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Abstract: The present work aims to primarily provide a general representation of the solution of
the simplified elastostatics version of Mindlin’s Form II first-strain gradient elastic theory, which
converges to the solution of the corresponding classical elastic boundary value problem as the
intrinsic gradient parameters become zero. Through functional theory considerations, a solution
representation of the one-intrinsic-parameter strain gradient elastostatic equation that comprises the
classical elastic solution of the corresponding boundary value problem is rigorously provided for
the first time. Next, that solution representation is employed to give an answer to contradictions
arising by two well-known first-strain gradient elastic models proposed in the literature to describe
the strain gradient elastostatic bending behavior of Bernoulli–Euler beams.

Keywords: strain gradient elastic theory; general solution representation; Bernoulli–Euler beam;
material with microstructure

MSC: 35C05

1. Introduction

It is well known that a structure consisting of a linear, isotropic, classical elastic
material, subjected to external time-invariant boundary conditions, behaves according to
the Navier–Cauchy equilibrium equation [1–3], which in terms of displacements uclassical

and without the presence of body forces reads:

µ∇2uclassical + (λ + µ)∇∇ · uclassical = 0, (1)

where ∇ is the gradient operator, while λ and µ indicate the Lamé constants.
Despite the discrete nature of real materials, the continuum theory of classical

elasticity—described by (1) for the elastostatics case—is deduced by considering that the
dimensions of the material microstructure are much smaller than a material representative
volume element (RVE), which in turn is much smaller than any dimension of the loaded
structure. Additionally, the material properties and the generated elastic fields in the RVE
are projected, by averaging, around a point x lying at the center of the RVE. That projection
imposes the local nature of the classical theory of elasticity and requires that displacements,
stresses, and strains vary constantly or linearly throughout the material RVE [4,5]. Obvi-
ously, the situation becomes problematic when the material inhomogeneity is comparable
with the size of the structure and the averaging performed in the RVE requires the consid-
eration of strain gradients in the potential energy density and the introduction of internal
length scale parameters, which are able to capture size effect phenomena.

At the beginning of 20th century, the Cosserat brothers [6] proposed the idea of an
enhanced elastic theory in which, except strains and stresses, the gradient of rotations
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and the dual in energy, couple stresses should be considered. Their idea reached maturity
almost fifty years later with the general works of Toupin [7], Mindlin and Tiersten [8], Green
and Rivlin [9] and Koiter [10]. Meanwhile Mindlin [11], while investigating the influence
of couple stresses to stress concentrations mentions that “Also, it would seem to be desirable to
explore the consequences of taking into account the remaining components of the strain gradient
and, perhaps, second and higher gradients of the strain”. Indeed, one year later, Mindlin [12]
published his general dynamic theory for elastic materials with microstructure, where
the microstructure is considered as an additional micro-continuum embedded at every
point of the macro-continuum, thus justifying, the presence of higher order strain gradients
in the expressions of potential energy density. Ignoring inertia terms, the couple stress
theory of Toupin [7], Mindlin’s elastic theory with microstructure [12] and later the virtual
power theory of Germain [13] lead, for a material with microstructural effects, to the same
equilibrium equation and boundary conditions. However, the elastostatic Form II version
of Mindlin’s theory has the very attractive characteristic of retaining the symmetry of the
considered total stress tensor as in the classical elasticity case, and concludes in a simple
equilibrium equation of the following form:

(λ + 2µ)(1− l2
1∇2)∇∇ · ugradient − µ(1− l2

2∇2)∇×∇× ugradient = 0, (2)

where l2
1 , l2

2 are internal length scale parameters that can facilitate microstructural effects
for dilatational and shear deformations, respectively.

Considering uniform microstructural effects for all types of deformation, i.e., l2
1 = l2

2 = g,
Equation (2) can be further simplified obtaining the form:(

1− g2∇2
)[

µ∇2ugradient + (λ + µ)∇∇ · ugradient
]
= 0 (3)

Equation (3) and the corresponding boundary conditions of Mindlin’s Form II theory
consist of an attractive enhanced elastic theory with a microstructure, known as strain
gradient elasticity (SGE) or dipolar gradient elasticity (DGE), since it employs only one
internal length scale parameter in addition to the two classical Lamé constants, and the
most important strains and stresses, appearing in its constitutive equations, are symmetric
as in the classical elastic case. During the last thirty years, many authors exploited the
simplicity of SGE to solve analytically and/or numerically elastostatic problems with
microstructural effects in many fields of linear elastic continuum mechanics, such as
fracture and dislocations mechanics [14–20] and structural and material response [21–30],
while interesting remarks on SGE can be found in [5,31–34].

Mindlin [11] first proposed a solution representation of Equation (2) based on
Papkovich–Neuber type vector and scalar potentials B, B0 [3,35], which, in the case of
Equation (3), is simplified to [30]:

ugradient = B− λ+µ
2(λ+2µ)

[
r ·
(
1− g2∇2)B + B0

](
1− g2∇2)∇2B = 0(
1− g2∇2)∇2B0 = 0.

(4)

Instead of (4), Charalambopoulos and Polyzos [26] utilized the following representa-
tion of the solution of (3):

ugradient = ue + ug

µ∇2ue + (λ + µ)∇∇ · ue = 0(
1− g2∇2)ug = 0.

(5)

without providing any correlation of (5) with the solution representation (4). The proof of
the decomposition (5) is provided in this paper through the proof of theorem 1 in Section 2
and via Papkovich–Neuber type potentials in Appendix A. It should be mentioned at
this point that the Papkovich–Neuber type gradient elastic solution (4) agrees with the
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corresponding one provided by Solyaev et al. [36,37], while the solution decomposition
(5) is in agreement with the decomposition proposed by Lazar [38] if one considers that
for a classical elastic solution ue satisfying Equation (1), the vector function

(
1− g2∇2)ue

remains a classical elastic solution. In [34], Gourgiotis et al. solve a sharp notch problem
in microstructured solids utilizing a Knein–Williams technique, and mentioned that their
asymptotic solution shows significant departure from those of classical elasticity. This
statement is basically the motivation for the present work, which, among others, proposes
a solution representation of (3) by comprising the solution of the corresponding classical
elastic boundary value problem, which is absent in both representations (4) and (5).

The first attempt at incorporating the classical elastic solution in the solution of (3) is
that of Ru and Aifantis [39]. More specifically, considering the elastic displacement field
uclassical that satisfies (1) and the corresponding classical elastic boundary conditions in a
domain Ω confined by a surface ∂Ω, they proposed as strain gradient elastic solution of (3)
the vector ugradient that satisfies the non-homogeneous partial differential equation:

(1− g2∇2)ugradient = uclassical , (6)

and the extra boundary condition

∂2

∂n2 ugradient = 0, (7)

where ∂/∂n denotes differentiation with respect to the unit normal vector of ∂Ω.
Comparing (3) with (6), the obvious advantage of this representation is the reduction

in the order of the partial differential equation of the problem by two. However, as it
is mentioned in Charalambopoulos and Polyzos [26], the representation (6) and (7) is
questionable for the following reasons: (i) the solution of the partial differential equation
of second order—as Equation (6)—satisfies a boundary condition of second order as the
condition (7) is in contradiction with the mathematically accepted condition that the
maximal degree of boundary conditions never exceeds the crucial number n − 1, where n
stands for the degree of the differential equation. (ii) The boundary condition (7) is arbitrary
and not the outcome of a variational process. (iii) The classical solution uclassical satisfies
the equilibrium Equation (3), but not Equation (6).

