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Abstract: In recent years, computer vision technology has been widely applied in various fields,
making super-resolution (SR), a low-level visual task, a research hotspot. Although deep convolu-
tional neural network has made good progress in the field of single-image super-resolution (SISR), its
adaptability to real-time interactive devices that require fast response is poor due to the excessive
amount of network model parameters, the long inference image time, and the complex training
model. To solve this problem, we propose a lightweight image reconstruction network (MSFN) for
multi-scale feature local interaction based on global connection of the local feature channel. Then, we
develop a multi-scale feature interaction block (FIB) in MSFN to fully extract spatial information of
different regions of the original image by using convolution layers of different scales. On this basis,
we use the channel stripping operation to compress the model, and reduce the number of model
parameters as much as possible on the premise of ensuring the reconstructed image quality. Finally,
we test the proposed MSFN model with the benchmark datasets. The experimental results show
that the MSFN model is better than the other state-of-the-art SR methods in reconstruction effect,
computational complexity, and inference time.

Keywords: multi-scale; local interaction; lightweight image reconstruction network; global fusion

MSC: 68T01; 68T07

1. Introduction

Single-image super-resolution (SISR) refers to the process of recovering a natural and
clear high-resolution (HR) image from a low-resolution (LR) image. SISR has a wide range
of applications in the real world, which are often used to improve the visual quality of
images [1] and the performance of other high-level vision tasks [2], especially in the fields
of satellite and aerial imaging [3–5], medical imaging [6–8], ultrasound imaging [9], and
face recognition [10] etc. However, since different HR images can be downsampled to the
same LR image, as a result, the incompatibility makes SISR still a challenging task.

In recent years, with the continuous improvement of computer learning capabilities,
deep neural networks, especially methods based on convolutional neural networks, have
been widely used in SISR, which has greatly promoted the development of image recon-
structions. Dong et al. [11] first introduced a convolutional neural network (CNN) into
the field of SR images, and proposed a super-resolution convolutional neural network
(SRCNN). However, as the input LR image needs to be preprocessed by bicubic interpo-
lation, the computational complexity is increased, and the high-frequency details in the
original image are lost, which limit the efficiency of image reconstruction. Shi et al. [12]
proposed an efficient sub-pixel convolutional neural network (ESPCN), which effectively
replaces the bicubic interpolation preprocessing with a sub-pixel convolutional algorithm
for upsampling operation, thereby reducing the overall computational complexity and
avoiding the checkerboard effect caused by the deconvolution layer. In pursuit of better
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model performance, Zhang et al. [13] proposed the very deep residual channel attention
network (RCAN) based on ESPCN, which stacks a large number of residual blocks and
local connections to obtain better reconstruction quality.

It is found that increasing the network depth can improve the quality of image recon-
struction, but it also leads to a substantial increase in the number of model parameters, and
it also makes the training model more complicated. To solve this problem, Tai et al. [14]
added a recursive block to the neural network to reduce model parameters, constructed a
deep recursive residual network (DRRN), and transmitted the residual information through
a combination of global learning and local learning to reduce the difficulty of training.
DRRN uses a shared parameter strategy to reduce the parameters, but, in fact, it requires
a huge amount of calculation to reconstruct the image. Hui et al. [15] proposed an in-
formation distillation network (IDN) which divides the features into two parts, with one
part retained and the other part continuing to be used to extract information; thus, the
model parameters are reduced under the premise of ensuring the quality of reconstruction
quantity. Liu et al. [16] proposed a residual feature distillation network (RFDN) based on
residual learning. The network retains the original features of the image without introduc-
ing additional parameters through residual connection, but the obtained feature map lacks
related information of local features. Based on RFDN, this paper strips the channels with
rich information features in the model, and pays more attention to the multi-scale channel
information of the original image and the associated information of the local area. The
main work of this paper is as follows:

• We propose a lightweight image super-resolution reconstruction network based on
local feature channels and global connection mechanism, which separates the channels
in the model and retains the channel features with rich spatial information. Our model
significantly reduces the number of model parameters.

• We construct a feature fusion block based on local interaction of multi-scale features,
which includes channel attention mechanism and multi-scale local feature interaction
mechanism. The multi-scale local feature interaction mechanism is mainly composed
of feature interaction blocks, through which local attention and interaction can effec-
tively improve the authenticity of the reconstructed image compared with the original
image, and realize the connection and fusion of multi-scale features.

