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Abstract: In this article, we study some existence and controllability results for two classes of second
order functional differential equations with delay and random effects. To begin, we employ a random
fixed point theorem with a stochastic domain to demonstrate the existence of mild random solutions.
Next, we prove that our problems are controllable. Finally, an example is given to validate the
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1. Introduction

Throughout the development of emerging control theory, the controllability of differential
equation problems has played a major role. It typically indicates that the set of permissible
controls may be used to direct a dynamical system from an arbitrary initial state to the intended
terminal one. The qualitative properties of control systems have a particular importance in
control theory. The controllability of linear and nonlinear systems described by ordinary differ-
ential equations in finite-dimensional space has received a great deal of attention. Numerous
researchers have expanded the notion to infinite-dimensional systems with bounded operators
in Banach spaces, see [1–4]. The authors of [5] demonstrated how to transform the controllability
problem into a fixed point problem. We suggest the papers [6,7] for more details. In [8–11],
the authors explored a wide range of functional differential equations and inclusions and sug-
gested various controllability results. Dilao et al. [12] considered the controllability of a class of
integrodifferential evolution equations.

In several instances, treating second-order abstract differential equations directly
without always converting them to first-order systems is preferable. The theory of strongly
continuous cosine families is a valuable tool for studying second-order problems. We shall
use some of the fundamental concepts of cosine family theory [13]. In [14,15], the authors
provided adequate criteria for controllability of second-order systems in Banach spaces for
deterministic and stochastic systems utilizing alternative fixed point theorems and strongly
continuous cosine family with nonlinearity meeting Lipschitz condition.

As natural generalizations of deterministic differential equations, random differential
equations emerge in a wide range of applications and have been studied by numerous
mathematicians, the reader is referred to the papers [16–18] for more details. The nature
of a dynamic system is determined by the precision of the knowledge we have about the
system’s characteristics. A deterministic dynamical system emerges when information
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about a dynamic system is exact. However, plenty of the relevant data for the identification
and assessment of dynamic system characteristics is erroneous, unclear, or ambiguous. In
other terms, determining the parameters of a dynamical system is fraught with uncertainty.
When we have statistical understanding about the characteristics of a dynamic system, that
is, when the knowledge is probable, the standard technique in mathematical modeling of
such systems is to employ random or stochastic differential equations.

Controllability is an essential topic in control theory and engineering because it is
closely related to pole assignment, quadratic optimal control, observer design and structural
decomposition, among other things. Several authors, including Benchohra et al. [19–22],
Balachandran et al. [23], Mophou et al. [24], Wang et al. [25], have written extensively in
recent years about the problem of controllability for various types of differential equations,
neutral functional differential equations, integrodifferential equations differential inclusions
and impulsive differential inclusions in Banach spaces.

In [26], Balachandran and Sakthivel considered the following integrodifferential system:

x′(t) = Ax(t) + (Bu)(t) + f
(

t, x(t),
∫ t

0
g(t, s, x(s))ds

)
,

x(0) = x0, t ∈ J = [0, b],

where the state x(·) takes values in a Banach space X with the norm ‖ · ‖ and the control
function u(·) is given in L2(J, U), a Banach space of admissible control functions, with U as
a Banach space. Here, A is the infinitesimal generator of a strongly continuous semigroup
T(t), t > 0 in the Banach space X and g: ∆× X → X, f : J× X× X → X are given functions
and B is a bounded linear operator from U into X. Here ∆ = {(t, s): 0 6 s 6 t 6 b}. The
authors employed a fixed-point theorem due to Schaefer.

In [27], Yan investigated the controllability of the following fractional-order partial
neutral functional integrodifferential inclusions with infinite delay in Banach spaces:

cDq[x(t)− g(t, xt)] ∈ Ax(t) + (Bu)(t) + F
(

t, xt,
∫ t

0
h(t, s, xs)ds

)
, t ∈ J = [0, b]

x(t) = φ(t), t ∈ (−∞, 0]

where the unknown x(·) takes values in Banach space X with norm ‖ · ‖, cDq is the Caputo
fractional derivative of order 0 < q < 1, A is the infinitesimal generator of a compact
analytic semigroup of uniformly bounded linear operators {T(t), t ≥ 0} in X. The authors
established sufficient conditions for the controllability for the problem in Banach spaces by
relying on analytic semigroups and fractional powers of closed operators and nonlinear
alternative of Leray-Schauder type for multivalued maps due to D. O’Regan.

As a continuation of the studies in the preceding publications and in order to expand
the controllability results to more problems, in this paper, we consider the following
functional differential equation with delay and random effect:

x
′′
(ϑ, δ) = Z1x(ϑ, δ) + ψ(ϑ, xϑ(·, δ), δ) +Z2f(ϑ, δ), a.e. ϑ ∈ Θ := [0, κ],

x(ϑ, δ) = v1(ϑ, δ); ϑ ∈ (−∞, 0],
x
′
(0, δ) = v2(δ),

(1)

where (Ψ, F, P) is a complete probability space, ψ : Θ×D×Ψ→ Ξ, v1 ∈ D×Ψ are given
functions, Z1 : D(Z1) ⊂ Ξ→ Ξ is the infinitesimal generator of of a strongly continuous
cosine family of bounded linear operators (S1(ϑ))ϑ∈IR on Ξ, D is the phase space, and
(Ξ, | · |) is a real Banach space. The control function f(·, δ) is given in L2(Θ, Ω), a Banach
space of admissible control functions with Ω as a Banach space, and Z2 is a bounded linear
operator from Ω into Ξ.
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We denote by xϑ(·, δ) the element of D×Ψ given by xϑ(ι, δ) = x(ϑ + ι, δ), ι ∈ (−∞, 0].
Here xϑ(·, δ) represents the history of the state from time −∞, up to the present time ϑ, we
assume that the histories xϑ(·, δ) belong to some abstract phases D.

Next, we consider the following random problem
x
′′
(ϑ, δ) = Z1x(ϑ, δ) + ψ(ϑ, xξ(ϑ,xϑ)

(·, δ), δ) +Z2f(ϑ, δ); a.e. ϑ ∈ Θ,
x(ϑ, δ) = v1(ϑ, δ); ϑ ∈ (−∞, 0],
x
′
(0, δ) = v2(δ),

(2)

where ψ : Θ×D×Ψ→ Ξ, v1 ∈ D×Ψ are given random functions, Z1 : D(Z1) ⊂ Ξ→ Ξ
is as in problem (1), D is the phase space, ξ : Θ×D→ (−∞, κ], and (Ξ, | · |) is a real Banach
space. We based our arguments for the main results on Schauder’s fixed theorem [28] and
random fixed point theorem combined with the family of cosine operators.

Cosine function theory is connected to abstract linear second order differential equa-
tions in much the same way as semigroup theory of bounded linear operators is connected
to first order partial differential equations, and both are interesting due to their simplicity
and clarity. We suggest the papers [13,29] for fundamental principles and applications
of this theory. The following is how this paper is structured. Section 2 provides some
preliminary results. Sections 3 and 4 are devoted to our main results in the cases of
infinite fixed delay, and state-dependent delay, respectively. The last part includes an
instructive example.