Charalambopoulos et al. [30] utilized a representation of the solution that satisfies
Equation (3) and the corresponding Form II boundary conditions and comprises the cor-
responding classical elastic solution, without, however, providing any systematic proof
of that representation. This is, among others, the goal of the present work. The possible
application of the presented here methodology to Equation (1) and to equations describing
the behavior of linear pantographic sheets [40] or obeying to the generalized Hook’s law
for isotropic second gradient materials [41] will be the subject of future work. The structure
of the present work is the following: The next section illustrates the Form II SGE theory
of Mindlin with only one internal length scale parameter. Section 3 is entirely devoted to
the mathematical establishment of a solution representation of (3), which encompasses the
corresponding classical solution and its convergence behavior as the gradient parameter
tends to zero. The same solution representation is exploited in Section 4 to show that
the bending stiffness of a Form II SGE Bernoulli–Euler beam depends on the material
rigidity EI and the internal length scale parameter g and not on EI, g plus the area of the
cross-section of the beam.

2. Strain Gradient Elastostatics with One Internal Length Scale Parameter

The present section reports a boundary value problem in terms of the simplest possible
strain gradient elastostatic theory with one intrinsic parameter. Mindlin [42] in the second
version of his theory considered that the first gradient elastic potential energy density for
an elastic body with microstructure is a quadratic form of the strains εij and the gradient
of strains κijk. For isotropic materials, this theory provides a potential energy density
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containing the two Lamé material constants and five constants that normalize the terms of
strain gradients, i.e.,

U = 1
2 λεiiε jj + µεijεij + α̂1κiikκkjj + α̂2κijjκikk + α̂3κiikκjjk

+α̂4κijkκijk + α̂5κijkκkji

εij =
1
2
(
∂iuj + ∂jui

)
= ε ji

κijk = ∂iε jk =
1
2
(
∂i∂juk + ∂i∂kuj

)
= κikj,

(8)

where ∂i denotes spatial differentiation, ui are the displacement components,λ, µ are the
well-known Lamé constants having units N/m2 and α̂1 ÷ α̂5 are five constants having units
of force, all explicitly provided in [12].

For the case of α̂1 = α̂3 = α̂5 = 0 and α̂2 = λg2, α̂4 = µg2, the potential energy density
U obtains the form

U = 1
2 λεiiε jj + µεijεij +

1
2 λg2κijjκikk

+ µg2κijkκijk,
(9)

where g is the only internal length scale parameter that correlates the microstructure with
macrostructure, having units of length (m).

Strains and gradient of strains are dual in energy with the Cauchy-like stresses and
double stresses, respectively, defined as:

τij =
∂W
∂εij

= 2µεij + λεkkδij, (10)

and
µijk =

∂W
∂κijk

= g2∂iτjk (11)

If the Young modulus E and Poisson ratio v are used instead of the Lame constants λ,
µ, then the replacements λ = Ev

(1+v)(1−2v) , µ = E
2(1+v) should be made.

Considering a material with a microstructure of volume V and external boundary
S, the variation of the total potential energy (9) provides, after some algebra [12,43,44],
the following relation:∫

V
δUdV = −

∫
V

[
∂j

(
τjk − ∂iµijk

)]
δukdV +

∫
S

RkDδukdS

+
∫

S1∪S2

pkδukdS + 〈Ekδuk〉,
(12)

where the vectors pk, Rk represent the traction and double traction vectors, respectively,
defined on the boundary S and written as

pk = nj

(
τjk − ∂iµijk

)
− Dj

(
niµijk

)
+ (Dmnm)ninjµijk, (13)

and
Rk = ninjµijk, (14)

where Dj and D represent the tangential and normal gradient operators on S, respectively,
and have the form

Dj =
(
δjm − njnm

)
∂m

D = nm∂m.
. (15)

The vector Ek in Equation (12) concerns non-smooth boundaries with at least one
corner c in two dimensions or at least one closed edge line ` in three dimensions, admitting
the form:
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〈Ekδuk〉 =

 ‖nimjµijk‖corner cδuk f or 2D∮̀
‖nimjµijk‖edge `δukd` f or 3D , (16)

where ‖•‖ denotes the difference of • at both sides of the corner c or the edge `, while mj
stands for the tangential vector in both sides of a corner or edge.

Equilibrating (12) with the variation of the work performed by external body force Fk,
boundary tractions pk, double traction Rk and jump traction Ek, we arrive at the following
equilibrium equation:

∂j(τjk − ∂iµijk) + Fk = 0, (17)

accompanied by the classical essential and natural boundary conditions where the dis-
placement vector uk and/or the traction vector pk must be defined on the global boundary
S ≡ S1 ∪ S2, i.e.,

uk(x) = uk(x), x ∈ S1
pk(x) = pk(x), x ∈ S2,

(18)

and the non-classical essential and natural boundary conditions where the normal displace-
ment vector qk = Duk, the double traction vector Rk or jump traction Ek are prescribed on
S ≡ S3 ∪ S4, i.e.,

qk(x) = qk(x), x ∈ S3
Rk(x) = Rk(x), x ∈ S4
Ek(x) = Ek(x), x ∈ corner or edge.

(19)

In terms of the displacement vector u(x) and free of body forces, Equation (17) obtains
the form (

1− g2∇2
)[

µ∇2u(x) + (λ + µ)∇∇ · u(x)
]
= 0. (20)

Theorem 1. The solution of Equation (20) can be written as

u ≡ ugradient = uclassical + ug, (21)

with uclassical ∈ ker
(
µ∇2 + (λ + µ)∇∇·

)
and ug ∈ ker

(
1− g2∇2).

Proof. We denote as ∆∗ the classical elastic elliptic differential operator µ∆ + (λ + µ)∇(∇·)
Given that

(
1− g2∆

)
∆∗ugradient = ∆∗

(
1− g2∆

)
ugradient = 0, we infer that

∆∗ugradient = wg ∈ ker
(

1− g2∆
)

, (22)

and (
1− g2∆

)
ugradient = we ∈ ker(∆∗). (23)

Consequently,(
1− g2∆

)
ugradient = we ⇒ µ∆ugradient =

µ

g2 ugradient − µ

g2 we. (24)

Equations (22) and (24) imply that

µ

g2 ugradient − µ

g2 we + (λ + µ)∇
(
∇ · ugradient

)
= wg ⇒

ugradient = − λ+µ
µ g2∇

(
∇ · ugradient

)
+ we + g2

µ wg.
(25)
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We consider the Helmholtz decomposition of the field wg : wg = ∇H +∇×K. Then,
Equation (22) leads to

∇ ·
[
µ∆ugradient + (λ + µ)∇

(
∇ · ugradient

)]
= ∇ · (∇H +∇×K)⇒

∆
[
(λ + 2µ)∇ · ugradient − H

]
= 0⇒

(λ + 2µ)∇ · ugradient = H + B0,

(26)

where B0, is a harmonic function. Then, Equations (25) and (26) give

ugradient = − λ + µ

µ(λ + 2µ)
g2∇(H + B0) + we +

g2

µ
wg. (27)

Additionally, it holds that ∆H = ∇ · wg ∈ ker
(
1− g2∆

)
and therefore

∆
[(

1− g2∆
)

H
]
= 0⇒

(
1− g2∆

)
H = B1 , where B1 is another harmonic function. One

partial solution of this equation is clearly exactly the function B1 and so the general solution
is H = ug + B1, with ug ∈ ker

(
1− g2∆

)
. Then, (27) is rewritten as

ugradient = − λ+µ
µ(λ+2µ)

g2∇(B0 + B1) + we

+ g2

µ wg − λ+µ
µ(λ+2µ)

g2∇ug.
(28)

The first two terms of the decomposition (28) form the classical part ue ∈ ker∆∗

while the remaining terms form the component ug obeying to the homogeneous modified
Helmholtz equation. �

3. On Representing Strain Gradient Elastic Solutions via the Solution of the
Corresponding Classical Elastic Boundary Value Problem

All the representations of the solution of a strain gradient elastostatic problem appear-
ing in the literature, do not include as a constituent the respective classical elastic solution,
while the convergence behavior of these solutions when the gradient parameters fade away
is not studied. As in [45,46], in the following, we present a general result considering all
the above concerns.

