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Abstract: Assume that (X, d, µ) is a metric measure space that satisfies a Q-doubling condition with
Q > 1 and supports an L2-Poincaré inequality. Let L be a nonnegative operator generalized by a
Dirichlet form E and V be a Muckenhoupt weight belonging to a reverse Hölder class RHq(X) for
some q ≥ (Q + 1)/2. In this paper, we consider the Dirichlet problem for the Schrödinger equation
−∂2

t u + Lu + Vu = 0 on the upper half-space X×R+, which has f as its the boundary value on X.
We show that a solution u of the Schrödinger equation satisfies the Carleson type condition if and
only if there exists a square Morrey function f such that u can be expressed by the Poisson integral of
f . This extends the results of Song-Tian-Yan [Acta Math. Sin. (Engl. Ser.) 34 (2018), 787-800] from
the Euclidean space RQ to the metric measure space X and improves the reverse Hölder index from
q ≥ Q to q ≥ (Q + 1)/2.

Keywords: Schrödinger equation; Morrey space; Dirichlet problem; metric measure space

MSC: 35J10; 42B35

1. Introduction

The Dirichlet problem was originally posed for the Laplace equation. In such a case,
the problem can be stated as follows. Assume that Ω ⊂ Rn is a domain and f is a continuous
map on ∂Ω. Let us find a continuous function u satisfying{

−∆u(x) = 0, x ∈ Ω,
u(x) = f (x), x ∈ ∂Ω.

We call f as the boundary value of u. Here, −∆u = 0 means that
ˆ

Ω
∇u · ∇φdx = 0

holds for every smooth function φ on Rn with compact support in Ω, where ∇u is the
distributional gradient of u. For the upper half-space case, the study of the harmonic
extension of a function has become one of the elementary tools of harmonic analysis ever
since the seminar work of Stein-Weiss [1]. As we know, for any function f ∈ Lp(Rn) with
1 ≤ p < ∞, its Poisson extension u(x, t) = e−t

√
−∆ f (x), (x, t) ∈ Rn+1

+ , which satisfies{
−∂2

t u− ∆u = 0, (x, t) ∈ Rn+1
+ ,

u(x) = f (x), x ∈ Rn.

In the study of singular integrals, a natural substitution of the end-point space
L∞(Rn) is the space of functions of bounded mean oscillation (BMO). Fefferman-Stein [2]
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proved that a function f belongs to BMO(Rn) if and only if its harmonic extension
u(x, t) = e−t

√
−∆ f (x) satisfies the following Carleson condition

sup
xB ,rB

ˆ rB

0

 
B(xB ,rB)

|t∇u(x, t)|2dx
dt
t
< ∞, (1)

where  
B(xB ,rB)

:=
1

|B(xB, rB)|

ˆ
B(xB ,rB)

.

Later, Fabes-Johnson-Neri [3] found that the Carleson condition (1) actually charac-
terizes all harmonic functions u(x, t) on Rn+1

+ with BMO traces. Since then, the research
on this topic has been widely extended to various settings, including heat equations [4],
elliptic equations and systems with complex coefficients [5], degenerate elliptic equations
and systems [6], as well as Schrödinger equations [7,8]. We refer the reader to [9–13] and
the references therein for more information about this topic.

In this paper, we consider a metric measure space X, which satisfies a Q-doubling
condition with Q > 1, and supports an L2-Poincaré inequality. Let L = L + V be a
Schrödinger operator, where L is a nonnegative operator generalized by a Dirichlet form E ,
and the nonnegative potential V is a Muckenhoupt weight belonging to the reverse Hölder
class. We study the boundary behavior of Schrödinger harmonic function on X × R+.
Roughly speaking, we derive that a solution u to the Schrödinger equation

−∂2
t u(x, t) +L u(x, t) = −∂2

t u(x, t) + Lu(x, t) + V(x)u(x, t) = 0

satisfies the Carleson type condition analogous to (1) if and only if there exists a square
Morrey function f such that u = e−t

√
L f holds, where the square Morrey spaces L2,α(X)

with −1/2 < α < 0 are defined by

L2,α(X) =

{
f ∈ L2

loc(X) : sup
B⊂X

1
[µ(B)]α

( 
B
| f |2dµ

)1/2
< ∞

}
.

We refer the reader to Section 2 for more about the Dirichlet metric measure space,
the reverse Hölder classes, the Muckenhoupt weight and the main result. We would like to
mention that, when X = Rn, if V ∈ RHq(Rn) for some q ≥ n, Song-Tian-Yan [8] studied
the boundary behavior of Schrödinger harmonic functions. Our result covers more general
spaces, such as the Riemannian metric measure space, sub-Riemannian manifold; see [14]
(Section 7) for more details.

Regarding their proof, the condition V ∈ RHq(Rn) for some q ≥ n is to assure that
there exists a pointwise upper bound for the gradient of the Schrödinger Poisson kernel.
However, even without the potential V, such bounds are not valid in general metric space
unless a group structure or strong nonnegative curvature condition is assumed (see [15,16]).
Indeed, for uniformly elliptic operators, the pointwise upper bound of the gradient of heat
kernel has already failed; see [14,17] for instance.

To overcome this difficulty, we adopt a Caccioppoli inequality for the Schrödinger
Poisson semigroup in a tent domain B(xB, rB)× (0, rB) from [18], and hence the reverse
Hölder index can be improved to q ≥ (n + 1)/2 in the case of Euclidean space setting. At
this moment, combined with more delicate analysis, we can remove the C1-regularity of the
Schrödinger harmonic function. Moreover, based on some new observations, we establish
a new Calderón reproducing formula, which plays a crucial role in our proof; see Lemma 6
for more details.

The paper is organized as follows. In Section 2, we begin with a brief overview of our
settings, i.e., the metric measure space with a Dirichlet form. Next, we recall the definition
of the reverse Hölder class and the Muckenhoupt weight and finally state the main result
of this paper. In Section 3, we establish some properties for the Schrödinger harmonic



Mathematics 2022, 10, 1112 3 of 22

functions, which satisfy Carleson-type conditions. In the last two sections, we prove the
main result.

Throughout the paper, we denote by the letter C (or c) a positive constant that is
independent of the essential parameters but may vary from line to line.

2. Main Result

Before stating the main result, we first briefly describe our Dirichlet metric measure
space settings; see [19–22] for more details. Suppose that X is a separable, connected,
locally compact and metrisable space. Let µ be a Borel measure that is strictly positive
on non-empty open sets and finite on compact sets. We consider a regular and strongly
local Dirichlet form E on L2(X, µ) with dense domain D ⊂ L2(X, µ) (see [20] or [21] for
an accurate definition). Suppose that E admits a “carré du champ”, which means that,
for all f , g ∈ D , Γ( f , g) is absolutely continuous with respect to the measure µ. Hereafter,
for simplicity of notation, let 〈∇x f ,∇xg〉 denote the energy density dΓ( f ,g)

dµ and |∇x f |
denote the square root of dΓ( f , f )

dµ . Assume the space (X, µ, E ) is endowed with the intrinsic
(pseudo-)distance on X related to E , which is defined by setting

d(x, y) := sup{ f (x)− f (y) : f ∈ Dloc ∩ C(X), |∇x f | ≤ 1 a.e.},

where C(X) is the space of continuous functions on X. Suppose d is indeed a distance and
induces a topology equivalent to the original topology on X. As a summary of the above
situation, we will say that (X, d, µ, E ) is a complete Dirichlet metric measure space.

