and extracted watermarking image; and (e,e1) breast and extracted watermarking image.

Experiments demonstrate that the algorithm is consistently more robust under com-
mon attacks of various strengths. Because the DTCWT has excellent denoising property
and direction selectivity, and the low-frequency sub-bands obtained after MDCT and
Hessenberg decomposition have strong stability, the proposed algorithm shows excellent
robustness in resistance to common attacks.

4.2.2. Geometric Attacks

• Rotation Attacks

We applied a clockwise rotation attack to the medical image, increasing the rotation
angle from 5 to 40. Table 4 presents the results showing that as the strength of the rotation
increases, the quality of the image and the NC values drop dramatically. Even when the
rotation is 40 degrees, the NC values can still reach 0.9 or more. Figure 12 displays that the
position of the medical image after the rotation has changed greatly, but the watermarking
image can still be fully presented, which indicates the great robustness of the proposed
algorithm to rotational attacks.

Table 4. The result under clockwise rotation attacks.

Name
Rotation 5% Rotation 10% Rotation 20% Rotation 25% Rotation 40%

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC

Medical image A 15.5831 0.9752 12.9944 0.9377 12.068 0.9378 11.9703 0.9628 11.232 0.9753
Medical image B 18.1468 0.9379 14.5409 0.9629 11.5648 0.9503 10.7143 0.9504 9.448 0.9378
Medical image C 30.0359 0.9877 28.5605 0.9877 27.0817 0.9877 26.5903 0.9877 25.7494 0.9877
Medical image D 20.8156 0.9877 17.0125 0.9877 13.8992 0.9877 13.0057 0.9753 12.16 0.9377
Medical image E 20.5585 0.9877 16.717 0.9754 13.4887 0.9877 12.7267 0.9753 11.4282 0.9877
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• Scaling Attacks 
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general scale attack are 1. In the case of high-strength scaling, the NC values remain above 
0.87. Figure 13 shows the result of the experiment with a scaling down of 0.125 and then 
scaling up of 8 times, showing that the image already has a patch effect and has been 
severely distorted, but the watermarking image can still be extracted accurately. There-
fore, the proposed algorithm has good performance under scaling attacks. 

Figure 12. Attacked medical images and restored watermarking images under clockwise rotation 30◦:
(a,a1) brain and extracted watermarking image; (b,b1) chest and extracted watermarking image; (c,c1)
fundus blood vessels and extracted watermarking image; (d,d1) hand and extracted watermarking
image; and (e,e1) breast and extracted watermarking image.

• Scaling Attacks

From the result in Table 5, for the scaling attack, the NC values obtained under the
general scale attack are 1. In the case of high-strength scaling, the NC values remain above
0.87. Figure 13 shows the result of the experiment with a scaling down of 0.125 and then
scaling up of 8 times, showing that the image already has a patch effect and has been
severely distorted, but the watermarking image can still be extracted accurately. Therefore,
the proposed algorithm has good performance under scaling attacks.
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Figure 13. Attacked medical images and restored watermarking images under scaling factors 0.125
then factors 8: (a,a1) brain and extracted watermarking image; (b,b1) chest and extracted watermark-
ing image; (c,c1) fundus blood vessels and extracted watermarking image; (d,d1) hand and extracted
watermarking image; and (e,e1) breast and extracted watermarking image.
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Table 5. The result under scaling attacks.

Name
Zoom Factor
0.125 then 8

Zoom Factor
0.25 then 4

Zoom Factor
0.5 then 2

Zoom Factor
2 then 0.5

Zoom Factor
4 then 0.25

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC

Medical image A 15.6234 0.8746 17.8888 0.9628 21.5809 0.9753 30.2404 1.0000 30.5191 1.0000
Medical image B 18.504 0.9124 21.7819 0.9753 27.4683 1.0000 38.8449 1.0000 39.1239 1.0000
Medical image C 25.5095 0.9754 29.7844 0.9877 35.0533 1.0000 45.9477 1.0000 46.6227 1.0000
Medical image D 26.6648 0.9753 33.0577 0.9877 41.1167 1.0000 52.6998 1.0000 53.3732 1.0000
Medical image E 27.2548 0.9877 31.7092 0.9877 37.6185 1.0000 48.3699 1.0000 49.124 1.0000