Consider a bounded open region Ω ⊂ Rd, d = 2, 3, with its boundary ∂Ω being a
Lipschitz surface. Assuming that the body forces are absent, we consider the solution of
the boundary value problem consisting of the fourth order partial differential Equation (20)
and a set of classical and non-classical boundary conditions as those illustrated in Section 2.
More precisely, we partition the surface ∂Ω twice, first in two subdomains ∂ΩD and
∂ΩN (with meas(∂ΩD) > 0), where classical conditions are imposed, and secondly, in the
subdomains ∂ΩQ and ∂ΩR, whose common boundary Γ is of dimension (d− 2) and
represents the corners c or the edges l of the surface ∂Ω. Then, the general set of mixed-type
classical conditions can be formulated as

u(x) = f(x), x ∈ ∂ΩD (a)
P(x) = g(x), x ∈ ∂ΩN (b),

(29)

along with the set of non-classical conditions

∂u(x)
∂n = h(x; g), x ∈ ∂ΩQ (a)

R(x) = r(x; g), x ∈ ∂ΩR (b)
E(x) = s(x; g), x ∈ Γ (c),

(30)

where P = Pix̂i, R = Rix̂i and E = Eix̂i.
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The solution u(x) and the fields P(x), R(x), E(x) depend of course on the parameter g,
but this is omitted for simplicity and will be notified only when it is necessary.

It is assumed that the given functions f, g, h, r and s share all the required regularity for
the well-posedness of the traces of the solution of Equation (20)—and its derivatives—on ∂Ω.
To clarify rigorously the last remark, we could additionally invoke the functional theoretic
framework of variational problems settled in Sobolev spaces. This approach is described
extensively in Wloka [47] for the general case of elliptic boundary value problems of a
higher order and is very profitable since it provides results with crucial influence in the
solvability of the problem under consideration with existence, uniqueness, and stability.
It is out of the scope of the present work to give an extensive investigation via the afore-
mentioned alternative framework, but it would be very helpful to give some brief concepts,
facilitating the comprehension of the inner structure of the boundary value problems under
investigation. Then, we recall the Sobolev spaces Hs(Ω) and Hs(∂Ω), which are complete
Hilbert spaces built by functions (or distributions) with specific integration behavior over
Ω and ∂Ω. Among the more recognizable Sobolev spaces, we encounter the space of square
integrable measurable functions H0(Ω) = L2(Ω) and its subspace H1(Ω), whose elements
possess distributional derivatives with the same square integrable behavior. Every Hilbert
space Hm(Ω), with m ∈ N, has a usual inner product and an induced norm consisting of
the L2 norms of the derivatives up to degree m. Therefore, the inclusion Hm1(Ω) ⊂ Hm2(Ω)
when m1 > m2 is an obvious relation. For real and positive order s, the norm is defined in
a more complicated manner, but generalizes naturally what happens for an integer order.
The linear spaces inclusion above still holds. When s ≥ 0, the elements of the space Hs(Ω)
belong to L2(Ω), but this is not the case when s < 0 and constitute then pure distributions
without functional representative.

Although not necessarily classical functions, the elements of Hs(Ω) have trace on the
boundary ∂Ω, which are generalized functions belonging to Hs− 1

2 (∂Ω). The distributional
surface normal derivative (of order k) of an element in Hs(Ω) belongs to Hs−k− 1

2 (∂Ω) in
the case that the smoothness of the surface allows the induced differentiability. The space
Hs

0(Ω) is a subspace of Hs(Ω), with elements that, along with all their normal derivatives
of order less than s, have zero traces on ∂Ω.

Notice at this point that, for the case of the closed surface ∂Ω, the space H−s(∂Ω) is
the dual space of Hs(∂Ω) and so surface terms of the form 〈h, f 〉|∂Ω naturally arise, where
h ∈ H−s(∂Ω) and f ∈ Hs(∂Ω). This term expresses the action of h on f and it is very
reminiscent of the virtual work of a force over a displacement. Only when s = 0, we have
the reduction in the dual pairing 〈h, f 〉|∂Ω to the usual inner product

∫
∂Ω h(x) f (x)dSx.

After this brief discussion, we notice that in the framework of a boundary value prob-
lem whose differential equation is of order 2m = 4, the boundary Equations (29) and (30)
involve m(= 2) boundary operators (of possibly mixed type) (when Γ = ∅). These op-
erators are characterized by their own orders, which obey to the rule: 0 ≤ mj ≤ 2m− 1.
If, for example, we had exactly the boundary conditions (29) and (30) valid on the whole
surface ∂Ω (with Γ = ∅), the involved boundary operators Bj, j = 1, 2 would be B1 = I
(with order m1 = 0) and B2 = ∂/∂n (with order m2 = 1). This example corresponds to the
so called Dirichlet boundary value problem of fourth order. This settlement lies totally in
the general framework of the abstract theory of elliptic boundary value problems: The main
outcome is the existence and uniqueness of the solution of the problem (20), (29) and (30)
with the following regularity general result [47]

‖u‖HS(Ω) ≤ Cg

(
‖f‖

Hs−m1−
1
2 (∂ΩD)

+ ‖g‖
Hs−m2−

1
2 (∂ΩN)

+ ‖h‖
Hs−m3−

1
2 (∂ΩQ)

+ ‖r‖
Hs−m4−

1
2 (∂ΩR)

+ ‖s‖
H(s−m4−

1
2 )−

1
2 (Γ)

)
,
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and so, assigning to boundary operators their exact orders, we obtain

‖u‖HS(Ω) ≤ Cg

(
‖f‖

Hs− 1
2 (∂ΩD)

+ ‖g‖
Hs− 7

2 (∂ΩN)
+ ‖h‖

Hs− 3
2 (∂ΩQ)

+‖r‖
Hs− 5

2 (∂ΩR)
+ ‖s‖Hs−3(Γ)

)
.

(31)

We would like to note the double consecutive dimension reduction Ω→ ∂Ω→ Γ ,
which takes place in the treatment of the fifth term of the r.h.s of the last equation.
The regularity of the solutions depends on the regularity of the data in a specific man-
ner. It is not explicitly apparent, but when the parameter s increases, the validity of
Equation (31) passes through further assumptions for additional smoothness of the bound-
ary ∂Ω. The most encountered evocation of the representation (31) is with the selection
s = 2m = 4 (the order of the differential equation). Therefore, for the solution u to have
square integrable (in Ω) derivatives up to fourth order, all the data must belong to “smooth”
Sobolev spaces of positive order. Then, the differential equation is satisfied in L2-sense.
However, this is accompanied with the hypothesis of a smooth C1,1 boundary. To permit a
boundary with corners or edges and to obtain the broader class of admissible solutions,
it is preferable to work with m = 2. Then,

‖u‖H2(Ω) ≤ Cg

(
‖f‖

H
3
2 (∂ΩD)

+ ‖g‖
H−

3
2 (∂ΩN)

+ ‖h‖
H

1
2 (∂ΩQ)

+ ‖r‖
H−

1
2 (∂ΩR)

+ ‖s‖H−1
(Γ)

)
.