Let the domain D be equipped with the norm (‖ f ‖2
2 + E ( f , f ))1/2. We can easily

see that it is a Hilbert space and denote it by W1,2(X). Given an open set U ⊂ X, we
define the Sobolev spaces W1,p(U) and W1,p

0 (U) in the usual sense (see [22–24]). With
respect to the Dirichlet form, there exists an operator L with dense domain D(L) in
L2(X, µ), D(L) ⊂W1,2(X), such that

ˆ
X
L f (x)g(x)dµ(x) = E ( f , g),

for all f ∈ D(L) and each g ∈W1,2(X).
We denote by B(x, r) the open ball with center x and radius r and set λB(x, r) :=

B(x, λr). We suppose that µ is doubling, i.e., there exists a constant Cd > 0 such that, for
every ball B(x, r) ⊂ X,

µ(B(x, 2r)) ≤ Cdµ(B(x, r)) < ∞. (2)

Note that µ is doubling implies there exists Q > 1 such that, for any 0 < r < R < ∞
and x ∈ X,

µ(B(x, R)) ≤ Cd

(
R
r

)Q
µ(B(x, r)),

and the reverse doubling property holds on a connected space (cf. [25] Remark 8.1.15 or [26]
Proposition 5.2), i.e., there exist constants 0 < n ≤ Q and 0 < c < 1 such that, for any
0 < r < R < ∞ and x ∈ X,

µ(B(x, r)) ≤ C
( r

R

)n
µ(B(x, R)). (3)

There also exist constants C > 0 and 0 ≤ N ≤ Q such that

µ(B(y, r)) ≤ C
(

1 +
d(x, y)

r

)N
µ(B(x, r)) (4)

uniformly for all x, y ∈ X and r > 0. Indeed, property (4) with N = Q is a direct
consequence of the doubling property (2) and the triangle inequality of the metric d. It is
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worth pointing out that N can be chosen to be zero in the cases of Euclidean space, the Lie
group of polynomial growth and metric space with a uniformly distributed measure.

Suppose that (X, d, µ, E ) admits an L2-Poincaré inequality, namely, there exists a
constant CP > 0 such that( 

B
| f − fB|2dµ

)1/2
≤ CPrB

( 
B
|∇x f |2dµ

)1/2
, (5)

for all balls B = B(xB, rB) and W1,2(B) functions f , where fB denotes the mean (or average)
of f over B.

We suppose that V is a non-trivial potential satisfying 0 ≤ V ∈ A∞(X) ∩ RHq(X),
where the Muckenhoupt weight class A∞(X) and the reverse Hölder class RHq(X) are
defined as follows (cf. [27,28]).

Definition 1.
(i) We say that a nonnegative function V on X belongs to the Muckenhoupt weight class A∞(X),

if there exists a constant C > 0 such that

sup
B

 
B

Vdµ

(
inf
x∈B

V
)−1

≤ C,

where the infimum is understood as the essential infimum or there exists constant 1 < p < ∞
and C > 0 such that

sup
B

 
B

Vdµ

( 
B

V
1

1−p dµ

)p−1
≤ C.

(ii) For any 1 < q ≤ ∞, we say that a nonnegative function V on X belongs to the reverse Hölder
class RHq(X), if there exists a constant C > 0 such that( 

B
Vqdµ

)1/q
≤ C

 
B

Vdµ,

for any ball B ⊂ X, with the usual modification when q = ∞.

When X = Rn, it is well known that A∞(Rn) =
⋃

1<q≤∞ RHq(Rn). However, in gen-
eral metric measure space X, this relationship between the reverse Hölder classes and the
Muckenhoupt weight may not hold; see [28] (Chapter 1). We point out that, if the measure
µ on X is doubling and the potential V belongs to A∞(X), then the induced measure Vdµ
is also doubling (cf. [28] Chapter 1).

Let us recall the definition of the critical function ρ(x) associated with the potential V
(see [29] Definition 1.3). For all x ∈ X, let

ρ(x) := sup

{
r > 0 : r2

 
B(x,r)

Vdµ ≤ 1

}
.

Since the potential V is non-trivial, it holds that 0 < ρ(x) < ∞ for every x ∈ X.
Additionally, by the results of Yang-Zhou [30] (Lemma 2.1 & Proposition 2.1), the critical
function satisfies the following property. If V ∈ A∞(X) ∩ RHq(X) with q > max{1, Q/2},
then there exist constants k0 ≥ 1 and C > 0 such that, for all x, y ∈ X,

C−1ρ(x)
(

1 +
d(x, y)
ρ(x)

)−k0

≤ ρ(y) ≤ Cρ(x)
(

1 +
d(x, y)
ρ(x)

)k0/(k0+1)

. (6)

In this paper, we consider the Schrödinger operator

L = L+ V.
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Throughout this paper, we denote, by Pt = e−t
√

L , the Schrödinger Poisson semi-
group associated with L and, by pv

t (x, y), the kernel of Pt = e−t
√

L . Due to the perturba-
tion of V, the Schrödinger Poisson kernel and its time derivatives admit the Poisson upper
bound with an additional polynomial decay (see [18])—namely, for any k ∈ {0} ∪N and
K > 0, there exists a constant C = C(k, K) > 0 such that

|tk∂k
t pv

t (x, y)| ≤ C
t

t + d(x, y)
1

µ(B(x, t + d(x, y)))

(
1 +

t + d(x, y)
ρ(x)

)−K
.

For more results about the Schrödinger operator and their applications, we refer the
reader to [31–44].

Let us recall the definition of L+-harmonic functions on the upper half-space. A
function u ∈W1,2(X×R+) is said to be an L+-harmonic function on X×R+, if, for every
Lipschitz function φ with compact support in X×R+, it holds that

ˆ ∞

0

ˆ
X

∂tu∂tφdµdt +
ˆ ∞

0

ˆ
X
〈∇xu,∇xφ〉dµdt +

ˆ ∞

0

ˆ
X

Vuφdµdt = 0.

Suppose −1/2 < α < 0. We define HL2,α√
L
(X×R+) as the class of all L+-harmonic

functions u satisfying

‖u‖HL2,α√
L

:= sup
xB ,rB

1
[µ(B(xB, rB))]α

(ˆ rB

0

 
B(xB ,rB)

|t∇u(x, t)|2dµ(x)
dt
t

)1/2

< ∞.

The definition of the Morrey spaces refers to [8,42,45]. For every −1/2 < α < 0,
the square Morrey space L2,α(X) is defined as

L2,α(X) :=

{
f ∈ L2

loc(X) : sup
B⊂X

1
[µ(B)]2α

 
B
| f (x)|2dµ(x) < ∞

}
.

This is a Banach space with respect to the norm

‖ f ‖L2,α := sup
B⊂X

1
[µ(B)]α

( 
B
| f (x)|2dµ(x)

)1/2
.

The following theorem is the main result of this paper.

Theorem 1. Assume that (X, d, µ, E ) is a complete Dirichlet metric measure space that satisfies
the doubling condition (2) with Q > 1, and admits an L2-Poincaré inequality (5). Let 0 ≤ V ∈
A∞(X) ∩ RHq(X) with q ≥ (Q + 1)/2, and −1/2 < α < 0.

(i) If f ∈ L2,α(X), then u(x, t) = Pt f (x) ∈ HL2,α√
L
(X × R+), and there exists a constant

C > 0, independent of f , such that

‖u‖HL2,α√
L

≤ C‖ f ‖L2,α .