2. Preliminaries

In this section, we will go over some of the notations, definitions, and theorems that
will be employed all through the paper. Let Θ:= [0, κ], κ > 0 and consider the Banach space
D(Ξ) of bounded linear operators from Ξ into Ξ, with the norm

‖G‖D(Ξ) = sup
‖x‖=1

‖G(x)‖.

Let C := C(I, Ξ) be the Banach space of continuous functions x:Θ→ Ξ with the norm

‖x‖C = sup
ϑ∈Θ
|x(ϑ)|.

We will adopt an axiomatic definition of the phase space D presented in [30] and
adhere to the terminology employed in [31]. Then, Let (D, ‖ · ‖D) be a seminormed linear
space of functions mapping (−∞, 0] into Ξ, and verifying the following:

(A1) If x: (−∞, κ) → Ξ, κ > 0, is continuous on Θ and x0 ∈ D, then for every ϑ ∈ Θ the
requirements that follows are met.

(a) xϑ ∈ D;
(b) There exists a positive constant ρ such that |x(ϑ)| ≤ ρ‖xϑ‖D;
(c) There exist two functions γ(·), σ(·) : IR+ → IR+ independent of x with γ

continuous and bounded, and σ locally bounded where:

‖xϑ‖D ≤ γ(ϑ) sup{ |x($)| : 0 ≤ $ ≤ ϑ}+ σ(ϑ)‖x0‖D.

(A2) For the function x in (A1), xϑ is a D−valued continuous function on Θ.
(A3) The space D is complete.

Set
ζ = sup{γ(ϑ) : ϑ ∈ Θ}, and σ = sup{σ(ϑ) : ϑ ∈ Θ}.
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Remark 1. We have

1. (b) is equivalent to |v1(0)| ≤ ρ‖v1‖D for every v1 ∈ D.
2. Since ‖ · ‖D is a seminorm, two elements v1,κ ∈ D can satisfy ‖v1 − κ‖D = 0 without

v1(ι) = κ(ι) for all ι ≤ 0.
3. For all v1,κ ∈ D where ‖v1 −κ‖D = 0, we have v1(0) = κ(0).

Consider the space

Λ := {x : (−∞, κ] : x|(−∞,0] ∈ D and x|Θ ∈ C}.

Let ‖x‖Λ be the seminorm in Λ given by

‖x‖Λ = ‖v1‖D + ‖x‖C .

Definition 1. A family {S1(ϑ) : ϑ ∈ IR} of bounded linear operators in the Banach space Ξ is
strongly continuous cosine family if

• S1(0) = I (I is the identity operator);
• S1(ϑ)y is strongly continuous in ϑ on IR for each fixed y ∈ Ξ;
• S1(ϑ + $) + S1(ϑ− $) = 2S1(ϑ)S1($) for all ϑ, $ ∈ IR.

Let {S1(ϑ) : ϑ ∈ IR} be a strongly continuous cosine family in Ξ. Define the linked
sine family {S2(ϑ) : ϑ ∈ IR} by

S2(ϑ)y =
∫ ϑ

0
S1($)yd$, y ∈ Ξ, ϑ ∈ IR.

We define the infinitesimal generator Z1 : Ξ→ Ξ of the cosine family {S1(ϑ) : ϑ ∈ IR}
by

Z1y =
d2

dϑ2S1(ϑ)y|ϑ=0, y ∈ D(Z1),

where
D(Z1) = {y ∈ Ξ : S1(·)y ∈ C2(IR, Ξ)}.

Definition 2. A map ψ : Θ×D×Ψ→ Ξ is said to be random Carathéodory if

(i) ϑ→ ψ(ϑ, x, δ) is measurable for all x ∈ D and for all δ ∈ Ψ;
(ii) x → ψ(ϑ, x, δ) is continuous for almost each ϑ ∈ Θ, and for all δ ∈ Ψ;
(iii) δ→ ψ(ϑ, x, δ) is measurable for all x ∈ D, and for most each ϑ ∈ Θ.

Let Ξ be a separable Banach space with the Borel σ-algebra DΞ. The map p : Ψ −→ Ξ
is a random variable in Ξ if for each Υ ∈ DΞ, p−1(Υ) ∈ F, G : Ψ× Ξ −→ Ξ is a random
operator if G(·, p) is measurable for each p ∈ Ξ, expressed as G(δ, p) = G(δ)p.

Definition 3 ([32]). Let G̃ be a mapping from Ψ into 2Ξ. A mapping G : {(δ, p) : δ ∈ Ψ ∧ p ∈
G̃(δ)} −→ Ξ is a random operator with stochastic domain G̃ if for all closed Υ1 ⊆ Ξ, {δ ∈ Ψ :
G̃(δ) ∩ Υ1 6= ∅} ∈ F) and for all open Υ2 ⊆ Ξ and all p ∈ Ξ, {δ ∈ Ψ : p ∈ G̃(δ) ∧ G(δ, p) ∈
Υ2} ∈ F. G is continuous if every G(δ) is continuous. A mapping p : Ψ −→ Ξ is a random fixed
point of G if for all δ ∈ Ψ, p(δ) ∈ G̃(δ) and G(δ)p(δ) = p(δ) and p is measurable if for all open
Υ2 ⊆ Ξ, {δ ∈ Ψ : p(δ) ∈ Υ2} ∈ F.

Lemma 1 ([32]). Let G̃ : Ψ −→ 2Ξ be measurable with G̃(δ) closed, convex and solid (i.e., int G̃(δ) 6=
∅) for all δ ∈ Ψ. We suppose that there exists measurable p0 : Ψ −→ Ξ with p0 ∈ int G̃(δ) for
all δ ∈ Ψ. Let G be a continuous random operator with stochastic domain G̃ such that for every
δ ∈ Ψ, {p ∈ G̃(δ) : G(δ)p = p} 6= ∅. Then G has a stochastic fixed point.
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The mapping p of Θ×Ψ into Ξ is a stochastic process if for each ϑ ∈ Θ, the function
p(ϑ, ·) is measurable. Now let us recall some fundamental facts of the notion of Kuratowski
measure of noncompactness.

Definition 4 ([33]). Let χ be a Banach space and Ψχ the bounded subsets of Ξ. The Kuratowski
measure of noncompactness is the map µ : Ψχ → [0, ∞) given by

µ(Υ) = inf{ε > 0 : Υ ⊆ ∪n
i=1Υi and diam(Υi) ≤ ε}; here Υ ∈ Ψχ,

and verifies the properties:

(a) µ(Υ) = 0⇐⇒ Υ is compact (Υ is relatively compact);
(b) µ(Υ) = µ(Υ);
(c) Υ̃ ⊂ Υ =⇒ µ(Υ̃) ≤ µ(Υ);
(d) µ(Υ̃ + Υ) ≤ µ(Υ̃) + µ(Υ);
(e) µ(εΥ) = |ε|µ(Υ); ε ∈ IR;
(f) µ(convΥ) = µ(B).