(32)

In this case, the data f, h loose regularity, but still belong to the realm of square
integrable functions. However, the data g, r, and s pertaining to stresses and jumps of
double stresses over corners (edges) might become not square integrable distributions,
ready to act—via the mentioned above dual pairings—on their reciprocal fields. In this
point, we would like to say that our analysis has been facilitated from the fact that we are
in absence of body forces. The differential equation is not any more valid classically, but in
the distributional sense. It is noticeable that due to the special coercivity behavior of the
bilinear form corresponding to the gradient elasticity operator, the generic constant Cg
appearing in relation (32) cannot present worse behavior than the asymptotic convergence
O
(

g−2) for g→ 0 . In addition, (32) implies a fortiori the boundedness

‖u‖H1(Ω) ≤ C
(
‖f‖

H
3
2 (∂ΩD)

+ ‖g‖
H−

3
2 (∂ΩN)

+ ‖h‖
H

1
2 (∂ΩQ)

+ ‖r‖
H−

1
2 (∂ΩR)

+ ‖s‖H−1(Γ)

)
.

(33)

It is noticeable here that the constant C is independent of g since suppressing down-
wards the energy bilinear form and keeping only norms of first derivatives involve exclu-
sively the Lamé constants of classical elasticity.

After the brief introduction of the functional theoretic setting, we are in position to
present the two main accomplishments of the current work. First, we are going to present
the construction of a very useful decomposition of the unique solution of the problem under
consideration. In the sequel, we will state the necessary assumptions on the data so that
this representation obtains a stable (with respect to g) behavior, incorporating appropriately
the classical solution.

Consider the auxiliary second order classical boundary value problem (titled Problem I),
satisfied by the solution uclassical(x):

∆∗uclassical(x) = 0, x ∈ Ω

∆∗ ≡ µ∇2 + (λ + µ)∇∇,
(34)
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uclassical(x) = f(x), x ∈ ∂ΩD, (35)

tclassical(x) = g(x), x ∈ ∂ΩN , (36)

where tclassical = τijx̂ix̂j · n̂, is the classical surface traction field.
The above defined problem involving Equations (34)–(36) used the classical data from

the gradient problem and “ignores” the non-classical ones. We emphasize that in Problem I,
the gradient boundary term P(x) offers its place to its classical counterpart tclassical(x).
Applying the classical well-known framework of the preceding analysis concerning this
time the traditional second order elliptic boundary value problems, we deduce easily that
the unique classical solution satisfies the stability relation

‖uclassical‖H1(Ω) ≤ C
(
‖f‖

H
1
2 (∂ΩD)

+ ‖g‖
H−

1
2 (∂ΩN)

)
.

It is worthwhile to mention here that the last equation defines exactly the needed
regularity of the data f, g for the stated stability to be guaranteed. However, the gradient
problem has already assigned specific regularity assumptions on the data. Compromising
the two groups of requirements, we deduce that f ∈ H

3
2 (∂ΩD) ⊂ H

1
2 (∂ΩD) as well as

g ∈ H−
1
2 (∂ΩN) ⊂ H−

3
2 (∂ΩN).

We are in position to state the main representation theorem of this work. We set
first, as induced by the discussion above, the broader possible space in which the data are
permitted to belong:

(f, g, h, r, s) ∈ B = H
3
2 (∂ΩD)× H−

1
2 (∂ΩN)× H

1
2
(
∂ΩQ

)
× H−

1
2 (∂ΩR)× H−1(Γ).

The following theorem holds:

Theorem 2. Let the boundary value problem consist of Equations (20), (29) and (30) where the data
(f, g, h, r, s) ∈ B. This problem is a well-posed fourth order elliptic boundary value problem with a
unique solution. This solution can be represented as follows

u(x; g) = uclassical(x) + w(x; g), x ∈ Ω
w(x; g) = uN(x; g) + g2uG(x; g),

(37)

where uclassicalsatisfies Problem I, uNsatisfies the classical elastostatic equation and uGobeys to the
modified Helmholtz equation:

µ∇2uN(x; g) + (λ + µ)∇∇ · uN(x; g) = 0, x ∈ Ω, (38)

(1− g2∇2)ug(x; g) = 0, x ∈ Ω. (39)

Proof. As explained above, the problem (20), (29) and (30) disposes a unique solution
u(x, g), which is stable with respect to the data as Equations (32) and (33) guarantee. We
consider the decomposition

u(x; g) = uclassical(x) + w(x; g).

The function w(x; g) satisfies Equation (20) given that both uclassical(x) and the field
u(x; g) obey to this equation too. Based on the Papkovich-type representation [26,30],
the field w(x; g) can be written as

w(x; g) = B− λ+µ
2(λ+2µ)

{
(1− g2∇2)B+[

(1− g2∇2)∇B
]
· r + ∇B0},

(40)
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where (
1− g2∇2

)
∇2B(x; g) = 0, (41)(

1− g2∇2
)
∇2B0(x; g) = 0. (42)

Working with Equation (41), we have that necessarily (1− g2∇2)B(x; g) is a harmonic
function BL(x; g). Then,

B(x; g) = (1− g2∇2)B(x; g) + g2∇2B(x; g) = BL(x; g) + g2BG(x; g),

where BG(x; g) satisfies the modified Helmholtz equation (1− g2∇2)BG(x; g) = 0.
A similar treatment applies to Equation (42) and the result is that the fields of

Equations (41) and (42) have the decomposed form

B(x; g) = BL(x; g) + g2BG(x; g)

B0(x; g) = BL
0 (x; g) + g2BG

0 (x; g),
(43)

∇2BL(x; g) = 0,
(
1− g2∇2)BG(x; g) = 0

∇2BL
0 (x; g) = 0,

(
1− g2∇2)BG

0 (x; g) = 0.
(44)

Inserting these representations in Equation (40) leads to the decomposition

w(x; g) = uN(x; g) + g2uG(x; g), (45)

where
uN =

λ + 3µ

2(λ + 2µ)
BL − λ + µ

2(λ + 2µ)
∇BL · r− λ + µ

2(λ + 2µ)
∇BL

0 , (46)

and
uG = BG − λ + µ

2(λ + 2µ)
∇BG

0 . (47)

It is evident that uG ∈ ker(1− g2∇2). In addition, it comes out easily that uN belongs
to the kernel of the operator ∇2. Consequently, we deduce that

0 = (1− g2∇2)
[
µ∇2w + (λ + µ)∇∇ ·w

]
= µ∇2uN + (λ + µ)∇∇ · uN + (1− g2∇2)

[
µ∇2uG + (λ + µ)∇∇ · uG]

= µ∇2uN + (λ + µ)∇∇ · uN ,

from where we infer that uN ∈ ker
[
µ∇2 + (λ + µ)∇∇·

]
. �

As a conclusion, the decomposition (37) with the differential properties (38) and (39)
was derived from the point of view of the underlying differential equations and al-
ways can be applied to the unique solution of the fourth order boundary value prob-
lem under discussion. The implication of boundary conditions is of course the next step.
The representation (37) has the advantage that it disposes additional degrees of freedom
since the involved “free” functions satisfy the second order differential equations in which
the gradient elasticity law decomposes. In addition, the representation (37) involves the
classical solution of the problem in the absence of the microstructure g = 0 as a cornerstone
constituent. It is very interesting to examine whether taking the limit of the expression (37)
as g→ 0 leads to the classical solution. What matters of course is primary the construction
of the solution of the boundary value problem independently of its convergence behavior.
Nevertheless, it is essential to construct sufficient conditions on the data assuring this
desirable convergence property.