(ii) Further assume that max{−1/2,−1/2N} < α < 0. If u ∈ HL2,α√
L
(X ×R+), then there

exists a function f ∈ L2,α(X) such that u(x, t) = Pt f (x). Moreover, there exists a constant
C > 0, independent of u, such that

‖ f ‖L2,α ≤ C‖u‖HL2,α√
L

.
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Remark 1.
(i) In Theorem 1, we assume that the reverse Hölder index q is not less than (Q + 1)/2. However,

the observant readers might notice that, in [29], Shen assumed that the nonnegative potential
V belongs to RHq(RQ) for some q ≥ Q/2. However, we consider the boundary value problem
of the Schrödinger equation

−∂2
t u + Lu + Vu = 0

on the upper half-space X × R+. In order to make sure the above Schrödinger harmonic
function is Hölder continuous on X×R+, the critical reverse Hölder index (Q + 1)/2 seems
to be the least condition via the natural extension V(·, t) := V(·) for all t > 0. One might
wonder if there is any possibility of relaxing the requirement q ≥ (Q + 1)/2 in Theorem 1
to q > 1 together with q ≥ Q/2. From the initial value to the solution, this is ensured by
the Caccioppoli inequality for the Schrödinger Poisson semigroup; see Proposition 3 for more
details. To the contrary, from the solution to the initial value, this is an interesting problem to
be solved.

(ii) The range of α in Theorem 1 (ii) is slightly different from that in (i). This assumption
−1/2N < α < 0 first appears in Lemma 3 below, which is caused by the time regularity of
HL2,α√

L
-function

|t∂tu(x, t)| ≤ C[µ(B(x, t))]α‖u‖HL2,α√
L

.

Since the pointwise upper bound of the time regularity of HL2,α√
L

-function has to do with
the measure of some ball to the α power, the condition 2αN + 1 > 0 ensures the series in
Lemma 3 is convergent. In fact, for metric measure space X, the nonnegative parameter N
arises automatically if we want to calculate the ratio of the volumes of two balls with different
centers. However, this would not occur in the cases of Euclidean space, the Lie group of
polynomial growth and metric space with a uniformly distributed measure. We remark that
N can be chosen to be 0 under these settings, and hence the assumption −1/2N < α < 0 is
superfluous.

3. Schrödinger Harmonic Functions Satisfying Carleson

In this section, we will establish some properties of HL2,α√
L

-function.

Lemma 1. Assume the Dirichlet metric measure space (X, d, µ, E ) satisfies (2) and (5). Let
V ∈ A∞(X) ∩ RHq(X) for some q > max{1, Q/2}. If L u = Lu + Vu = 0 holds in a bounded
domain Ω ⊂ X, then there exists a constant C > 0 such that, for any ball B = B(xB, rB) with
2B ⊂ Ω,

‖u‖L∞(B) ≤ C
 

2B
|u|dµ.

Furthermore, u is locally Hölder continuous in Ω, and there exists a constant
θ ∈ (0, min{1, 2−Q/q}) such that, for any x, y ∈ 1

2 B,

|u(x)− u(y)| ≤ C
(

d(x, y)
rB

)θ

‖u‖L∞(B)

(
1 + r2

B

 
B

Vdµ

)
.

Proof. For the proof, we refer to [18] (Proposition 2.12).

Let us extend the potential V to the upper half-space by defining V(x, t) := V(x) for
all t ∈ R. We can easily find that V(x, t) ∈ A∞(X×R) ∩ RHq(X×R) with q > (Q + 1)/2,
if 0 ≤ V(x) ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. Therefore, it follows from Lemma 1
that L+-harmonic functions are locally Hölder continuous on X×R+.
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Lemma 2. Suppose the complete Dirichlet metric measure space (X, d, µ, E ) satisfies (2) and
(5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. If u ∈ HL2,α√

L
(X × R+) with

−1/2 < α < 0, then there exists a constant C > 0 such that, for all x ∈ X and t > 0,

|t∂tu(x, t)| ≤ C[µ(B(x, t))]α‖u‖HL2,α√
L

.

Proof. Let ε > 0. Given −ε < h < ε, for any x ∈ X and t > ε, set

u(x, t; h) :=
u(x, t + h)− u(x, t)

h
.

It follows that u(·, ·; h) is an L+-harmonic function on X× (ε, ∞); see the proof of [18]
(Lemma 4.1).

Then, by the mean value property in Lemma 1, we conclude that, for any t > 2ε,

|u(x, t; h)| ≤ C

( 
B(x,t/2)

 3t/2

t/2
|u(y, s; h)|2dsdµ(y)

)1/2

, (7)

which, combined with the argument in the proof of Jiang-Li [18] (Lemma 4.1), yields, for
each t > 3ε, that

|tu(x, t; h)| ≤ C

( 
B(x,2t)

ˆ 2t

0
|s∂su(y, s)|2 ds

s
dµ(y)

)1/2

.

This implies that, for each t > 3ε,

|t∂tu(x, t)| ≤ C[µ(B(x, t))]α‖u‖HL2,α√
L

.

Letting ε→ 0 indicates that the above estimate holds for every t > 0.

Lemma 3. Assume the complete Dirichlet metric measure space (X, d, µ, E ) satisfies (2) and (5).
Suppose 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2, and max{−1/2,−1/2N} < α < 0.
If u ∈ HL2,α√

L
(X×R+), then there exists a constant C > 0 such that, for any x ∈ X and t, ε > 0,

ˆ
X

|u(y, ε)|2
(t + d(x, y))µ(B(x, t + d(x, y)))

dµ(y)

≤ C(1 + t−1)‖u(·, ε)‖2
L∞(B(x,2)) + C([µ(B(x, 1))]2α + ε2Nα[µ(B(x, ε))]2α)‖u‖2

HL2,α√
L

.

Proof. By Lemma 1, u(·, ·) is locally bounded and locally Hölder continuous in X ×R+.
The integral is split into B(x, 1) and X\B(x, 1). For the local part B(x, 1), it holds that

ˆ
B(x,1)

|u(y, ε)|2
(t + d(x, y))µ(B(x, t + d(x, y)))

dµ(y) ≤ C
t
‖u(·, ε)‖2

L∞(B(x,1)).

For the global part X\B(x, 1), by the annulus argument, we have

ˆ
X\B(x,1)

|u(y, ε)|2
(t + d(x, y))µ(B(x, t + d(x, y)))

dµ(y)

≤ C
∞

∑
j=1

2−j
 2j

2j−1

 
B(x,2j)

|u(y, ε)|2dµ(y)d s

≤ C
∞

∑
j=1

2−j
 

Ej

|u(y, ε)− u(y, s)|2dµ(y)d s
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+ C
∞

∑
j=1

2−j
 

Ej

|u(y, s)− uEj |
2dµ(y)ds + C

∞

∑
j=1

2−j|uEj |
2

=: C(I1 + I2 + I3),

where we denote the cylinder B(x, 2j)× [2j−1, 2j) by Ej for simplicity.
For the term I1, it holds by Lemma 2 and −1/2N < α that

I1 =
∞

∑
j=1

2−j
 

Ej

∣∣∣∣ˆ s

ε
∂ru(y, r)dr

∣∣∣∣2dµ(y)d s

≤ C‖u‖2
HL2,α√

L

∞

∑
j=1

2−j
 

Ej

(ˆ s

ε
[µ(B(y, r))]α

dr
r

)2
dµ(y)d s

≤ C‖u‖2
HL2,α√

L

∞

∑
j=1

2−j

{
[µ(B(x, 1))]2α +

(
2j

ε

)−2Nα

[µ(B(x, ε))]2α

}
≤ C

(
[µ(B(x, 1))]2α + ε2Nα[µ(B(x, ε))]2α

)
‖u‖2

HL2,α√
L

.