Lemma 2 ([34]). If g ⊂ C(Θ, Ξ) is bounded and equicontinuous, then µ(g(ϑ)) is continuous on
Θ and

µ

({∫
Θ
y($)d$ : y ∈ g

})
≤
∫

Θ
µ(g($))d$,

where g($) = {y($) : y ∈ g}, ϑ ∈ Θ, and µ is the Kuratowski measure of noncompactnes on the
space Ξ.

3. Controllability Results for the Constant Delay Case

Definition 5. The problem (1) is controllable on the interval (−∞, κ], if for every final state
x1(δ), there exists a control f(·, δ) in L2(Θ, Ω), such that the solution x(ϑ, δ) of (1) verifies
x(κ, δ) = x1(δ).

Definition 6. A stochastic process x : (−∞, κ]×Ψ→ Ξ is a random mild solution of problem (1)
if x(ϑ, δ) = v1(ϑ, δ); ϑ ∈ (−∞, 0], x

′
(0, δ) = v2(δ) and the restriction of x(·, δ) to the interval

Θ is continuous and verifies:

x(ϑ, δ) = S1(ϑ)v1(0, δ) + S2(ϑ)v2(δ) +
∫ ϑ

0
S1(ϑ− $)ψ($, x$(·, δ), δ)d$

+
∫ ϑ

0
S1(ϑ− $)Z2f(ϑ, δ)d$

Let

σ = sup
{
‖S1(ϑ)‖D(Ξ) : ϑ ≥ 0

}
and σ

′
= sup

{
‖S2(ϑ)‖D(Ξ) : ϑ ≥ 0

}
.

We will need to introduce the following hypotheses:

(H1) S1(ϑ) is compact for ϑ > 0,
(H2) The function ψ : Θ×D×Ψ→ Ξ is random Carathéodory,
(H3) There exist functions κ : Θ×Ψ→ IR+ and p : Θ×Ψ→ IR+ such that for each δ ∈ Ψ,

κ(·, δ) is continuous nondecreasing and p(·, δ) integrable with:

|ψ(ϑ, f, δ)| ≤ p(ϑ, δ) κ(‖f‖D, δ) for a.e. ϑ ∈ Θ and each f ∈ D,
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(H4) There exists a random function Q : Ψ −→ IR+\{0} where:

σ(1 + κσζ)(‖v1‖D +κ(D, δ)‖p‖L1) + κσζ
∥∥∥x1
∥∥∥+ σ

′
(1 + κσζ)|v2| ≤ Q(δ)

where
D := ζQ(δ) + σ‖v1‖D,

(H5)The linear operator K : L2(Θ, Ω)→ Ξ given by:

Kf =
∫ κ

0
S1(κ − $)Z2f($, δ)d$

has a pseudo-inverse operator K−1 in L2(Θ, Ω)/kerK and there exists a positive
constant ζ such that

∥∥Z2K−1
∥∥ ≤ ζ,

(H6)For each δ ∈ Ψ, v1(·, δ) is continuous and for each ϑ, v1(ϑ, ·) is measurable, and for
each δ ∈ Ψ, v2(δ) is measurable.

Theorem 1. If (H1)–(H6) are satisfied, then the problem (1) is controllable on Θ.

Proof. Define the control:

f(ϑ, δ) = K−1
(

x1(δ)− S1(κ)v1(0, δ)− S2(κ)v2(δ)−
∫ κ

0
S1(κ − $)ψ($, x$(·, δ), δ)d$

)
.

We define the operator T : Ψ×Λ −→ Λ by: (T(δ)x)(ϑ) = v1(ϑ, δ), if ϑ ∈ (−∞, 0],
and for ϑ ∈ Θ :

(T(δ)x)(ϑ) = S1(ϑ)v1(0, δ) + S2(ϑ)v2(δ) +
∫ ϑ

0
S1(ϑ− $) ψ($, x$(·, δ), δ), δ)d$ +

∫ ϑ

0
S1(ϑ− $)Z2K−1

×
(

x1(δ)− S1(κ)v1(0, δ)− S2(κ)v2(δ)−
∫ κ

0
S1(κ − ε)ψ(ε, xε(·, δ), δ)dε

)
d$. (3)

Using (H5), we will demonstrate that T has a fixed point x(ϑ, δ) which is a mild
solution of (1). This implies that the problem (1) is controllable on Θ. Further, we prove
that T(·) is a random operator. For that, we demonstrate that for any x ∈ Λ, T(·)(x) :
Ψ −→ Λ is a random variable. Then we demonstrate that T(·)(x) : Ψ −→ Λ is measurable.
As the mapping ψ(ϑ, x, ·), ϑ ∈ Θ, x ∈ Λ is measurable by assumption (H2) and (H6). Let
D : Ψ −→ 2Λ be given by:

D(δ) = {x ∈ Λ : ‖x‖Λ ≤ Q(δ)}.

D(δ) is bounded, closed, convex and solid for all δ ∈ Ψ. Then D is measurable by
Lemma 17 in [35]. Let δ ∈ Ψ be fixed, then for any x ∈ D(δ) and by (A1), we obtain:

‖x$‖D ≤ γ($)|x($)|+ σ($)‖x0‖D
≤ ζκ |x($)|+ σκ‖v1‖D,

and by (H3) and (H4), we have
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|(T(δ)x)(ϑ)| ≤ σ‖v1‖D + σ
′ |v2|+ σ

∫ ϑ

0
|ψ($, x$, δ)|d$

+σζ
∫ ϑ

0

∣∣∣x1(δ)
∣∣∣+ σ‖v1‖D + σ

′ |v2|d$

+σζ
∫ ϑ

0

∫ κ

0
‖S1(ε− $)‖|ψ(ε, xε, δ)| dεd$

≤ σ‖v1‖D + σ
′ |v2|+ σ

∫ κ

0
p($, δ) κ

(
‖x$‖D, δ

)
d$

+κσζ
∣∣∣x1(δ)

∣∣∣+ κσ2ζ‖v1‖D + κσσ
′
ζ|v2|

+κσ2ζ
∫ κ

0
p(ε, δ) κ(‖xε‖D, δ) dε

≤ σ(1 + κσζ)‖v1‖D + κσζ
∣∣∣x1(δ)

∣∣∣+ σ
′
(1 + κσζ)|v2|

+σ(1 + κσζ)
∫ κ

0
p($, δ) κ

(
‖x$‖D, δ

)
d$

≤ σ(1 + κσζ)

(
‖v1‖D +κ(Dκ , δ)

∫ κ

0
p($, δ) d$

)
+κσζ

∥∥∥x1(δ)
∥∥∥+ σ

′
(1 + κσζ)|v2|.

Set
Dκ := ζκQ(δ) + σκ‖v1‖D.

Then, we have

|(T(δ)x)(ϑ)| ≤ σ(1 + κσζ)

(
‖v1‖D +κ(Dκ , δ)

∫ κ

0
p($, δ) d$

)
+ κσζ

∣∣∣x1(δ)
∣∣∣+ σ

′ |v2|(1 + κσζ).

Thus

‖(T(δ)x)‖Λ ≤ σ(1 + κσζ)(‖v1‖D +κ(Dκ , δ)‖p‖L1)

+ κσζ
∣∣∣x1(δ)

∣∣∣+ σ
′
(1 + κσζ)|v2|

≤ Q(δ).