The next theorem verifies that under specific assumptions on the data, convergence
is established. The first requirement is in accordance with the underlying constitutive
equations concerning double stresses. Indeed, it is natural that the magnitude of the
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double stresses and the relevant jump fields imposed on the structure obey to specific order
analysis with respect to the microstructure parameter. More precisely, the boundary tensors
R(x) and E(x) are selected as follows:

r(x; s) = g2r̃(x), x ∈ ∂ΩR, (48)

s(x; g) = g2s̃(x), x ∈ Γ, (49)

and as stated, this choice has a physical origin. The additional requirements are related to
the necessary regularity of the rest of the data. It is necessary, in the convergence setting
for the boundary data g, to be a genuine square integrable function, in fact an element of
H

1
2 (∂ΩN) and that ‖h(·, g)‖

H
1
2 (∂ΩQ)

remains bounded as g varies. In practice, the term

h(x, g) is usually independent of g.
As far as the stated above restriction of g is concerned, the concept stems from the

treatment of the classical solution. As we will see, under this assumption, the function
∂

∂n uclassical(x) becomes a square integrable function with a crucial role in the
convergence analysis.

The following theorem holds.

Theorem 3. Let the boundary value problem consist of Equations (20), (29) and (30). The data
(f, g, h, r, s) are elements of B with the restriction that r, s obey to Equations (48) and (49),
g ∈ H

1
2 (∂ΩN) ⊂ H−

1
2 (∂ΩN) and ‖h(·, g)‖

H
1
2 (∂ΩQ)

is a bounded function of g. Two mutually

exclusive alternatives arise:

(A) h(x; g) = h(x) = ∂
∂n uclassical(x), x ∈ ∂ΩQ a.e.

(B) h(x; g)− ∂
∂n uclassical(x) 6= 0, x ∈ ∂ΩQ

In case (B), we impose further regularity on the data by demanding f ∈ H
5
2 (∂ΩD) and

g ∈ H
3
2 (∂ΩN).

Let u(x; g) be the unique solution of the gradient elasticity boundary value problem constructed
in Theorem 2. Then, the following asymptotic analysis holds:

uG = BG − λ + µ

2(λ + 2µ)
∇BG

0 , (50)

rendering Problem I, the asymptotic classical limit of the gradient problem, when the impact of the
microstructure fades away.

Proof. The classical elastic displacement field satisfies the following stability condition:

‖uclassical‖H1(Ω) ≤ C
(
‖f‖

H
1
2 (∂ΩD)

+ ‖g‖
H−

1
2 (∂ΩN)

)
, (51)

as stated before. However, due to the additional regularity f ∈ H
3
2 (∂ΩD) ⊂ H

1
2 (∂ΩD)

(valid throughout the work) and the extra requirement g ∈ H
1
2 (∂ΩN) ⊂ H−

1
2 (∂ΩN)

introduced in the assumptions of the current theorem, we are in position to invoke
the well-known regularity theory for second order elliptic boundary value problems
guaranteeing that

‖uclassical‖H2 ≤ C
(
‖f‖

H
3
2 (∂ΩD)

+ ‖g‖
H

1
2 (∂ΩN)

)
. (52)

Consequently, the classical solution has square integrable derivatives of the second
order and the theory of traces on the boundary implies that all the terms ∂ι∂juclassical

∣∣∣
∂Ω

belong to H−
1
2 (∂Ω) as well as ∂i∂j∂kuclassical

∣∣∣
∂Ω
∈ H−

3
2 (∂Ω).
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On the basis of Equation (7) and via tensor symbolism—just for condensing the form
of the expressions—the following Betti’s form type result, referring to the elastic field w,
can be constructed:

0 =
∫
Ω
(∇ · (τ̃w −∇ · µ̃w)) ·wdx = 〈Rw, Dw〉|∂Ω + 〈Pw, w〉|∂Ω

+ 〈Ew, w〉|Γ −
∫
Ω

(
τ̃w : ε̃w + µ̃w

...ε̃w∇
)

dx.
(53)

Here, we encounter the dual pairings 〈Rw, Dw〉|∂Ω = 〈Rw, Dw〉|
H−

1
2 (∂Ω)×H

1
2 (∂Ω)

,

〈Pw, w〉|∂Ω = 〈Pw, w〉|
H−

3
2 (∂Ω)×H

3
2 (∂Ω)

and 〈Ew, w〉|Γ = 〈Ew, w〉|H−1(Γ)×H1(Γ) between

dual spaces that represent surface and curve virtual actions. Only when all the involving
fields are regular enough (square integrable functions) these terms give place to the well-
known surface L2 inner products.

On the basis of decomposition (45), the boundary conditions satisfied by the two
partners of this decomposition and the splitting imposed by Equation (19), we remark that

w(x; g) = 0, x ∈ ∂ΩD, (54)

Pw(x; g) = g(x)− Puclassical (x, g) =

−((D · n̂(x))n̂(x)n̂(x)−Dn̂(x)) : µ̃uclassical (x; g)
+n̂(x)n̂(x) : Dµ̃uclassical (x; g)+

n̂(x) · (D · µ̃uclassical (x; g)) + n̂(x)
(

D · µ̃213
uclassical (x; g)

)
, x ∈ ∂ΩN ⇒

Pw(x; g) = g2(Dn̂(x)− (D · n̂(x))n̂(x)n̂(x)) : ∇τ̃uclassical

+ g2n̂(x)n̂(x) : D∇τ̃uclassical

+ g2n̂(x) · (D · ∇τ̃uclassical ) + g2n̂(x) ·
(

D · ∇τ̃213
uclassical

)
,

(55)

where D = x̂iDi (see Equation (13)).
Handling the non-classical boundary conditions of w(x; g) leads to

Dw(x; g) = ∂
∂n u(x; g)− ∂

∂n uclassical(x) =

h(x; g)− ∂
∂n uclassical(x), x ∈ ∂ΩQ,

and
Rw(x; g) = g2r̃(x)−Ruclassical (x; g) =

g2 (̃r(x)− n̂(x)n̂(x) : ∇τ̃uclassical ), x ∈ ∂ΩR.

Then, Equation (53) obtains the form:

∫
Ω

(
τ̃w : ε̃w + µ̃w

... ε̃w∇
)

dx = g2〈k(·), w(·; g)〉
∣∣
∂ΩN

+

+
〈

Rw(x; g), h(x; g)− ∂
∂n uclassical(x)

〉∣∣∣
∂ΩQ

+

g2〈(̃r− n̂(x)n̂(x) : ∇τ̃uclassical ), Dw〉
∣∣
∂ΩR

+ g2〈s̃(x), w〉
∣∣
Γ−

g2〈suclassical (x), w〉
∣∣
Γ,

(56)

where

k(x) = {(Dn̂(x)− (D · n̂(x))n̂(x)n̂(x)) : ∇τ̃uclassical

+n̂(x)n̂(x) : D∇τ̃uclassical + n̂(x) · (D · ∇τ̃uclassical ) + n̂(x) ·
(

D · ∇τ̃213
uclassical

)}
.