Above, in the second inequality, we used the fact that
ˆ s

ε
[µ(B(y, r))]α

dr
r

≤
ˆ s

ε
[µ(B(y, r))]α

dr
r

(
χ(0,2j−1)(ε) + χ(2j−1,∞)(ε)

)
≤
ˆ ∞

ε
[µ(B(y, r))]α

dr
r

χ(0,2j−1)(ε) +

ˆ ∞

2j−1
[µ(B(y, r))]α

dr
r

≤ C
{ˆ ∞

ε

( r
ε

)nα
[µ(B(y, ε))]α

dr
r

χ(0,2j−1)(ε) +

ˆ ∞

2j−1

(
r

2j−1

)nα

[µ(B(y, 2j−1))]α
dr
r

}
≤ C

{(
1 +

d(x, y)
ε

)−Nα

[µ(B(x, ε))]αχ(0,2j−1)(ε) +

(
1 +

d(x, y)
2j−1

)−Nα

[µ(B(x, 2j))]α
}

≤ C

{
[µ(B(x, 1))]α +

(
2j

ε

)−Nα

[µ(B(x, ε))]α
}

.

Now, we put us(·) := u(·, s). For the term I2, we use the Poincaré inequality to
deduce that

I2 ≤ 2
∞

∑
j=1

2−j

( 2j

2j−1

 
B(x,2j)

∣∣∣u(y, s)− (us)B(x,2j)

∣∣∣2dµ(y)ds +
 2j

2j−1

∣∣∣(us)B(x,2j) − uEj

∣∣∣2ds

)

≤ C
∞

∑
j=1

2−j

(
22j

 2j

2j−1

 
B(x,2j)

∣∣∇yu(y, s)
∣∣2dµ(y)ds +

 2j

2j−1

∣∣∣(us)B(x,2j) − uEj

∣∣∣2ds

)
. (8)

By the Hölder inequality and the Poincaré inequality, it holds that

 2j

2j−1

∣∣∣(us)B(x,2j) − uEj

∣∣∣2d s

=

 2j

2j−1

∣∣∣∣∣
 

B(x,2j)
u(y, s)dµ(y)−

 2j

2j−1

 
B(x,2j)

u(y, r)dµ(y)dr

∣∣∣∣∣
2

d s

=

 2j

2j−1

∣∣∣∣∣
 2j

2j−1

 
B(x,2j)

u(y, s)− u(y, r)dµ(y)dr

∣∣∣∣∣
2

d s
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≤
 

B(x,2j)

 2j

2j−1

 2j

2j−1
|u(y, s)− u(y, r)|2drdsdµ(y)

≤ C22j
 

B(x,2j)

 2j

2j−1
|∂su(y, s)|2dsdµ(y).

This, together with (8), gives that

I2 ≤ C
∞

∑
j=1

2−j22j
 2j

2j−1

 
B(x,2j)

|∇u(y, s)|2dµ(y)d s

≤ C
∞

∑
j=1

2−j
ˆ 2j

0

 
B(x,2j)

|s∇u(y, s)|2dµ(y)
ds
s

≤ C
∞

∑
j=1

2−j[µ(B(x, 2j))]2α‖u‖2
HL2,α√

L

≤ C[µ(B(x, 1))]2α‖u‖2
HL2,α√

L

.

As Ej = B(x, 2j)× [2j−1, 2j), it holds Ej, Ej+1 ⊂ B(x, 2j+1)× [2j−1, 2j+1) =: Fj+1. For
the term I3, one writes

I3 ≤
∞

∑
j=1

2−j

(∣∣uE1

∣∣+ j

∑
i=2

∣∣uEi − uEi−1

∣∣)2

≤
∞

∑
j=1

2−j

(∣∣(u− u(·, ε))E1

∣∣+ ‖u(·, ε)‖L∞(B(x,2)) +
j

∑
i=2

(
|uEi − uFi |+ |uFi − uEi−1 |

))2

.

It follows from the Poincaré inequality that

|uEi − uFi |+ |uFi − uEi−1 | ≤ C

( 2i

2i−2

 
B(x,2i)

∣∣u(y, s)− uFi

∣∣2dµ(y)ds

)1/2

≤ C

( 2i

2i−2

 
B(x,2i)

∣∣∣u(y, s)− (us)B(x,2i)

∣∣∣2dµ(y)ds

)1/2

+ C

( 2i

2i−2

∣∣∣(us)B(x,2i) − uFi

∣∣∣2ds

)1/2

≤ C2i

( 2i

2i−2

 
B(x,2i)

|∇u(y, s)|2dµ(y)ds

)1/2

≤ C

(ˆ 2i

0

 
B(x,2i)

|s∇u(y, s)|2dµ(y)
ds
s

)1/2

≤ C[µ(B(x, 2i))]α‖u‖HL2,α√
L

≤ C[µ(B(x, 1))]α‖u‖HL2,α√
L

, (9)

and from Lemma 2 that∣∣(u− u(·, ε))E1

∣∣ ≤  
B(x,2)×[1,2)

|u(y, s)− u(y, ε)|dµ(y)ds

≤
 

B(x,2)×[1,2)

∣∣∣∣ˆ s

ε
∂ru(y, r)dr

∣∣∣∣dµ(y)ds
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≤ C‖u‖HL2,α√
L

 
B(x,2)×[1,2)

∣∣∣∣ˆ s

ε
[µ(B(y, r))]α

dr
r

∣∣∣∣dµ(y)ds

≤ C([µ(B(x, 1))]α + εNα[µ(B(x, ε))]α)‖u‖HL2,α√
L

. (10)

Here, we used the fact that∣∣∣∣ˆ s

ε
[µ(B(y, r))]α

dr
r

∣∣∣∣ ≤ C
(ˆ ∞

ε
[µ(B(y, r))]α

dr
r
+

ˆ ∞

1
[µ(B(y, r))]α

dr
r

)
≤ C

(ˆ ∞

ε

( r
ε

)nα
[µ(B(y, ε))]α

dr
r
+

ˆ ∞

1
rnα[µ(B(y, 1))]α

dr
r

)
≤ C(εNα[µ(B(x, ε))]α + [µ(B(x, 1))]α).

The above two estimates (9) and (10) yield that

I3 ≤ C
∞

∑
j=1

2−j‖u(·, ε)‖2
L∞(B(x,2))

+ C
∞

∑
j=1

2−j
(
[µ(B(x, 1))]α‖u‖HL2,α√

L

+ εNα[µ(B(x, ε))]α‖u‖HL2,α√
L

)2

≤ C
(
‖u(·, ε)‖2

L∞(B(x,2)) + [µ(B(x, 1))]2α‖u‖2
HL2,α√

L

+ ε2Nα[µ(B(x, ε))]2α‖u‖2
HL2,α√

L

)
.

In combination with the estimates of I1, I2 and I3, we obtain the required conclusion.

Lemma 4. Suppose the complete Dirichlet metric measure space (X, d, µ, E ) satisfies (2) with
Q > 1 and admits (5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. Assume that w is a
solution to (−∂2

t +L )w = 0 on X×R. If there exists m > 0 such that

ˆ
R

ˆ
X

|w(y, t)|2
(1 + t + d(x, y))m+1µ(B(x, 1 + t + d(x, y)))

dµ(y)dt < ∞,

then w ≡ 0.

Proof. For the proof, we refer to [18] (Corollary 4.5).