Thus, we deduce that T is a random operator with stochastic domain D and T(δ) :
D(δ) −→ D(δ) for each δ ∈ Ψ.

Claim 1: T is continuous.
Let xn be a sequence where xn −→ x in Y. Then

|(T(δ)xn)(ϑ)− (T(δ)x)(ϑ)|

≤ σ
∫ ϑ

0
|ψ($, xn

$ , δ)− ψ($, x$, δ)| d$

+ζσ
∫ ϑ

0

∫ κ

0
‖S1(κ − ε)‖|ψ(ε, xn

ε , δ)− ψ(ε, xε, δ)|dεd$

≤ σ
∫ ϑ

0
|ψ($, xn

$ , δ)− ψ($, x$, δ)| d$

+κσ2ζ
∫ κ

0
|ψ(ε, xn

ε , δ)− ψ(ε, xε, δ)|dε

≤ σ(1 + κσζ)
∫ κ

0
|ψ(ε, xn

ε , δ)− ψ(ε, xε, δ)|dε.
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As ψ($, ·, δ) is continuous, we obtain

‖ψ(·, xn
. , δ)− ψ(·, x., δ)‖L1 → 0 as n→ +∞.

Thus T is continuous.
Claim 2: We demonstrate that for every δ ∈ Ψ, {x ∈ D(δ) : T(δ)x = x} 6= ∅.
We apply Schauder’s theorem.

(a) T maps bounded sets into equicontinuous sets in D(δ).
Let ε1, ε2 ∈ [0, κ] with ε2 > ε1, D(δ) be a bounded set as in Claim 2, and x ∈ D(δ).
Then

|(T(δ)x)(ε2)− (T(δ)x)(ε1)|
≤ ‖S1(ε2)− S1(ε1)‖

D(Ξ)
‖v1‖D + ‖S2(ε2)− S2(ε1)‖

D(Ξ)
|v2|

+
∫ ε1

0
‖S1(ε2−$)− S1(ε1−$)‖

D(Ξ)

∣∣ψ($,x$, δ)
∣∣ d$

+
∫ ε2

ε1

‖C(ε2−$)‖
D(Ξ)

∣∣ψ($,x$, δ)
∣∣d$

+ζ
∫ ε1

0
‖S1(ε2−$)− S1(ε1−$)‖

D(Ξ)

×
[∣∣∣x1(δ)

∣∣∣+ ‖S1(κ)‖
D(Ξ)
‖v1‖D + ‖S2(κ)‖

D(Ξ)
|v2|

]
d$

+ζ
∫ ε1

0
‖S1(ε2−$)− S1(ε1−$)‖

D(Ξ)

∫ κ

0
‖S1(κ − ε)‖

D(Ξ)
|ψ(ε, xε(·, δ), δ)|dεd$

+ζ
∫ ε2

ε1

‖C(ε2−$)‖
D(Ξ)

[∣∣∣x1(δ)
∣∣∣+ ‖S1(κ)‖

D(Ξ)
‖v1‖D + ‖S2(κ)‖

D(Ξ)
|v2|

]
d$

+ζ
∫ ε2

ε1

‖C(ε2−$)‖
D(Ξ)

∫ κ

0
‖S1(κ − ε)‖

D(Ξ)
|ψ(ε, xε(·, δ), δ)|dεd$

≤ ‖S1(ε2−$)− S1(ε1−$)‖
D(Ξ)
‖v1‖D + ‖S2(ε2)− S2(ε1)‖

D(Ξ)
|v2|

+κ(Dκ , δ)
∫ ε1

0
‖S1(ε2−$)− S1(ε1−$)‖

D(Ξ)
p($, δ)d$

+σκ(Dκ , δ)
∫ ε2

ε1

p($, δ)d$

+ζ
∫ ε1

0
‖S1(ε2−$)− S1(ε1−$)‖

D(Ξ)

×
[∣∣∣x1(δ)

∣∣∣+ ‖S1(κ)‖
D(Ξ)
‖v1‖D + ‖S2(κ)‖

D(Ξ)
|v2|

]
d$

+ζσκ(Dκ , δ)
∫ ε1

0
‖S1(ε2−$)− S1(ε1−$)‖

D(Ξ)

∫ κ

0
p(ε, δ)dεd$

+ζσ
∫ ε2

ε1

(
∣∣∣x1(δ)

∣∣∣+ ‖S1(κ)‖
D(Ξ)
‖v1‖D + ‖S2(κ)‖

D(Ξ)
|v2|

+σκ(Dκ , δ)
∫ κ

0
p(ε, δ)dε)d$.

The right-hand of the above inequality tends to zero as ε2 − ε1 → 0, since S1(ϑ),S2(ϑ)
are compact for ϑ > 0, and strongly continuous, then we obtain the continuity in the
uniform operator topology (see [13,36]).

(b) Let ϑ ∈ [0, κ] be fixed and let x ∈ D(δ). From assumptions (H3), (H5) and since S1(ϑ)
is compact, the set{∫ ϑ

0
S1(ϑ− $)ψ($, x$(·, δ), δ)d$ +

∫ ϑ

0
S1(ϑ− $)Z2f(ϑ, δ)d$

}
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is precompact in Ξ, and the set{
S1(ϑ)v1(0, δ) + S2(ϑ)v2(δ) +

∫ ϑ

0
S1(ϑ− $)ψ($, x$(·, δ), δ)d$ +

∫ ϑ

0
S1(ϑ− $)Z2f(ϑ, δ)d$

}
is precompact in Ξ. Thus, T(δ) : D(δ) → D(δ) is continuous and compact. Schauder’s
theorem implies that T(δ) has a fixed point x(δ) in D(δ). Since

⋂
δ∈Ψ D(δ) 6= ∅, and a

measurable selector of intD exists, then by Lemma 1, we conclude that T has a stochastic
fixed point x∗(δ), which is a random mild solution of (1).

4. Controllability Results for the State-Dependent Delay Case

In this section we give our main controllability result for problem (2).

Definition 7. A stochastic process x : (−∞, κ]×Ψ→ Ξ is said to be a random mild solution of
problem (2) if x(ϑ, δ) = v1(ϑ, δ); ϑ ∈ (−∞, 0], x

′
(0, δ) = v2(δ) and the restriction of x(·, δ) to

the interval Θ is continuous and verifies equation:

x(ϑ, δ) = S1(ϑ)v1(0, δ) + S2(ϑ)v2(δ) +
∫ ϑ

0
S1(ϑ− $)ψ($, xξ($,x$)(·, δ), δ)d$

+
∫ ϑ

0
S1(ϑ− $)Z2f(ϑ, δ)d$.

Set
Q(ξ−) = {ξ($, v2) : ($, v2) ∈ Θ×D, ξ($, v2) ≤ 0}.

Suppose that ξ : Θ×D→ (−∞, κ] is continuous. And,

(Hv1) The function ϑ→ v1ϑ is continuous fromQ(ξ−) into D and there exists a continuous
and bounded function γv1 : Q(ξ−)→ (0, ∞) where

‖v1ϑ‖D ≤ γv1(ϑ)‖v1‖D for every ϑ ∈ Q(ξ−).