Thanks to the introductory discussion of this theorem, pertaining to the regularity
of surface terms generated by the classical field, it is clear that all the terms participating
in k(x) are well defined and belong to H−

3
2 (∂ΩN). In addition, given that in our elliptic
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boundary value problem, every surface norm of traces of the classical field and its deriva-
tives is controlled by the volume norm ‖uclassical‖H2(Ω), which is bounded by the data as

Equation (52) implies, the surface field g2k(x) is uniformly bounded in H−
3
2 (∂ΩN) with

magnitude of order g2.
The fields w and Dw, on surfaces and (or) curves have appropriate norms, which are

bounded by the norm of the solution ‖w‖H1(Ω) (due to the continuity of the traces with re-
spect to the solution of the boundary value problem), which is, by its turn, bounded
uniformly with respect to the gradient parameter g, via an estimate of the form (33)
(applied to w).

If the case (A) holds, the second dual pairing in r.h.s. of Equation (56) disappears
and no need to handle the functional Rw(x; g) on ∂ΩD arises. When we have case (B), we
impose further regularity on the displacement and stresses leading to higher regularity
on the classical solution. This regularity is optimally selected to guarantee that the crucial
field ∂

∂n uclassical(x) belongs to H
3
2 (∂Ω) (since under this choice, the norm ‖uclassical‖H3(Ω)

is kept bounded).
Finally, the field Rw(x; g) on ∂ΩQ equals with the field g2n̂(x)n̂(x) : ∇τw, which

incorporates second order derivatives of w. Then, the adequate surface H−
3
2 —norm of

Rw(x; g) is again uniformly bounded (due to the continuity of the traces with respect to
the solution of the boundary value problem) by g2‖w‖H1(Ω), which via (33) is bounded
by the norms of the data multiplied by g2C. This coefficient goes to 0 as g→ 0 , since,
as mentioned before, the generic constant does not depend on g.

In any case, taking the limit as g→ 0 , in expression (56), all the terms of the right-hand
side converge uniformly to 0, therefore

∫ (
τ̃wg=0 : ε̂wg=0 + µ̃wg=0

... ε̂wg=0∇
)

dx = 0. (57)

The positivity of the bilinear elastic form guarantees that ε̃wg=0 = 0̃, which implies
that w(x, 0) is a constant. Given that the trace w(x, 0)|∂ΩD

= 0, we infer that

lim
g→0

w(x, g) = 0, x ∈ Ω, (58)

from where we obtain immediately the asymptotic behavior (50). �

Much effort was places in finding the necessary regularity of the data assuring the
desired convergence when microstructure behavior disappears. It is interesting that this is
necessarily valid when the data are smooth analytic functions of their arguments. Indeed,
we have the following corollary, which would be the main outcome of this work if the data
were considered analytic, but in our opinion, this could not be proven without the herein
adopted generalization to abstract functional spaces.

Corollary 1. Consider that the boundary value problem consists of Equations (20), (29) and (30).
The data (f, g, h, r, s) are analytic functions of their arguments with the restriction that r, s obey to
Equations (48) and (49). Let u(x; g) be the unique solution of the gradient elasticity boundary value
problem, expressed on the basis of the decomposition constructed in Theorem 2. Then, the following
asymptotic result is obtained:

u(x; g)→ uclassical(x) as g→ 0, x ∈ Ω.

Proof. The assumed analytic smoothness of the data confirms that the assumptions of the
alternative (B) of Theorem 3 are always valid and then the convergence outcome holds in
any case. �
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Remark 1. As far as the field Rw(x; g) on ∂ΩQ is concerned, we could easily find that the surface
H−

1
2 —norm of Rw(x; g) is again uniformly bounded by g2‖w‖H2(Ω). On the basis of (24a), this

term is bounded by the norms of the data multiplied by g2Cg. Therefore, if no extra assumption on
data was made, the limit lim

g→0
g2Cg would be ambiguous.

Remark 2. We would like to mention once again here that, despite the convergence, which needs
some special settlement of the nature of the imposed data, the decomposition (37) is always valid,
and when the conditions are arbitrary, what is exactly stated for the participants of the decomposition
is that they satisfy the corresponding differential equations, while their superposition satisfies the
boundary value problem.

A number of simple one-dimensional problems can reveal the essence of the previous
theorems. Let us consider, for example, the elastostatic response of a finite length string.
The considered differential equation is given by uxx − g2uxxxx = 0, x ∈ (0, 1) accompanied
by the classical boundary conditions u(0) = 1, ux(1)− g2uxxx(1) = 2 and the non-classical
ones g2uxxx(0) = 3g2 and ux(1) = 0.

The solution is

u(x) = 2x + 1− eg2 +

[(
3g2 + 2ge−

1
g

)
e−

x
g + g

(
3ge−

1
g − 2

)
e

x−1
g

](
1 + e−

2
g
)−1

,

while the classical elastic solution that satisfies the conditions u(0) = 1 and ux(1) = 2 is
ucl(x) = 2x + 1.

The same differential equation with the boundary conditions u(0) = 0, u(1)= 1,
ux(0) = 2 and uxxx(1) = 0 has the following solution:

u(x) = x + g
[(

1− e−
2
g
)
(x− 1) + e−

x
g − e

x−2
g
](

g− 1− (g + 1)e−
2
g
)−1

with corresponding classical solution, the function ucl.(x) = x.

Remark 3. The second example of Remark 2 implies that sometimes it is useful to write Equation (37)
in the following form

u(x, g) = (1 + δ(g))uclassical(x) + uN(x, g) + g2uG(x, g) (59)

with δ(g)→ 0 as g→ 0 , where uN(x, ξ) obeys to the same differential regime. This approach
consists of a repartition of the partners of the decomposition, which seems to be more flexible in
applications. This reordering is realizable since both fields uclassical(x) and uN(x) belong to the
kernel of the classical elasticity operator.

Remark 4. The result stated by Theorem 3 could be violated if the boundary conditions are set
arbitrarily. As an example, consider the same differential equation as in Remark 2, accompanied
with the boundary conditions u(0) = 0, u(1) = 1, ux(0) − g2uxxx(0) = 2 and uxx(1) = 0.

This problem has the unique solution u(x) = 2x− 1 +
[

e−
x
g − e−

1
g e

x−1
g

](
1− e−

2
g
)−1

. However,

the classical solution 2x− 1 satisfies the boundary conditions u(1) = 1, ux(0) = 2, but does not
satisfy the classical boundary condition u(0) = 0. Additionally, the part of the solution containing
the displacement uG does not converge to zero as g→ 0 at the endpoint x = 0. The critical factor
here, is that two classical boundary conditions are prescribed simultaneously at the same part of
the boundary.

Remark 5. In the statement of the theorem, we demanded that meas(∂ΩD) > 0). In mathematical
terms, this is needed for the uniqueness of the solution. Physically, it reflects the necessity of some
anchoring of the structure. However, we would like to say that this condition is not of major
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importance for the validity of Theorem 3. The modifications needed could be stated mathematically—
they include some compatibility conditions for the data—but the essence is very simple: The results
are exactly the same modulo motions of a rigid body. Consequently, imposing a-posteriori a condition
not allowing rigid motions is sufficient to construct the unique solution of the problem.