• Cropping Attacks

As shown in Table 6 that even when the X-axis is 40%, and the Y-axis is 25%, the NC
values remain at about 0.93. Figure 14 shows the experimental results of different medical
images with 40% cropping on the X-axis and 30% on the Y-axis. We can see that the attacked
images’ outer contour changes considerably, and most information is removed, but the
extracted watermark is nevertheless distinctly recognizable, and all have NC values above
0.95. Therefore, the algorithm’s robust performance under the cropping attack is excellent.
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Figure 14. Attacked medical images and restored watermarking images under X-axis cropping 40% and
Y-axis cropping 30%: (a,f,a1,f1) brain and extracted watermarking image; (b,g,b1,g1) chest and extracted
watermarking image; (c,h,c1,h1) fundus blood vessels and extracted watermarking image; (d,i,d1,i1)
hand and extracted watermarking image; and (e,j,e1,j1) breast and extracted watermarking image.
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Table 6. The result under cropping attacks.

Name
X-Axis Crop 5% X-Axis Crop 15% X-Axis Crop 40% Y-Axis Crop 10% Y-Axis Crop 25%

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC

Medical image A 90.1377 1.0000 56.9175 1.0000 12.9247 0.9753 18.7664 0.9377 13.59 0.9377
Medical image B 50.2622 1.0000 23.43 0.9630 14.5185 0.9629 28.6074 0.9753 14.3028 0.9754
Medical image C 32.7365 0.9877 20.7318 0.9877 12.3005 0.9629 24.811 0.9877 16.2596 0.9753
Medical image D 87.581 1.0000 87.581 1.0000 19.3996 0.9877 19.4777 0.9629 16.4589 0.9629
Medical image E 20.3824 0.9877 15.3823 0.9754 9.7896 0.9630 32.9291 0.9877 16.7177 0.9877

• Translation Attacks

Figure 15 shows the results of the experiment in which the medical images of different
parts are shifted 20% to the left and 30% downwards. The figures show that some informa-
tion has been missed; however, the restored watermarking image still has a good visible
effect. Observing Table 7, we can see that regardless of whether they move largely left or
vertically, their NC values perform well. When shifted 41% to the left or 40% downward,
the NC means can still reach 0.93. Therefore, under the translation attack, the algorithm
shows good robustness.
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Figure 15. Attacked medical images and restored watermarking images under left translation 20% and
down translation 30%: (a,f,a1,f1) brain and extracted watermarking image; (b,g,b1,g1) chest and extracted
watermarking image; (c,h,c1,h1) fundus blood vessels and extracted watermarking image; (d,i,d1,i1)
hand and extracted watermarking image; and (e,j,e1,j1) breast and extracted watermarking image.
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Table 7. The result under translation attacks.

Name
Left 5% Left 17% Left 41% Down 13% Down 40%

PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC PSNR/dB NC

Medical image A 11.1507 0.9753 8.6638 0.9377 6.6029 0.9503 11.2107 0.9250 8.8705 0.9376
Medical image B 11.8073 0.9752 8.9485 0.9504 8.7963 0.9628 9.1991 0.9628 9.0726 0.9378
Medical image C 17.8609 0.9754 12.6764 0.9877 8.654 0.9877 13.9912 0.9753 8.4723 0.9753
Medical image D 17.481 0.9877 12.2204 0.9877 10.4476 0.9630 19.1956 0.9877 15.9374 0.9753
Medical image E 16.7173 0.9877 10.358 0.9877 6.3622 0.9380 11.2122 0.9877 7.67 0.9877

Experiments show that the algorithm is robust under different intensities of geometric
attacks. Because this paper uses DTCWT and Hessenberg decomposition, the constructed
feature matrix has translation and rotation invariance. At the same time, the algorithm
used by MDCT decreases the contact area with the image and improves the robustness
against cropping attacks and translation attacks to some degree. Therefore, the proposed
algorithm shows strong robustness in resisting geometric attacks.

4.3. Comparison Experiments

• Robustness comparison

For better verification of the robustness of the proposed algorithm, we selected the
MRI brain medical image as the original medical image. Both the proposed algorithm and
the comparison algorithm use the watermarking image size 64 × 64, but the reference
method remains the same as the original. We compared this algorithm with the algorithms
of 2. Rani et al. [2], Wu et al. [14], Qin et al. [15], and Liu et al. [18]. The changing trend of
the corresponding NC value is illustrated in Figures 16 and 17.
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Figure 16 displays that for Gaussian noise attacks, as the strength of the noise attack
gradually became larger, the NC values of the five algorithms all show a downward trend,
but the downward trend of the algorithm in this paper is relatively slow, and the noise
intensity of 30% the NC value obtained can still reach 0.97. For compression attacks, the
five algorithms are not much different in the NC values. Although the NC value is slightly
lower than the other four algorithms at a compression strength of 10, when the compression
strength is 2, the NC value remains above 0.96.