Remark 2 ([31]). The hypothesis (Hv1) is satisfied by continuous and bounded functions.

Lemma 3 ([37]). If x : (−∞, κ]→ Ξ is a function such that x0 = v1, then

‖x$‖D ≤ (σκ + γv1)‖v1‖D + ζκ sup{|x(ι)|; ι ∈ [0, max{0, $}]}, $ ∈ Q(ξ−) ∪Θ,

where γv1 = sup
ϑ∈Q(ξ−)

γv1(ϑ).

We consider now the hypotheses:

(H′1) S1(ϑ) is compact for ϑ > 0 in Ξ.
(H′2) The function ψ : Θ×D×Ψ→ Ξ is random Carathéodory.
(H′3) There exist a function κ : Θ× Ψ → IR+ and p : Θ× Ψ → IR+ such that for each

δ ∈ Ψ, κ(·, δ) is a continuous nondecreasing function and p(·, δ) integrable with:

|ψ(ϑ, f, δ)| ≤ p(ϑ, δ) κ(‖f‖D, δ) for a.e. ϑ ∈ Θ and each f ∈ D.

(H′4) There exists a function β : Θ× Ψ −→ IR+ with β(·, δ) ∈ L1(Θ, IR+) for each δ ∈ Ψ
such that for any bounded B ⊆ Ξ.

µ(ψ(ϑ, B, δ)) ≤ β(ϑ, δ)µ(B).
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(H′5) There exists a random function Q : Ψ −→ IR+\{0} where:

σ(1 + κσλ)

(
‖v1‖D +κ((σκ + γv1)‖v1‖D + ζκQ(δ), δ)

∫ κ

0
p($, δ) d$

)
+κσλ

∥∥∥x1(δ)
∥∥∥+ σ

′
(1 + κσλ)|v2| ≤ Q(δ).

(H′6) The linear operator K : L2(Θ, Ω)→ Ξ defined by:

Kf =
∫ κ

0
S1(κ − $)Z2f($, δ)d$

has a pseudo-inverse operator K−1 which takes values in L2(Θ, Ω)/kerK and there
exists a positive constant λ such that

∥∥Z2K−1
∥∥ ≤ λ.

(H′7) For each δ ∈ Ψ, v1(·, δ) is continuous and for each ϑ, v1(ϑ, ·) is measurable and for
each δ ∈ Ψ, v2(δ) is measurable.

Theorem 2. Assume that (H′1)− (H′7) and (Hv1) hold. If

σ(1 + σλκ)
∫ κ

0
β($)ζ($)d$ < 1, (4)

then the random problem (2) is controllable on Θ.

Proof. Using (H6), we define the control:

f(ϑ, δ) = K−1
(

x1(δ)− S1(κ)v1(0, δ)− S2(κ)v2(δ)

−
∫ κ

0
S1(κ − $)ψ($, xξ($,x$), δ)d$

)
.

We define the operator T : Ψ×Λ −→ Λ by: (T(δ)x)(ϑ) = v1(ϑ, δ), if ϑ ∈ (−∞, 0],
and for ϑ ∈ Θ by:

(T(δ)x)(ϑ) = S1(ϑ)v1(0, δ) + S2(ϑ)v2(δ)

+
∫ ϑ

0
S1(ϑ− $) ψ($, x

ξ($,x$)
, δ), δ)d$ +

∫ ϑ

0
S1(ϑ− $)Z2K−1

×
(

x1(δ)− S1(κ)v1(0, δ)− S2(κ)v2(δ)−
∫ κ

0
S1(κ − ε)ψ(ε, xξ(ε,xε), δ)dε

)
d$. (5)

Proving that T(·) has a fixed point x(ϑ, δ) and that (2) is controllable. Further, we
demonstrate that T(·) is a random operator by showing that for any x ∈ Λ, T(·)(x): Ψ −→
Λ is a random variable. Also, we show that T(·)(x) : Ψ −→ Λ is measurable, as a mapping
ψ(ϑ, x, ·), ϑ ∈ Θ, x ∈ Λ is measurable by (H′2) and (H′6). Let D : Ψ −→ 2Λ be given by:

D(δ) = {x ∈ Λ : ‖x‖Λ ≤ Q(δ)}.

D(δ) is bounded, closed, convex and solid for all δ ∈ Ψ. Then D is measurable. Let
δ ∈ Ψ be fixed. If x ∈ D(δ), then∥∥∥xξ(ϑ,xϑ)

∥∥∥
D

= (σκ + Lv1)‖v1‖D + ζκQ(δ),
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and for each x ∈ D(δ), from (H′3) and (H′5), for each ϑ ∈ Θ, we have

|(T(δ)x)(ϑ)| ≤ σ‖v1‖D + σ
′ |v2|+ σ

∫ ϑ

0
|ψ($, x

ξ($,x$)
, δ)|d$

+σλ
∫ ϑ

0

∣∣∣x1(δ)
∣∣∣+ σ‖v1‖D + σ

′ |v2|d$

+σλ
∫ ϑ

0

∫ κ

0
‖S1(ε− $)‖

∣∣∣ψ(ε, xξ(ε,xε), δ)
∣∣∣ dεd$

≤ σ‖v1‖D + σ
′ |v2|+ σ

∫ κ

0
p($, δ) κ

(
‖xξ($,x$)‖D, δ

)
d$

+κσλ
∣∣∣x1(δ)

∣∣∣+ κσ2ζ‖v1‖D + κσσ
′
ζ|v2|

+κσ2λ
∫ κ

0
p(ε, δ) κ

(
‖xξ(ε,xε)‖D, δ

)
dε

≤ σ(1 + κσλ)‖v1‖D + κσλ
∣∣∣x1(δ)

∣∣∣+ σ
′
(1 + κσλ)|v2|

+σ(1 + κσλ)
∫ κ

0
p($, δ) κ

(
‖xξ($,x$)‖D, δ

)
d$

≤ σ(1 + κσλ)

×
(
‖v1‖D +κ((σκ + γv1)‖v1‖D + ζκQ(δ), δ)

∫ κ

0
p($, δ) d$

)
+κσλ

∣∣∣x1(δ)
∣∣∣+ σ

′
(1 + κσλ)|v2|.

Thus, T is a random operator with stochastic domain D and T(δ) : D(δ)→ D(δ) for
each δ ∈ Ψ.

Claim 1: T is continuous.
Let xn be a sequence such that xn −→ x in Λ. Then

|(T(δ)xn)(ϑ)− (T(δ)x)(ϑ)|

≤ σ
∫ ϑ

0
|ψ($, xn

ξ($,xn
$ )

, δ)− ψ($, x
ξ($,x$)

, δ)| d$

+λσ
∫ ϑ

0

∫ κ

0
‖S1(κ − ε)‖|ψ(ε, xn

ξ($,xn
$ )

, δ)− ψ(ε, x
ξ($,x$)

, δ)|dεd$

≤ σ
∫ ϑ

0
|ψ($, xn

ξ($,xn
$ )

, δ)− ψ($, x
ξ($,x$)

, δ)| d$

+κσ2λ
∫ κ

0
|ψ($, xn

ξ($,xn
$ )

, δ)− ψ($, x
ξ($,x$)

, δ)| d$

≤ σ(1 + κσλ)
∫ κ

0
|ψ($, xn

ξ($,xn
$ )

, δ)− ψ($, x
ξ($,x$)

, δ)| d$.