4. Revisiting Bending Theories of Strain Gradient Elastic Beams

In this section, the solution representation addressed in Section 3 is employed to
present an answer to contradictions arising by two well-known first-strain gradient elastic
models proposed in the literature to describe the strain gradient elastostatic bending
behavior of Bernoulli–Euler beams.

During the last two decades, a plethora of papers dealing with the static and dy-
namic response of Bernoulli–Euler strain gradient elastic beams have appeared in the
literature. Most of them are based on variational approaches and, for the elastostatic case,
the equilibrium equation they conclude has either the following form [48–52]

EIu′′′′ − EIg2u′′′′′′ + q(x) = 0 (60)

where x coincides with the neutral axis of the beam, E stands for the material Young
modulus, I is the moment of inertia of the beam’s cross-section A, u(x) is the transverse
beam deflection, q(x) is the transverse external load, and g2 is the intrinsic strain gradient
elastic parameter, or the form [53–61](

EI + g2 A
)

u′′′′ − EIg2u′′′′′′ + q(x) = 0. (61)

The essential difference between these two equations is that the first is derived by
considering the strain exx and the gradient of strain exxx in the expression of the potential
energy density of the beam, while the second one considers the strain exx and the strain
gradients exxx, eyxx with eyxx being the differentiation of exx with respect to axis y directed
along the thickness of the beam. The result is that the bending stiffness in Equation (60)
is the same as that of classical elasticity, while the bending stiffness in (61) depends on
the internal length scale parameter g2 and the cross-section of beam A. The interesting
point here is that the same categorization is valid for other works dealing with the bending
of strain gradient elastic Timoshenko beams and plates, as well as for experimental and
numerical validations on the bending response of strain gradient elastic beams. Here, one
can mention the works of Papargyri-Beskou and Beskos [62], Papargyri-Beskou et al. [63],
Triantafyllou and Giannakopoulos [64], and Gortsas et al. [29] for the strain gradient
model of Equation (60), and the works of Lazopoulos and Lazopoulos [65], Khakalo and
Niiranen [57,58,60,66], and Korshunova et al. [67] for the model of Equation (61).

Since there is a principal difference between the two above-mentioned bending models,
the question here is which of them is the correct one. Lurie et al. [68] and Lurie and
Solyaev [69,70] proposed elegant answers to that question by proving that Equation (60) is
the only correct one for the bending response of a strain gradient elastic Bernoulli–Euler
beam. Among others, they mentioned that “ . . . a formal variational procedure for obtaining
the governing equilibrium equations in the beam theories, ignoring boundary conditions on the top
and bottom surfaces of the beam leads to an erroneous result of abnormal increasing of the beam
normalized bending stiffness with decreasing its thickness. . . . ”. Polizzotto [31] upholds this
argument because the normal derivative of displacements identically vanishes at the beam
lateral surface, and thus cannot play any role as a boundary layer. In the present section, we
reach the same conclusion under the light of the theorems proved in the previous section.

The starting point of our analysis is the pure bending of a classical elastic, isotropic two-
dimensional orthogonal rectangle subjected to pure bending under plane strain conditions,
as depicted in Figure 1. The boundary conditions of the problem are pk(x1,±a) = 0 and
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p2(0, x2) = p2(L, x2) = 0, p1(0, x2) = p1(L, x2) = P1x2/a and the corresponding solution
is provided by Selvadurai [3] in the following form:

uclassical
1 =

P1(1−ν2)
Ea x1x2

uclassical
2 = − P1

2Ea
[
ν(1 + ν)x2

2 + (1− ν2)x2
1
]
.

(62)
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Figure 1. Pure bending of an elastic beam. 
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while the deflection of the neutral axis is given by 2
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Figure 1. Pure bending of an elastic beam.

Consider a rectangular 3D plate of length L and cross-section 2a× b. The torque at
both boundaries of the plate is defined as

M =

a∫
−a

x2

(
P1

x2

a

)
dS =

a∫
−a

x2

(
P1

x2

a

)
bdx2 =

P1 I
a

(63)

with I = 2ba3/3 being the moment of inertia of the cross-section 2a× b. Equation (62),
valid for the midplane of the plate, obtain the form

uclassical
1 =

M(1−ν2)
EI x1x2

uclassical
2 = − M

2EI
[
ν(1 + ν)x2

2 + (1− ν2)x2
1
] (64)

while the deflection of the neutral axis is given by uclassical
2 for x2 = 0, i.e.,

uclassical
2 = − M

2EI
(1− ν2)x2

1 (65)

which, for ν = 0, is identical to the deflection of a classical elastic Bernoulli–Euler beam
subjected to pure bending [3,69], i.e.,

uclassical
Bernoulli−Euler = −

M
2EI

x2
1. (66)

Next, we consider the same pure bending problem presented in Figure 1, however,
for a strain gradient elastic material. The classical boundary conditions remain the same as
in the classical elastic problem, i.e.,

pk(x1,±a) = 0
p2(0, x2) = p2(L, x2) = 0
p1(0, x2) = p1(L, x2) =

M
I x2

(67)

while in non-classical boundary conditions, we consider the zeroing of double tractions at
all the external boundaries, for example:



Mathematics 2022, 10, 1152 17 of 22

Rk(x1,±a) = 0
Rk(0, x2) = Rk(0, x2) = 0.

(68)

According to the theorem presented in Section 3, the strain gradient elastic solution of
this problem is written as

u1(x1, x2; g) = uclassical
1 (x1, x2) + uN

1 (x1, x2; g) + g2uG
1 (x1, x2; g)

u2(x1, x2; g) = uclassical
2 (x1, x2) + uN

2 (x1, x2; g) + g2uG
2 (x1, x2; g).

(69)

Evidently, the solution (69) imposes the following forms for tractions and double
tractions, respectively

p1(n̂, x1, x2; g) = pclassical
1 (n̂, x1, x2; g) + pN

1 (n̂, x1, x2; g)

+g2 pG
1 (n̂, x1, x2; g)

p2(n̂, x1, x2; g) = pclassical
2 (n̂, x1, x2; g) + pN

2 (n̂, x1, x2; g)

+ g2 pG
2 (n̂, x1, x2; g)

(70)

R1(n̂, x1, x2; g) = Rclassical
1 (n̂, x1, x2; g) + RN

1 (n̂, x1, x2; g)

+ g2RG
1 (n̂, x1, x2; g)

R2(n̂, x1, x2; g) = Rclassical
2 (n̂, x1, x2; g) + RN

2 (n̂, x1, x2; g)

+ g2RG
2 (n̂, x1, x2; g)

(71)

with n̂ being the unit normal vector of the surface, to which both tractions and double
tractions are referred.