Proposition 1. Suppose the complete Dirichlet metric measure space (X, d, µ, E ) satisfies (2) with
Q > 1 and admits (5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. Assume that
u ∈ HL2,α√

L
(X×R+) with max{−1/2,−1/2N} < α < 0. For any x ∈ X and s, t > 0, it holds

that
u(x, t + s) = Pt(u(·, s))(x).

Proof. For each t > 0, let

v(x, t) := u(x, t + s)−Pt(u(·, s))(x).

As u(·, ·+ s) is Hölder continuous on X× (−s, ∞) and u(·, s) is Hölder continuous on
X, we see that

v(x, 0) := lim
t→0+

v(x, t) = lim
t→0+
{u(x, t + s)−Pt(u(·, s))(x)} = 0.
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We extend v(x, t) to X×R as

w(x, t) :=


v(x, t), t > 0;
0, t = 0;
−v(x,−t), t < 0.

Then, w is a solution to the Schrödinger equation (−∂2
t +L )w = 0 on X×R. We fix

a point y0 ∈ X. By Lemma 4 and the fact that w is odd with respect to t, it is sufficient to
show that there exists m > 0 such that

ˆ ∞

0

ˆ
X

|w(x, t)|2
(1 + t + d(x, y0))m+1µ(B(y0, 1 + t + d(x, y0)))

dµ(x)dt < ∞.

By Lemma 3, we have

ˆ ∞

0

ˆ
X

|u(x, s + t)|2
(1 + t + d(x, y0))m+1µ(B(y0, 1 + t + d(x, y0)))

dµ(x)d t

≤
ˆ ∞

0

1
(1 + t)m

ˆ
X

|u(x, s + t)|2
(1 + d(x, y0))µ(B(y0, 1 + d(x, y0)))

dµ(x)d t

≤ C
ˆ ∞

0

1
(1 + t)m ‖u(·, s + t)‖2

L∞(B(y0,2))d t

+ C
ˆ ∞

0

1
(1 + t)m

{(
[µ(B(y0, 1))]2α + (s + t)2Nα[µ(B(y0, s + t))]2α

)
‖u‖2

HL2,α√
L

}
d t

≤ C
ˆ ∞

0

1
(1 + t)m ‖u(·, s + t)‖2

L∞(B(y0,2))dt

+ C
ˆ ∞

0

1
(1 + t)m

{(
[µ(B(y0, 1))]2α + s2Nα[µ(B(y0, s))]2α

)
‖u‖2

HL2,α√
L

}
dt.

It follows from Lemma 2 that

‖u(·, s + t)‖L∞(B(y0,2)) ≤ ‖u(·, s + t)− u(·, s)‖L∞(B(y0,2)) + ‖u(·, s)‖L∞(B(y0,2))

≤
∥∥∥∥ˆ s+t

s
|∂ru(·, r)|dr

∥∥∥∥
L∞(B(y0,2))

+ ‖u(·, s)‖L∞(B(y0,2))

≤ C
(

1 +
2
s

)−Nα

[µ(B(y0, s))]α‖u‖HL2,α√
L

+ ‖u(·, s)‖L∞(B(y0,2))

= C(α, N, y0, s, ‖u‖HL2,α√
L

, ‖u(·, s)‖L∞(B(y0,2))).

Above, we used the fact that

sup
x∈B(y0,2)

ˆ s+t

s
|∂ru(x, r)|dr ≤ C sup

x∈B(y0,2)

ˆ s+t

s
[µ(B(x, r))]α‖u‖HL2,α√

L

dr
r

≤ C sup
x∈B(y0,2)

ˆ ∞

s

( r
s

)nα
[µ(B(x, s))]α‖u‖HL2,α√

L

dr
r

≤ C
(

1 +
2
s

)−Nα

[µ(B(y0, s))]α‖u‖HL2,α√
L

.

Therefore, one has
ˆ ∞

0

ˆ
X

|u(x, s + t)|2
(1 + t + d(x, y0))m+1µ(B(y0, 1 + t + d(x, y0)))

dµ(x)dt

≤ C(α, N, y0, s, ‖u‖HL2,α√
L

, ‖u(·, s)‖L∞(B(y0,2)))

ˆ ∞

0

dt
(1 + t)m
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≤ C(α, N, y0, s, ‖u‖HL2,α√
L

, ‖u(·, s)‖L∞(B(y0,2))) < ∞, (11)

provided m > 1.
For the remaining term, we need to prove that

I :=
ˆ ∞

0

ˆ
X

|Pt(u(·, s))(x)|2
(1 + t + d(x, y0))m+1µ(B(y0, 1 + t + d(x, y0)))

dµ(x)dt < ∞.

By the Poisson upper bound and the Hölder inequality, it holds that, for all t > 0

|Pt(u(·, s))(x)|2 ≤ C|Pt(1)(x)|
ˆ

X

t|u(y, s)|2
(t + d(x, y))µ(B(x, t + d(x, y)))

dµ(y)

≤ C
ˆ

X

t|u(y, s)|2
(t + d(x, y))µ(B(x, t + d(x, y)))

dµ(y).

Hence, we have

I ≤ C
ˆ ∞

0

ˆ
X

ˆ
X

1
(1 + t + d(x, y0))m+1µ(B(y0, 1 + t + d(x, y0)))

× t|u(y, s)|2
(t + d(x, y))µ(B(x, t + d(x, y)))

dµ(x)dµ(y)dt

≤ C

{ˆ ∞

0

ˆ
X

ˆ
B(y0,d(y,y0)/2)

+

ˆ ∞

0

ˆ
X

ˆ
B(y0,d(y,y0)/2){

}
· · · dµ(x)dµ(y)dt

=: I1 + I2.

For any x ∈ B(y0, d(y, y0)/2), we have d(x, y) > d(y, y0) − d(x, y0) > d(y, y0)/2.
Hence, by (4) and Lemma 3, we have

I1 ≤ C
ˆ ∞

0

1
(1 + t)m dt

ˆ
X

t|u(y, s)|2
(t + d(y, y0))µ(B(y0, t + d(y, y0)))

dµ(y)

×
ˆ

X

dµ(x)
(1 + d(x, y0))µ(B(y0, 1 + d(x, y0)))

≤ C
ˆ ∞

0

1
(1 + t)m dt

ˆ
X

t|u(y, s)|2
(t + d(y, y0))µ(B(y0, t + d(y, y0)))

dµ(y)

≤ C
ˆ ∞

0

(1 + t)‖u(·, s)‖2
L∞(B(y0,2))

(1 + t)m dt

+ C
ˆ ∞

0

t[µ(B(y0, 1))]2α‖u‖2
HL2,α√

L

+ ts2Nα[µ(B(y0, s))]2α‖u‖2
HL2,α√

L

(1 + t)m dt

≤ C(α, N, y0, s, ‖u‖HL2,α√
L

, ‖u(·, s)‖L∞(B(y0,2))) < ∞,

provided m > 2. For any x ∈ B(y0, d(y, y0)/2){, we have d(x, y0) > d(y, y0)/2. This,
together with Lemma 3, yields that

I2 ≤ C
ˆ ∞

0

dt
(1 + t)m

ˆ
X

|u(y, s)|2dµ(y)
(1 + d(y, y0))µ(B(y0, 1 + d(y, y0)))

×
ˆ

B(y0,d(y,y0)/2){

tdµ(x)
(t + d(x, y))µ(B(x, t + d(x, y)))