As ψ($, ·, δ) is continuous, then ‖(T(δ)xn)(ϑ)− (T(δ)x)(ϑ)‖Λ → 0 as n→ +∞. Thus
T is continuous.

Claim 2: We demonstrate that for every δ ∈ Ψ, {x ∈ D(δ) : T(δ)x = x} 6= ∅ by
employing Mönch fixed point theorem [38,39].

(a) T maps bounded sets into equicontinuous sets in D(δ).
Let ε1, ε2 ∈ [0, κ] with ε2 > ε1, D(δ) be a bounded set, and x ∈ D(δ). Then
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|(T(δ)x)(ε2)− (T(δ)x)(ε1)|
≤ ‖S1(ε2)− S1(ε1)‖D(Ξ)‖v1‖D + ‖S2(ε2)− S2(ε1)‖D(Ξ)|v2|

+
∫ ε1

0
‖S1(ε2 − $)− S1(ε1 − $)‖D(Ξ)ψ($, xξ($,x$), δ)d$

+
∫ ε2

ε1

‖S1(ε2 − $)‖D(Ξ)ψ($, xξ($,x$), δ)d$

+λ
∫ ε1

0
‖S1(ε2 − $)− S1(ε1 − $)‖D(Ξ)

[∣∣∣x1(δ)
∣∣∣+ ‖S1(κ)‖|v1(0, δ)|

]
d$

+λ
∫ ε1

0
‖S1(ε2 − $)− S1(ε1 − $)‖D(Ξ)

∫ κ

0
‖S1(κ − ε)‖D(Ξ)

∣∣∣ψ(ε, xξ($,x$), δ)
∣∣∣dεd$

+λ
∫ ε2

ε1

‖S1(ε2 − $)‖D(Ξ)

[∣∣∣x1(δ)
∣∣∣+ ‖S1(κ)‖|v1(0, δ)|

]
d$

+λ
∫ ε2

ε1

‖S1(ε2 − $)‖D(Ξ)

∫ κ

0
‖S1(κ − ε)‖B(Ξ)

∣∣∣ψ(ε, xξ(ε,xε), δ)
∣∣∣dεd$.

Thus

|(T(δ)x)(ε2)− (T(δ)x)(ε1)|
≤ |S1(ε2)− S1(ε1)|‖v1‖D + ‖S2(ε2)− S2(ε1)‖D(Ξ)|v2|

+
∫ ε1

0
‖S1(ε2 − $)− S1(ε1 − $)‖D(Ξ)ψ($, xξ($,x$), δ)d$

+
∫ ε2

ε1

‖S1(ε2 − $)‖D(Ξ)ψ($, xξ($,x$), δ)d$

+λ
∫ ε1

0
‖S1(ε2 − $)− S1(ε1 − $)‖D(Ξ)

[∥∥∥x1(δ)
∥∥∥+ ‖S1(κ)‖D(Ξ)|v1(0, δ)|

]
d$

+λ
∫ ε1

0
‖S1(ε2 − $)− S1(ε1 − $)‖D(Ξ)κ

(
(σκ + γv1)‖v1‖D + ζκQ(δ)

)
×
∫ κ

0
p(ε, δ)dεd$

+λσ
∫ ε2

ε1

∥∥∥x1
∥∥∥+ ‖S1(κ)‖D(Ξ)|v1(0, δ)|+ σκ

(
(σκ + γv1)‖v1‖D + ζκQ(δ)

)
×
∫ κ

0
p(ε, δ)dεd$.

Hence

|(T(δ)x)(ε2)− (T(δ)x)(ε1)|
≤ ‖S1(ε2)− S1(ε1)‖D(Ξ)‖v1‖D + ‖S2(ε2)− S2(ε1)‖D(Ξ)|v2|

+κ
(
(σκ + γv1)‖v1‖D + ζκQ(δ)

) ∫ ε1

0
‖S1(ε2 − $)− S1(ε1 − $)‖D(Ξ)p($, δ)d$

+σκ
(
(σκ + γv1)‖v1‖D + ζκQ(δ), δ

) ∫ ε2

ε1

p($, δ)d$

+λ
∫ ε1

0
‖S1(ε2 − $)− S1(ε1 − $)‖D(Ξ)

[∥∥∥x1(δ)
∥∥∥+ ‖S1(κ)‖D(Ξ)|v1(0, δ)|

]
d$

+
∫ ε1

0
‖S1(ε2 − $)− S1(ε1 − $)‖D(Ξ)κ

(
(σκ + γv1)‖v1‖D + ζκQ(δ)

)
×
∫ κ

0
p(ε, δ)dεd$

+λσ
∫ ε2

ε1

∥∥∥x1(δ)
∥∥∥+ ‖S1(κ)‖D(Ξ)|v1(0, δ)|

+σκ
(
(σκ + γv1)‖v1‖D + ζκQ(δ)

) ∫ κ

0
p(ε, δ)dεd$.
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The right-hand of the above inequality tends to zero as ε2 − ε1 → 0, since S1(ϑ), and
S2(ϑ) are a strongly continuous operator and the compactness of S1(ϑ) and S2(ϑ) for ϑ > 0,
thus the continuity in the uniform operator topology.

Further, let δ ∈ Ψ be fixed.

(b) Let Φ be a subset of D(δ) where Φ ⊂ conv(T(Φ) ∪ {0}). Φ is bounded and equicon-
tinuous, thus the function ϑ → v(ϑ) = µ(Φ(ϑ)) is continuous on (−∞, κ]. By (H4),
Lemma 2 and the properties of the measure µ we have for each ϑ ∈ (−∞, κ]

v(ϑ) ≤ µ(T(Φ))(ϑ) ∪ {0})
≤ µ(T(Φ(ϑ))

≤ µ(S1(ϑ)v1(0, δ)) + µ(S2(ϑ)v2(δ))

+µ

(∫ ϑ

0
S1(ϑ− $) ψ($, x

ξ($,x$)
, δ), δ)d$

)
+σλ

∫ ϑ

0
µ
(

x1(δ)− S1(κ)v1(0, δ)− S2(κ)v2(δ)
)

+µ

(∫ κ

0
S1(κ − ε)ψ(ε, xξ(ε,xε), δ)dε

)
d$

≤ σ
∫ ϑ

0
µ
(

ψ($, x
ξ($,x$)

, δ), δ)
)

d$

+σλ
∫ ϑ

0

∫ κ

0
µ
(
S1(κ − ε)ψ(ε, xξ(ε,xε), δ)

)
dεd$

≤ σ
∫ ϑ

0
β($)µ(

{
xξ($,x$) : x ∈ Φ

}
)d$

+σλ
∫ ϑ

0

∫ κ

0
µ
(
S1(κ − ε)ψ(ε, xξ(ε,xε), δ)

)
dεd$

≤ σ
∫ ϑ

0
β($)ζ($) sup

0≤ε≤$

µ(Φ(ε))d$ + σ2λ
∫ ϑ

0

∫ κ

0
µ
(

ψ(ε, xξ(ε,xε), δ)
)

dεd$

≤ σ
∫ ϑ

0
β($)ζ($)µ(Φ($))d$ + σ2λκ

∫ κ

0
β(ε)µ(

{
xξ(ε,xε) : x ∈ Φ

}
)dε

≤ σ
∫ ϑ

0
v($) β($)ζ($)d$ + σ2λκ

∫ κ

0
β(ε)ζ(ε)µ(Φ(ε))dε

= σ
∫ ϑ

0
β($)ζ($)v($)d$ + σ2λκ

∫ κ

0
β(ε)ζ(ε)v(ε)dε.