Concentrating our attention on the classical part of the solution (69), it is easy to
observe that [30]

τclassical
11 = (λ + 2µ)∂1uclassical

1 + λ∂2uclassical
2 = M

I x2

τclassical
22 = λ∂1uclassical

1 + (λ + 2µ)∂2uclassical
2 = 0

τclassical
12 = τclassical

21 = µ(∂2uclassical
1 + ∂1uclassical

2 ) = 0

(72)

and
µclassical

111 = (λ + 2µ)g2∂2
1uclassical

1 + λg2∂1∂2uclassical
2 = 0

µclassical
222 = λg2∂1∂2uclassical

1 + (λ + 2µ)g2∂2
2uclassical

2 = 0

µclassical
112 = µclassical

121 = µg2(∂1∂2uclassical
1 + ∂2

1uclassical
2 ) = 0

µclassical
122 = λg2∂2

1uclassical
1 + (λ + 2µ)g2∂1∂2uclassical

2 = 0

µclassical
211 = (λ + 2µ)g2∂1∂2uclassical

1 + λg2∂2
2uclassical

2 = g2 M
I

µclassical
212 = µclassical

221 = µg2(∂2
2uclassical

1 + ∂1∂2uclassical
2 ) = 0.

(73)

As it is explained by Charalambopoulos et al. [30], the two components of the gradient
elastic traction and double traction vectors, defined on a surface with unit normal vector
n̂(n1, n2), have the form, respectively,

p1 = n1τ11 + n2τ21 + n1(n2
1 − 2)∂1µ111 + n2(n2

2 − 2)∂2µ221

+n2(n2
1 − 1)(∂1µ121 + ∂1µ211) + n1(n2

2 − 1)(∂2µ121 + ∂2µ211)

+n2n2
1∂2µ111 + n1n2

2∂1µ221

p2 = n2τ22 + n1τ12 + n1(n2
1 − 2)∂1µ112 + n2(n2

2 − 2)∂2µ222

+n2(n2
1 − 1)(∂1µ212 + ∂1µ122) + n1(n2

2 − 1)(∂2µ122 + ∂2µ212)

+n2n2
1∂2µ112 + n1n2

2∂1µ222

(74)
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and
R1 = n2

1µ111 + n1n2µ121 + n1n2µ211 + n2
2µ221

R2 = n2
2µ222 + n2

1µ112 + n1n2µ122 + n1n2µ212
(75)

In view of (72)–(75), the classical part of the gradient elastic traction and double
traction vectors defined on a surface with unit normal vector n̂(n1, n2) exhibit the following
forms, respectively

R1 = n2
1µ111 + n1n2µ121 + n1n2µ211 + n2

2µ221
R2 = n2

2µ222 + n2
1µ112 + n1n2µ122 + n1n2µ212

(76)

and
Rclassical

1 (n̂, x1, x2; g) = n1n2µclassical
211 = n1n2

M
I

Rclassical
2 (n̂, x1, x2; g) = 0.

. (77)

Inserting Equations (76) and (77) into (70) and (71), respectively, and satisfying the
boundary conditions (67) and (68) one obtains:

pN
k (n2, x1,±a; g) + g2 pG

k (n2, x1,±a; g) = 0, k = 1, 2

pN
k (n1, 0, x2; g) + g2 pG

k (n1, 0, x2; g) = 0, k = 1, 2

pN
k (n1, L, x2; g) + g2 pG

k (n1, L, x2; g) = 0, k = 1, 2

(78)

and
RN

k (n2, x1,±a; g) + g2RG
k (n2, x1,±a; g) = 0, k = 1, 2

RN
k (n1, 0, x2; g) + g2RG

k (n1, 0, x2; g) = 0, k = 1, 2

RN
k (n1, L, x2; g) + g2RG

k (n1, L, x2; g) = 0, k = 1, 2.

(79)

Equations (78) and (79) indicate that the parts uN
k (x1, x2; g), uG

k (x1, x2; g) satisfy a
homogeneous system of algebraic equations for arbitrary material properties. Apparently,
this leads to the conclusion that

uN
k (x1, x2; g) = uG

k (x1, x2; g) = 0 (80)

which means that the pure bending of the strain gradient elastic plate presented in Figure 1
has absolutely the same response as that of the classical elastic one.

Extending this result to the behavior of the neutral axis of the plate for ν = 0, we obtain

uclassical
Bernoulli−Euler ≡ ugradient

Bernoulli−Euler = −
M

2EI
x2

1. (81)

This result is possible only when Equation (60) is valid. Equation (61) is misleading
since the double stress µyxx does not contribute to the solution of the problem.

5. Conclusions

A material with microstructural effects obeys the simplified elastostatic version of
Mindlin’s Form II first-strain gradient elastic theory, and its displacement field u(x) satisfies
the fourth-order partial differential Equation (3) and the relevant classical and non-classical
boundary conditions. In the present work, it has been rigorously proved that the solution
of Equation (3) admits the following representation:

u(x, g) = (1 + δ(g))uclassical(x) + uN(x, g) + g2uG(x, g), (82)

which has the following convenient advantages:

1. Incorporates the solution uclassical(x) of the respective classical elastic boundary value
problem, that satisfies the same classical boundary conditions with the strain gradient
elastic problem.

2. Converges to the classical elastic solution as g→ 0 .
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3. Comprises two displacements fields uN(x, g), uG(x, g), which satisfy the simpler
equations µ∇2uN + (λ + µ)∇∇ · uN = 0 and (1− g2∇2)uG = 0, respectively.

The representation of the solution presented above was employed to prove that a
strain gradient elastic Bernoulli–Euler beam subjected to pure bending does not present
microstructural effects and its behavior is identical to that of a classical elastic Bernoulli–
Euler beam. This result is in full agreement with the corresponding conclusions provided
by Lurie and Solyaev [69] on the same subject.
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Appendix A

In this Appendix, the proof of decomposition (5) through the solution representation (4)
is provided.

It is well known that the solution of Equation (1), via Papkovich–Neuber potentials,
has the form [3,64]

uclassical = Bclassical − 1
4(1− v)

∇
(

r · Bclassical + Bclassical
0

)
, (A1)

with
∇2Bclassical = 0
∇2Bclassical

0 = 0.
(A2)

On the other hand, the solution representation (4) reads

ugradient = Bgradient − 1
4(1− v)

[
r ·
(

1− g2∇2
)

Bgradient + Bgradient
0

]
, (A3)

with (
1− g2∇2)∇2Bgradient = 0(
1− g2∇2)∇2Bgradient

0 = 0.
(A4)

Comparing (A2) with (A4), it is apparent that
(
1− g2∇2)Bgradient ≡ Bclassical ,

and subsequently (A3) can be written as

ugradient = Bgradient − 1
4(1− v)

[
r · Bclassical + Bgradient

0

]
. (A5)

By adding and subtracting Bclassical and Bclassical
0 in (A5), we obtain

ugradient = Bgradient + Bclassical − Bclassical

− 1
4(1−v)

[
r · Bclassical + Bgradient

0 + Bclassical
0 − Bclassical

0

]
⇒

ugradient = Bclassical − 1
4(1−v)∇

[
r · Bclassical + Bclassical

0

]
+Bgradient − Bclassical − 1

4(1−v)∇
[

Bgradient
0 − Bclassical

0

]
,
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and because of (A1), it is apparent that

ugradient = uclassical + Bgradient − Bclassical−
1

4(1−v)∇
[

Bgradient
0 − Bclassical

0

]
.

(A6)

However,(
1− g2∇2)(Bgradient − Bclassical

)
(
1− g2∇2)(Bgradient

0 − Bclassical
0

)
 (A.4)

=
Bclassical − Bclassical

Bclassical
0 − Bclassical

0

}
= 0. (A7)

Equations (A6) and (A7) easily imply that

ugradient = uclassical + ug

uclassical ∈ ker
(
µ∇2(λ + µ)∇∇·

)
ug ∈ ker

(
1− g2∇2) (A8)

which confirms (5).
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