This is because DCT has good robustness against small-range noises and compression
attacks, but when the attack intensity increases, the DCT changes quickly, which in turn
leads to poor structural feature stability. The algorithm in this paper also uses the upper
triangular matrix of Hessenberg decomposition for information integration, which makes
the image more robust. In terms of median filtering attacks, the NC values of the algorithm
in this paper have no big gap with the literature [2,14,18] and are slightly lower than
the literature [15]. This is because the DWT used in the literature [2] has poor direction
information, and some contour information of the image would be lost. The Contourlet
transform, Curvelet transform, and DTCWT transform used in the literature [14,15,18]
have direction selectivity, which improves the image contour information significantly;
however, the Curvelet transform in the literature [15] has better performance for the singular
characteristics of the image curve and at the same time has better performance in filtering
and denoising, so it is more robust in resisting filtering attacks. In summary, the proposed
algorithm is more robust under common attacks.
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For geometric attacks, compared with the literature [2,14,15,18], the proposed algo-
rithm has a greater degree of enhancement, especially in rotation attacks, translation attacks,
and cropping attacks. Figure 17 demonstrates that for rotation attacks at different angles, the
proposed algorithm consistently achieves higher NC values than the literature [2,14,15,18].
When rotating 20% clockwise, the algorithm in this paper still maintains the NC value of
around 0.95, and the NC values of other documents are lower than 0.9; even the NC values
of the literature [14,15] are only about 0.65, which is less robust. For translational attacks,
the NC values of other algorithms have a rapid downward trend, while the algorithm in
this paper changes slowly, and the minimum NC value is greater than 0.92. For cropping at
different positions, for small parts of cropping, the NC values of the five algorithms can be
equal, but when the cropping part is larger, the NC value of the algorithm in this paper is
improved, compared to the literature [2,14,15,18], around 5–15%.

Because the literature [2] uses chunk singular values to construct image features, the
chunk singular values are more sensitive to pixel position and easier to change. The algo-
rithm in the literature [14,15,18] uses the DCT means for constructing the feature matrix;
when rotating and cropping attacks, the image means can be significantly influenced. The
DWT transformation, Contourlet transformation, and Curvelet transformation used in
the literature [2,14,15] do not have translation invariance and so have poor robustness in
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geometric attacks. The DTCWT used in this algorithm has direction selectivity and transla-
tion invariance, while MDCT and Hessenberg decomposition have energy concentration
solidity and rotation invariance. Additionally, the maximum value of each sub-block de-
composition is directly used to construct the feature vector of the image, which can directly
reflect the changes in the image. Therefore, even if it is geometrically attacked, the changes
in the maximum value are relatively small, and it can better resist geometrical attacks.

All in all, compared with the literature [2,14,15,18], the algorithm in this paper has
higher stability, especially in the solution of problems that have no resistance to geo-
metric attacks. The proposed algorithm shows great resistance to geometric attacks and
excellent robustness.

5. Conclusions

In this paper, we propose a robust, zero-watermarking algorithm based on DTCWT-
MDCT-Hessenberg for medical images, which solves the information security problems
during the process of medical image storing and transmitting. The algorithm uses the
direction selectivity, translation invariance of DTCWT, the stability of energy concentration
of DCT, and the rotation invariance of Hessenberg decomposition to solve the problem of
poor robustness of traditional zero-watermarking algorithms against geometric attacks. The
algorithm does not require watermarking of original medical images. Extraction realizes
the requirement of zero-watermarking and ensures the reliability of doctor’s diagnosis.
Meanwhile, combining cryptographic algorithms and third-party concepts, encryption
of the watermarking with a chaotic sequence of initial value sensitivity enhances the
algorithm’s security. Experimental results demonstrate that the algorithm in this paper
has high computational efficiency, exhibits good robustness under common attacks and
geometric attacks, and has high practical value in the protection of medical images.
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