≤ C
ˆ ∞

0

1
(1 + t)m dt

ˆ
X

|u(y, s)|2
(1 + d(y, y0))µ(B(y0, 1 + d(y, y0)))

dµ(y)
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≤ C
ˆ ∞

0

‖u(·, s)‖2
L∞(B(y0,2)) + {[µ(B(y0, 1))]2α + s2Nα[µ(B(y0, s))]2α}‖u‖2

HL2,α√
L

(1 + t)m dt

≤ C(α, N, y0, s, ‖u‖HL2,α√
L

, ‖u(·, s)‖L∞(B(y0,2))) < ∞,

provided m > 1. Therefore, it holds that

ˆ ∞

0

ˆ
X

|Pt(u(·, s))(x)|2
(1 + t + d(x, y0))m+1µ(B(y0, 1 + t + d(x, y0)))

dµ(x)dt < ∞,

which, together with (11), yields that

ˆ ∞

0

ˆ
X

|w(x, t)|2
(1 + t + d(x, y0))m+1µ(B(y0, 1 + t + d(x, y0)))

dµ(x)dt < ∞,

provided m > 2. The Liouville theorem (Lemma 4) then implies w(x, t) ≡ 0, which means
u(x, t + s) ≡Pt(u(·, s))(x) and thus finishes the proof.

Next, for every u ∈ HL2,α√
L
(X×R+), we will show that us(·) = u(·, s) is bounded in

L2,α(X) uniformly for all s > 0. To this end, we introduce a notation

|||µ∇t , f |||α := sup
B⊂X

1
[µ(B)]α

(ˆ rB

0

 
B
|t∂tPt f (x)|2dµ(x)

dt
t

)1/2
,

for any

f ∈ M2 :=
⋃

x0∈X

⋃
0<β≤1

L2(X, (1 + d(x, x0))
−βµ(B(x0, 1 + d(x, x0)))

−1dµ(x)),

and establish Lemmas 5–7 as follows.

Lemma 5. Assume the complete Dirichlet metric measure space (X, d, µ, E ) satisfies (2) with
Q > 1 and admits (5). Given a ball B = B(xB, rB), a function f ∈ M2 and an L2-function g
supported on B, set

F(x, t) := t∂tPt f (x) and G(x, t) := t∂tPtg(x),

for any (x, t) ∈ X×R+. If |||µ∇t , f |||α < ∞, then there exists a constant C > 0 such that

ˆ ∞

0

ˆ
X
|F(x, t)G(x, t)|dµ(x)

dt
t
≤ C[µ(B)]1/2+α|||µ∇t , f |||α‖g‖L2(B).

Proof. Let us consider the square function G(h) given by

G(h)(x) :=
(ˆ ∞

0
|t∂tPth(x)|2 dt

t

)1/2
.

By the spectral theory, the function G(h) is bounded on L2(X). Let

T(B) := {(x, t) ∈ X×R+ : x ∈ B, 0 < t < rB} = B× (0, rB),

and write
ˆ ∞

0

ˆ
X
|F(x, t)G(x, t)|dµ(x)

dt
t

=

ˆ
T(2B)

|F(x, t)G(x, t)|dµ(x)
dt
t
+

∞

∑
k=2

ˆ
T(2k B)\T(2k−1B)

|F(x, t)G(x, t)|dµ(x)
dt
t
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=: A1 +
∞

∑
k=2

Ak.

Using the Hölder inequality and the L2-boundedness of G, we obtain

A1 ≤
(ˆ 2rB

0

ˆ
2B
|t∂tPt f (x)|2dµ(x)

dt
t

)1/2

‖G(g)‖L2 ≤ C[µ(B)]1/2+α|||µ∇t , f |||α‖g‖L2(B).

Let us estimate Ak for k = 2, 3, . . . . Note that, for any (x, t) ∈ T(2kB)\T(2k−1B) and
y ∈ B, we have t + d(x, y) ≥ 2k−2rB. It holds

|G(x, t)| =
∣∣∣∣ˆ

X
t∂t pv

t (x, y)g(y)dµ(y)
∣∣∣∣

≤ C
ˆ

X

t
t + d(x, y)

|g(y)|
µ(B(x, t + d(x, y)))

dµ(y)

≤ C
ˆ

X

t
2krB

|g(y)|
µ(B(x, 2krB))

dµ(y)

≤ C
t

2krB

‖g‖L1(B)

µ(2kB)
,

which, together with the Hölder inequality and (3), implies that
ˆ

T(2k B)\T(2k−1B)
|F(x, t)G(x, t)|dµ(x)

dt
t

≤ C

(ˆ 2krB

0

 
2k B
|t∂tPt f (x)|2dµ(x)

dt
t

)1/2

‖g‖L1(B)

≤ C[µ(2kB)]α|||µ∇t , f |||α‖g‖L1(B)

≤ C2knα[µ(B)]1/2+α|||µ∇t , f |||α‖g‖L2(B).

Summing over k leads to

ˆ ∞

0

ˆ
X
|F(x, t)G(x, t)|dµ(x)

dt
t
=

∞

∑
k=1

Ak ≤ C[µ(B)]1/2+α|||µ∇t , f |||α‖g‖L2(B).

This completes the proof of Lemma 5.

Lemma 6. Assume the complete Dirichlet metric measure space (X, d, µ, E ) satisfies (2) with
Q > 1 and admits (5). Suppose B, f , g, F, G are defined as in Lemma 5. If |||µ∇t , f |||α < ∞, then we
have the equality:

ˆ
X

f (x)g(x)dµ(x) = 4
ˆ ∞

0

ˆ
X

F(x, t)G(x, t)dµ(x)
dt
t

.

Proof. From Lemma 5, we find that
ˆ ∞

0

ˆ
X
|F(x, t)G(x, t)|dµ(x)

dt
t
< ∞.

By the dominated convergence theorem, the following integral converges absolutely
and satisfies

ˆ ∞

0

ˆ
X

F(x, t)G(x, t)dµ(x)
dt
t
= lim

δ→0

ˆ 1/δ

δ

ˆ
X

F(x, t)G(x, t)dµ(x)
dt
t

.
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Next, by the commutative property of the semigroup {Pt}t>0, we have
ˆ

X
F(x, t)G(x, t)dµ(x) =

ˆ
X

f (x)t2L P2tg(x)dµ(x).

This, together with Fubini’s theorem, gives

ˆ ∞

0

ˆ
X

F(x, t)G(x, t)dµ(x)
dt
t
= lim

δ→0

ˆ 1/δ

δ

ˆ
X

f (x)t2L P2tg(x)dµ(x)
dt
t

= lim
δ→0

ˆ
X

f (x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

dµ(x)

= lim
δ→0

ˆ
X

f1(x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

dµ(x)

+ lim
δ→0

ˆ
X

f2(x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

dµ(x)

=: I1 + I2,

where f1(x) := f χ4B(x) and f2(x) := f χ(4B){(x).
We first consider the term I1. It follows from the spectral theory that

g(x) = 4 lim
δ→0

ˆ 1/δ

δ
t2L P2tg(x)

dt
t

in L2(X). Hence, it holds

I1 = lim
δ→0

ˆ
X

f1(x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

dµ(x) =
1
4

ˆ
X

f1(x)g(x)dµ(x).

In order to estimate the term I2, we need to show that, for any x ∈ (4B){, there exists a
constant C = C(xB, rB) > 0 such that

sup
δ>0

∣∣∣∣∣
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

∣∣∣∣∣ ≤ C
‖g‖L2(B)

(1 + d(x, xB))µ(B(xB, 1 + d(x, xB)))
. (12)

Recall that supp g ⊂ B. For any x ∈ X\4B and y ∈ B, we have

3d(x, xB)/4 ≤ d(x, y) ≤ 5d(x, xB)/4.