≤ σ
∫ κ

0
β($)ζ($)v($)d$ + σ2λκ

∫ κ

0
β(ε)ζ(ε)v(ε)dε.

≤ σ(1 + σλκ)
∫ κ

0
β($)ζ($)v($)d$.

≤ σ(1 + σλκ)
∫ κ

0
β($)ζ($) sup

0≤ε≤$

v(ε)d$

≤ σ(1 + σλκ)‖v‖∞

∫ κ

0
β($)ζ($)d$.

Thus
‖v‖∞ ≤ σ(1 + σλκ)‖v‖∞

∫ κ

0
β($)ζ($)d$.
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Then

‖v‖∞

(
1− σ(1 + σλκ)

∫ κ

0
β($)ζ($)d$

)
≤ 0.

Consequently, ‖v‖∞ = 0, thus v(ϑ) = 0 for each ϑ ∈ Θ, and then Φ(ϑ) is relatively
compact in Ξ. As a result of the Ascoli-Arzelà theorem, Φ is relatively compact in D(δ).
By Mönch fixed point theorem, we deduce that T has a fixed point x(δ) ∈ D(δ). As⋂

δ∈Ψ D(δ) 6= ∅, and a measurable selector of intD exists, by Lemma 1, T has a stochastic
fixed point x∗(δ), which is a mild solution of (2).

5. An Example

Consider the problem:

∂2

∂ϑ2w(ϑ, y, δ) =
∂2

∂y2w(ϑ, y, δ)

+ ψ(ϑ,w(ϑ, y, δ), δ) +Z2f(ϑ, δ) y ∈ [0, π]; ϑ ∈ Θ = [0, κ], (6)

w(ϑ, 0, δ) = w(ϑ, π, δ) = 0; ϑ ∈ [0, κ], δ ∈ Ψ, (7)

w(ϑ, y, δ) = v1(ϑ, δ),
∂

∂ϑ
w(0, y, δ) = v2(y, δ); ϑ ∈ (−∞, 0], δ ∈ Ψ, (8)

where ψ : Θ × IR × Ψ −→ IR is a given function. Let Ξ = L2[0, π], and Z1 : Ξ −→ Ξ
given by Z1v = v

′′
with domain D(Z1) = {v ∈ Ξ; v, v

′′
are absolutely continuous,

v
′′ ∈ Ξ, v(0) = v(π) = 0}.

The operator Z1 is the infinitesimal generator of a strongly continuous cosine function
(S1(ϑ))ϑ∈IR on Ξ. Furthermore, Z1 has discrete spectrum, the eigenvalues are −n2, n ∈ IN
with corresponding normalized eigenvectors

wn(ε) :=
(

2
π

) 1
2

sin(nε),

and

(a) {wn : n ∈ IN} is an orthonormal basis of Ξ,

(b) If x ∈ Ξ, then Z1x = −
∞
∑

n=1
n2〈x,wn〉wn,

(c) For x ∈ Ξ,S1(ϑ)x =
∞
∑

n=1
cos(nt)〈x,wn〉wn, and the associated sine family is

S2(ϑ)x =
∞

∑
n=1

sin(nt)
n
〈x,wn〉wn.

Consequently, S2(ϑ) is compact for all ϑ > 0 and

‖S1(ϑ)‖ = ‖S2(ϑ)‖ ≤ 1, for all ϑ ≥ 0.

(d) If we denote the group of translations on Ξ by

Φ̄(ϑ)x(w, δ) = x̃(w+ ϑ, δ),

where x̃ is the extension of x with period 2π, then

S1(ϑ) =
1
2
(Φ̄(ϑ) + Φ̄(−ϑ));Z1 = D,

where D is the infinitesimal generator of the group on

X = {x(·, δ) ∈ H1(0, π) : x(0, δ) = x(π, δ) = 0}.
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Suppose that Z2 is a bounded linear operator from Ω into Ξ and the linear operator
K : L2(Θ, Ω)→ Ξ given by:

Kf =
∫ κ

0
S1(κ − $)Z2f($, δ)d$,

has an inverse operator K−1 in L2(Θ, Ω)/kerK. We deduce that (1) is an abstract formula-
tion of (6)–(8). If (H1)− (H6) are met. By Theorem 1, we conclude that (6)–(8) is controllable.

6. Conclusions

In this work, we have presented some existence and controllability results for two
classes of second order functional differential equations with delay and random effects.
Our arguments are based on a random fixed point theorem with a stochastic domain.
Next, we prove that our problems are controllable. On the other hand, we have given an
illustrative example which indicates the applicability of this study. Some of the results in
this direction constitute our future research plan. More work can be done by changing
and generalizing the conditions, the functional spaces, or even extend the study to some
fractional differential problems.

Author Contributions: All authors contributed to the study conception and design, equally. All
authors read and approved the final manuscript. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Abbas, S.; Benchohra, M. Advanced Functional Evolution Equations and Inclusions; Springer: Cham, Switzerland, 2015.
2. Naito, K. On controllability for a nonlinear Volterra equation. Nonlinear Anal. 1992, 18, 99–108. [CrossRef]
3. Nakagiri, S.; Yamamoto, R. Controllability and observability for linear retarded systems in Banach space. Int. J. Control 1989, 49,

1489–1504. [CrossRef]
4. Triggiani, R. On the stabilizability problem in Banach space. J. Math. Anal. Appl. 1975, 52, 383–403. [CrossRef]
5. Quinn, M.D.; Carmichael, N. An approach to nonlinear control problems using the fixed point methods, degree theory and

pseudo-inverses. Numer. Funct. Anal. Optim. 1984, 7, 197–219. [CrossRef]
6. Fu, X.; Ezzinbi, K. Existence of solutions for neutral functional differential evolution equations with nonlocal conditions. Nonlinear

Anal. 2003, 54, 215–227. [CrossRef]
7. Kwun, Y.C.; Park, J.Y.; Ryu, J.W. Approximate controllability and controllability for delay Volterra system. Bull. Korean Math. Soc.