Hence, it follows from the Poisson upper bound and (6) that, for any t > 0,∣∣∣t2L P2tg(x)
∣∣∣

≤ C
ˆ

B

2t
(2t + d(x, y))

1
µ(B(x, 2t + d(x, y)))

(
2t + d(x, y)

ρ(y)

)−2

|g(y)|dµ(y)

≤ C
ˆ

B

t
(t + d(x, xB))

1
µ(B(x, t + d(x, xB)))

ρ(xB)
(

1 + rB
ρ(xB)

)k0/(k0+1)

t + d(x, xB)


2

|g(y)|dµ(y)

≤ C(xB, rB)
t

(t + d(x, xB))3µ(B(xB, t + d(x, xB)))
‖g‖L1(B)

≤ C(xB, rB)
‖g‖L2(B)

(1 + d(x, xB))µ(B(xB, 1 + d(x, xB)))

t
(t + d(x, xB))2 .
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The above estimate, together with the fact
ˆ ∞

0

t
(t + d(x, xB))2

dt
t
≤
ˆ ∞

0

dt
(t + rB)2 ≤ C(rB) < ∞

yields that∣∣∣∣∣
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

∣∣∣∣∣ ≤
ˆ ∞

0

∣∣∣t2L P2tg(x)
∣∣∣dt

t

≤ C(xB, rB)
‖g‖L2(B)

(1 + d(x, xB))µ(B(xB, 1 + d(x, xB)))
.

Accordingly, (12) follows readily. Now, we estimate the term I2. Since f ∈ M2,
the estimate (12) yields that

sup
δ>0

ˆ
X

∣∣∣∣∣ f2(x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

∣∣∣∣∣dµ(x) ≤ C(g, xB, rB) < ∞.

This allows us to pass the limit inside the integral of I2. Hence, we conclude

I2 = lim
δ→0

ˆ
X

f2(x)
ˆ 1/δ

δ
t2L P2tg(x)

dt
t

dµ(x) =
1
4

ˆ
X

f2(x)g(x)dµ(x).

Combining the previous formulas for I1 and I2, we complete the proof.

Recall that we set us(·) = u(·, s) for any s > 0.

Lemma 7. Suppose the complete Dirichlet metric measure space (X, d, µ, E ) satisfies (2) with
Q > 1 and admits (5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. Assume that u ∈
HL2,α√

L
(X×R+) with max{−1/2,−1/2N} < α < 0.

Then, there exists a positive constant C such that, for every s > 0,

|||µ∇t ,us |||α ≤ C‖u‖HL2,α√
L

.

Proof. Let B = B(xB, rB). It holds by Proposition 1 that

1
[µ(B)]α

(ˆ rB

0

 
B
|t∂tPtus|2dµ

dt
t

)1/2
=

1
[µ(B)]α

(ˆ rB

0

 
B
|t∂tu(y, t + s)|2dµ(y)

dt
t

)1/2
.

If rB > s, by the doubling property (2), we have that

1
[µ(B)]α

(ˆ rB

0

 
B
|t∂tPtus|2dµ

dt
t

)1/2

≤ 1
[µ(B)]α

(
1

µ(B)

ˆ rB+s

0

ˆ
B(xB ,rB+s)

|t∂tu(y, t)|2dµ(y)
dt
t

)1/2

≤ C
[µ(2B)]α

(ˆ 2rB

0

 
2B
|t∂tu(y, t)|2dµ(y)

dt
t

)1/2

≤ C‖u‖HL2,α√
L

.
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Otherwise, rB ≤ s, Lemma 2 together with elementary integration implies that there
exists a positive constant C independent of rB and s such that

1
[µ(B)]α

(ˆ rB

0

 
B
|t∂tPtus|2dµ

dt
t

)1/2

≤ C
[µ(B)]α

(ˆ rB

0

 
B

t2

(t + s)2 [µ(B(y, t + s))]2α‖u‖2
HL2,α√

L

dµ(y)
dt
t

)1/2

≤ C
[µ(B)]α

(ˆ rB

0

 
B

(
t

rB

)2
[µ(B(y, rB))]

2α‖u‖2
HL2,α√

L

dµ(y)
dt
t

)1/2

≤ C‖u‖HL2,α√
L

,

which, together with the case rB > s, means that

|||µ∇t ,us |||α ≤ C‖u‖HL2,α√
L

,

which thus finishes the proof.

Proposition 2. Suppose the complete Dirichlet metric measure space (X, d, µ, E ) satisfies (2) with
Q > 1 and admits (5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > (Q + 1)/2. Assume that
u ∈ HL2,α√

L
(X × R+) with max{−1/2,−1/2N} < α < 0. Then, for any s > 0, we have

us ∈ L2,α(X) and there exists a constant C > 0, independent of s, such that

‖us‖L2,α ≤ C‖u‖HL2,α√
L

.

Proof. Since u ∈ HL2,α√
L
(X ×R+), it follows from Lemma 3 that us ∈ M2. Given a ball

B ⊂ X, for any L2 function g supported on B, it follows from Lemmas 5, 6 and 7 that∣∣∣∣ˆ
X

usgdµ

∣∣∣∣ = 4
∣∣∣∣ˆ ∞

0

ˆ
X

t∂tPtust∂tPtgdµ
dt
t

∣∣∣∣
≤ C[µ(B)]1/2+α|||µ∇t ,us |||α‖g‖L2(B)

≤ C[µ(B)]1/2+α‖u‖HL2,α√
L

‖g‖L2(B).

This together with the L2-duality argument shows that

1
[µ(B)]α

( 
B
|us|2dµ

)1/2
=

1
[µ(B)]1/2+α

sup
‖g‖L2(B)≤1

∣∣∣∣ˆ
X

usgdµ

∣∣∣∣
≤ C sup

‖g‖L2(B)≤1
‖u‖HL2,α√

L

‖g‖L2(B) ≤ C‖u‖HL2,α√
L

.

Then, by taking the supremum over all the ball B, it holds that

‖us‖L2,α ≤ C‖u‖HL2,α√
L

,

which completes the proof.

4. From Initial Value to Solution

In this section, we will show that every Morrey function f induces a Carleson type
measure t|∇Pt f |2dµdt. In order to estimate the space derivation part t|∇xPt f |2dµdt,
we introduce a result of Jiang-Li [18] (Proposition 5.2), which establishes a Caccioppoli
inequality for the Schrödinger Poisson semigroup in a tent domain B(xB, rB)× (0, rB).
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Proposition 3. Suppose the complete Dirichlet metric measure space (X, d, µ, E ) satisfies (2) with
Q > 1 and admits (5). Let 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q > max{1, Q/2}. Assume that g
satisfies for some y ∈ X that

ˆ
X

|g(x)|
(1 + d(x, y))µ(B(y, 1 + d(x, y)))

dµ(x) < ∞.

Then, for any ball B = B(xB, rB), it holds that

ˆ rB

0

ˆ
B
|t∇xPtg|2dµ

dt
t
≤ C

ˆ 2rB

0

ˆ
2B

(
|t2∂2

t Ptg||Ptg|+ |Ptg|2
)

dµ
dt
t

.

Theorem 2. Assume the complete Dirichlet metric measure space (X, d, µ, E ) satisfies (2) with
Q > 1 and admits (5). Let V ∈ A∞(X) ∩ RHq(X) with q ≥ max{1, Q/2}. If f ∈ L2,α(X) with
−1/2 < α < 0, then u(x, t) = Pt f (x) ∈ HL2,α√

L
(X ×R+). Moreover, there exists a constant

C > 0 such that
‖u‖HL2,α√

L

≤ C‖ f ‖L2,α .

Proof. For any ball B = B(xB, rB), it holds that(ˆ rB

0

 
B
|t∇Pt f |2dµ

dt
t

)1/2
≤

∞

∑
k=1

(ˆ rB

0

 
B
|t∇Pt fk|2dµ

dt
t

)1/2
=:

∞

∑
k=1

Jk,

where f1 := f χ4B and fk := f χ2k+1B\2k B for k ∈ {2, 3, 4, . . . }.
For the term J1, we apply the L2-boundedness of the Riesz operator∇xL −1/2 to obtain

that (ˆ rB

0

 
B
|t∇Pt f1|2dµ

dt
t

)1/2
≤
(

1
µ(B)

ˆ ∞

0

ˆ
X
|t∇Pt f1|2dµ

dt
t

)1/2

≤ C
(

1
µ(B)

ˆ ∞

0

ˆ
X
|t
√

L Pt f1|2dµ
dt
t

)1/2

≤ C
(

1
µ(B)

ˆ
X
| f1|2dµ

)1/2

≤ C[µ(B)]α‖ f ‖L2,α .

Since fk ∈ L2,α(X), it is easy to see fk ∈ M2. Hence, fk satisfies the requirement in
Proposition 3, which implies that, for any k ∈ {2, 3, 4, . . . },

Jk ≤ C

(ˆ 2rB

0

 
2B

(
|t∂tPt fk|2 + |t2∂2

t Pt fk||Pt fk|+ |Pt fk|2
)dµdt

t

)1/2

.

Then, for any x ∈ 2B, we apply the Poisson upper bound to obtain

|Pt fk(x)|+ |t∂tPt fk(x)|+ |t2∂2
t Pt fk(x)|

≤ C
ˆ

2k+1B\2k B

t
(t + d(x, y))

| f (y)|
µ(B(x, t + d(x, y)))

dµ(y)

≤ C2−k t
rB

 
2k+1B

| f (y)|dµ(y)

≤ C2−k t
rB

[µ(2k+1B)]α‖ f ‖L2,α

≤ C2−k t
rB

[µ(B)]α‖ f ‖L2,α ,
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which yields
Jk ≤ C2−k[µ(B)]α‖ f ‖L2,α .

Hence, it follows that

‖Pt f ‖HL2,α√
L

= sup
B⊂X

1
[µ(B)]α

(ˆ rB

0

 
B
|t∇Pt f |2dµ

dt
t

)1/2
≤

∞

∑
k=1

Jk ≤ C‖ f ‖L2,α .

This completes the proof.

5. From Solution to Initial Value

In this section, we will show that, for every function u ∈ HL2,α√
L
(X×R+), there is a

function f ∈ L2,α(X) such that u(x, t) = Pt f (x) with the desired norm control.

Theorem 3. Suppose the complete Dirichlet metric measure space (X, d, µ, E ) satisfies (2) with
Q > 1 and admits (5). Assume 0 ≤ V ∈ A∞(X) ∩ RHq(X) with q ≥ (Q + 1)/2, and
max{−1/2,−1/2N} < α < 0. If u ∈ HL2,α√

L
(X × R+), then there exists a function f ∈

L2,α(X) such that u(x, t) = Pt f (x). Moreover, there exists a constant C > 0, independent of u,
such that

‖ f ‖L2,α ≤ C‖u‖HL2,α√
L

.

Proof. Without loss of generality, we may assume q > (Q + 1)/2 because of the self
improvement of the RHq(X) class. Suppose u ∈ HL2,α√

L
(X × R+). For any 0 < ε < 1,

by Proposition 2, we have
‖uε‖L2,α ≤ C‖u‖HL2,α√

L

. (13)

Next, we will fix a point x0 and look for a function f ∈ L2,α(X) through L2(B(x0, 2j))-
boundedness of {uε} for each j ∈ N. Indeed, for every j ∈ N, we use (13) to obtain

ˆ
B(x0,2j)

|uε(x)|2dµ(x) ≤ C[µ(B(x0, 2j))]1+2α‖u‖2
HL2,α√

L

,

which implies that the family {uε(·)}0<ε<1 is uniformly bounded in L2(B(x0, 2j)). Then, the
Eberlein–Šmulian theorem and the diagonal method imply that there exists a sequence εk →
0 (k → ∞) and a function gj ∈ L2(B(x0, 2j)) such that uεk → gj weakly in L2(B(x0, 2j)),
for any j ∈ N. Now, we define a function f (x) by

f (x) = gj(x),

if x ∈ B(x0, 2j), j = 1, 2, . . . . It is easy to see that f is well defined on X =
⋃∞

j=1 B(x0, 2j).
We can check that, for any ball B ⊂ X,

ˆ
B
| f (x)|2dµ(x) ≤ C[µ(B)]1+2α‖u‖2

HL2,α√
L

,

which implies that
‖ f ‖L2,α ≤ C‖u‖HL2,α√

L

.

Finally, we will show that u(x, t) = Pt f (x). By Lemma 1, we know that u(x, ·) is
continuous on R+. This together with Proposition 1 yields that

u(x, t) = lim
k→+∞

u(x, t + εk) = lim
k→+∞

Ptuεk (x).
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This reduces to verify that

lim
k→+∞

Ptuεk (x) = Pt f (x). (14)

Indeed, we recall that pv
t (x, y) is the kernel of Pt, and for any ` ∈ N, we write

Ptuεk (x) =
ˆ

B(x,2`t)
pv

t (x, y)uεk (y)dµ(y) +
ˆ

X\B(x,2`t)
pv

t (x, y)uεk (y)dµ(y).

Using the Poisson upper bound, the Hölder inequality and (13), we obtain∣∣∣∣∣
ˆ

X\B(x,2`t)
pv

t (x, y)uεk (y)dµ(y)

∣∣∣∣∣ ≤ C
∞

∑
i=`

2−i
 

B(x,2i+1t)
|uεk (y)|dµ(y)

≤ C
∞

∑
i=`

2−i[µ(B(x, 2it))]α‖uεk‖L2,α

≤ C2−`[µ(B(x, t))]α‖u‖HL2,α√
L

,

where C is a positive constant independent of k. One has

0 ≤ lim
`→+∞

lim
k→+∞

∣∣∣∣∣
ˆ

X\B(x,2`t)
pv

t (x, y)uεk (y)dµ(y)

∣∣∣∣∣
≤ lim

`→+∞
C2−`[µ(B(x, t))]α‖u‖HL2,α√

L

= 0.

Therefore, it holds that

lim
k→+∞

Ptuεk (x) = lim
`→+∞

lim
k→+∞

ˆ
B(x,2`t)

pv
t (x, y)uεk (y)dµ(y) = Pt f (x),

which yields (14) readily. Then, we show that

u(x, t) = Pt f (x).

The proof of Theorem 3 is complete.

6. Conclusions

In this article, we solved the Dirichelt problem for the Schrödinger equation on the
metric measure space. We obtained that a Schrödinger harmonic function satisfies the
Carleson type condition if and only if it is the Poisson extension of a Morrey function. This
continues the line of research on the Dirichlet problem with boundary value in Lp space
and BMO space, extends the result in Song-Tian-Yan [8] from the Euclidean space to the
metric measure space and improves the reverse Hölder index from q ≥ n to q ≥ (n + 1)/2.
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