1991, 28, 131–145.
8. Balachandran, K.; Dauer, J.P. Controllability of nonlinear systems in Banach spaces: A survey. Dedicated to Professor Wolfram

Stadler. J. Optim. Theory Appl. 2002, 115, 7–28. [CrossRef]
9. Abada, N.; Benchohra, M.; Hammouche, H.; Ouahab, A. Controllability of impulsive semilinear functional differential inclusions

with finite delay in Fréchet spaces. Discuss. Math. Differ. Incl. Control Optim. 2007, 27, 329–347. [CrossRef]
10. Arara, A.; Benchohra, M.; Gorniewicz, L.; Ouahab, A. Controllability results for semilinear functional differential inclusions with

unbounded delay. Math. Bull. 2006, 3, 157–183.
11. Benchohra, M.; Gorniewicz, L.; Ntouyas, S.K. Controllability on infinite time horizon for first and second order functional

differential inclusions in Banach spaces. Discuss. Math. Differ. Incl. Control Optim. 2001, 21, 261–282. [CrossRef]
12. Diallo, M.A.; Ezzinbi, K.; Sene, A. Controllability for some integrodifferential evolution equations in Banach spaces. Discuss.

Math. Differ. Incl. Control Optim. 2017, 37, 69–81. [CrossRef]
13. Travis, C.C.; Webb, G.F. Cosine families and abstract nonlinear second order differential equations. Acta Math. Acad. Sci. Hung.

1978, 32, 75–96. [CrossRef]
14. Balachandran, K.; Anthoni, S.M. Controllability of second-order semilinear neutral functional differential systems in Banach

spaces. Comput. Math. Appl. 2001, 41, 1223–1235. [CrossRef]

http://doi.org/10.1016/0362-546X(92)90050-O
http://dx.doi.org/10.1080/00207178908559721
http://dx.doi.org/10.1016/0022-247X(75)90067-0
http://dx.doi.org/10.1080/01630568508816189
http://dx.doi.org/10.1016/S0362-546X(03)00047-6
http://dx.doi.org/10.1023/A:1019668728098
http://dx.doi.org/10.7151/dmdico.1088
http://dx.doi.org/10.7151/dmdico.1028
http://dx.doi.org/10.7151/dmdico.1191
http://dx.doi.org/10.1007/BF01902205
http://dx.doi.org/10.1016/S0898-1221(01)00093-1


Mathematics 2022, 10, 1120 16 of 16

15. Henríquez, H.R.; Hernández, E.M. Approximate controllability of second-order distributed implicit functional systems. Nonlinear
Anal. 2009, 70, 1023–1039. [CrossRef]

16. Bharucha-Reid, A.T. Random Integral Equations; Academic Press: New York, NY, USA, 1972.
17. Ladde, G.S.; Lakshmikantham, V. Random Differential Inequalities; Academic Press: New York, NY, USA, 1980.
18. Tsokos, C.P.; Padgett, W.J. Random Integral Equations with Applications to Life Sciences and Engineering; Academic Press: New York,

NY, USA, 1974.
19. Aissani, K.; Benchohra, M. Controllability of impulsive fractional differential equations with infinite delay. Lib. Math. 2013, 33,

47–64. [CrossRef]
20. Aissani, K.; Benchohra, M. Controllability of fractional integrodifferential equations with state-dependent delay. J. Integral Equ.

Appl. 2016, 28, 149–167. [CrossRef]
21. Aissani, K.; Benchohra, M.; Darwish, M.A. Controllability of fractional order integro-differential inclusions with infinite delay.

Electron. J. Qual. Theory Differ. Equ. 2014, 2014, 1–18. [CrossRef]
22. Aissani, K.; Benchohra, M.; Nieto, J.J. Controllability for Impulsive Fractional Evolution Inclusions with State–Dependent Delay.

Adv. Theory Nonlinear Anal. Appl. 2019, 3, 18–34.
23. Balachandran, K.; Park, J.Y. Controllability of fractional integrodifferential systems in Banach spaces. Nonlinear Anal. Hybr. Syst.

2009, 3, 363–367. [CrossRef]
24. Mophou, G.M.; N’Guérékata, G.M. Controllability of semilinear neutral fractional functional evolution equations with infinite

delay. Nonlinear Stud. 2011, 18, 149–165.
25. Wang, J.; Zhou, Y. Complete controllability of fractional evolution systems. Comm. Nonlinear Sci. Num. Sim. 2012, 17, 4346–4355.

[CrossRef]
26. Balachandran, K.; Sakthivel, R. Controllability of integrodifferential systems in Banach spaces. Appl. Math. Comput. 2001, 118,

63–71. [CrossRef]
27. Yan, Z. Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay. J. Franklin

Inst. 2011, 348, 2156–2173. [CrossRef]
28. Granas, A.; Dugundji, J. Fixed Point Theory; Springer: New York, NY, USA, 2003.
29. Fattorini, H.O. Second Order Linear Differential Equations in Banach Spaces; North-Holland Mathematics Studies: Amsterdam, The

Netherlands, 1985.
30. Hale, J.; Kato, J. Phase space for retarded equations with infinite delay. Funkcial. Ekvac 1978, 21, 11–41.
31. Hino, Y.; Murakami, S.; Naito, T. Functional Differential Equations with Unbounded Delay; Springer: Berlin, Germany, 1991.
32. Engl, H. W. A general stochastic fixed-point theorem for continuos random operators on stochastic domains. Anal. Appl. 1978,

66, 220–231. [CrossRef]
33. Banas, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Marcel Dekker: New York, NY, USA, 1980.
34. Guo, D.J.; Lakshmikantham, V.; Liu, X. Nonlinear Integral Equations in Abstract Spaces; Kluwer Academic Publishers: Dordrecht,

The Netherlands, 1996.
35. Itoh, S. Random fixed point theorems with an application to random differential equations in Banach space. Anal. Appl. 1979, 67,

261–273. [CrossRef]
36. Travis, C.C.; Webb, G.F. Compactness, regularity, and uniform continuity properties of strongly continuous cosine families.

J. Math. 1977, 3, 555–567.
37. Hernandez, E.; Sakthivel, R.; Tanaka, A. Existence results for impulsive evolution differential equations with state-dependent

delay. Electron. J. Differ. Equ. 2008, 2008, 1–11.
38. Agarwal, R.P.; Meechan, M.; O’Regan, D. Fixed Point Theory and Applications; Cambridge University Press: Cambridge, UK, 2001.
39. Mönch, H. Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces. Nonlinear

Anal. 1980, 4, 985–999. [CrossRef]

http://dx.doi.org/10.1016/j.na.2008.01.029
http://dx.doi.org/10.14510/lm-ns.v33i2.58
http://dx.doi.org/10.1216/JIE-2016-28-2-149
http://dx.doi.org/10.14232/ejqtde.2014.1.52
http://dx.doi.org/10.1016/j.nahs.2009.01.014
http://dx.doi.org/10.1016/j.cnsns.2012.02.029
http://dx.doi.org/10.1016/S0096-3003(00)00040-0
http://dx.doi.org/10.1016/j.jfranklin.2011.06.009
http://dx.doi.org/10.1016/0022-247X(78)90279-2
http://dx.doi.org/10.1016/0022-247X(79)90023-4
http://dx.doi.org/10.1016/0362-546X(80)90010-3

	Introduction
	Preliminaries
	Controllability Results for the Constant Delay Case
	Controllability Results for the State-Dependent Delay Case
	An Example
	Conclusions
	References