• We use residual learning and global connection to fuse local features and global
features, retain the high-frequency information and edge details of the original image,
and improve the quality of the reconstructed image. As shown in Figure 1, on the
Urban100 test set with scaling factor ×4, the PSNR of the reconstructed image of the
MSFN model reaches 26.34 dB. Compared with the models CARN and SRMDNF of
the same size, the reconstruction effect of our model is greatly improved.
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Figure 1. Trade-off between reconstruction performance and parameters on Urban100 with scaling
factor ×4.

2. Related Work

In recent years, the super-resolution of single image has been studied extensively [17–19].
We present an overview of the deep CNN for image super-resolution in Section 2.1. In
order to reduce model parameters and speed up image reasoning, lightweight image
super-resolution models have been widely studied. We will elaborate on this part in
Section 2.2.

2.1. Deep CNN for Image Super-Resolution

Dong et al. [11] used end-to-end convolutional neural network (SRCNN) for the first
time to extract, map, and reconstruct image features, and found that the reconstruction
effect exceeded the traditional image super-resolution (SR) method. However, the network
structure is simple and the correlation between low-resolution (LR) image and original
image is not considered. Some researchers started with the depth of the network, hoping to
fully extract the relevant information between images through the deep network model.
Kim et al. [20] proposed a very deep super-resolution (VDSR) convolutional network based
on the global residual learning method, which not only improves the reconstruction effect,
but also accelerates the network convergence speed. Haris et al. [21] proposed a deep back-
projection network (DBPN) for super-resolution with iterative up–down sampling, which
provides timely feedback of the error mapping at each stage, and performs better, especially
in large-scale images. Yang et al. [22] used skip connections to increase the number of
network layers, which enhanced the feature expression ability of the network and made the
reconstructed image closer to the real image. Lim et al. [23] removed the batch specification
layers that affected the reconstruction effect in an enhanced deep super-resolution network
(EDSR), and stacked more convolutional layers to achieve better performance of the model.
In order to improve the visual effect of reconstructed images, Yang et al. [24] constructed
a multi-level feature extraction module using dense connections, which can obtain richer
hierarchical feature images. With the deepening of the network structure, the number
of parameters and the computational complexity of this type of model increase greatly,
limiting its application in the real world.
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2.2. Lightweight CNN for Image Super-Resolution

In order to reduce the number of model parameters, the complexity, and training
difficulty of network calculation, researchers began to improve the deep network, com-
pressing the model by sharing parameters, residual learning, attention mechanism, and
information distillation, and proposed a lightweight image reconstruction network based
on CNN. Kim et al. [25] used a deep recursive structure in the deep recursive convolu-
tional network (DRCN) to share parameters, but the model performance was degraded
compared with VDSR in some test sets, and the actual amount of computation of the
model did not decrease accordingly. Tai et al. [14] proposed a deep recursive residual
network (DRRN)-based DRCN, which reduces storage cost and computational complexity
by global connection of multipath residual information. Li et al. [26] added an adaptive
weighted block in residual learning to fully extract image features and effectively limit
the number of model parameters. Hu et al. [27] introduced channel attention mechanism
into a deep neural network, and added weight to the features of each output channel
in the convolution operation to reasonably allocate limited computer resources, so as to
obtain a wide application in the lightweight network architecture. Hui et al. [28] proposed
an information distillation network, which uses a combination of embedding loss and
information distillation to solve the problem of image recognition. They used a small-size
convolution kernel to compress network parameters and reduce the computational cost
and complexity of the training model. Tian et al. [29] proposed heterogeneous structure in
information extraction and enhancement blocks, which greatly reduced the computational
cost and memory consumption. Hui et al. [15] used convolution kernels with sizes of 1 × 1
and 3 × 3 to enhance the extracted features, which made the model have better image
reconstruction performance and inference speed. Jiang et al. [30] constructed a sparse
perceptive attention module based on pruning, which can reduce the model size without
a noticeable drop in performance. However, these methods cannot make full use of the
associated information between the original image and the low-resolution (LR) image, and
the interaction of information between different regions has not been paid enough attention.
Based on this, we adopt a fusion block based on multi-scale feature local interaction to fully
extract the feature information in the original image. In addition, we strip and compress the
channels, and make a trade-off between the performance and the inference speed, which
effectively improves the comprehensive performance of the model.

3. Proposed Method
3.1. Network Architecture

In this paper, we propose a lightweight image reconstruction network based on local
interaction of multi-scale features, and use local interaction of multi-scale features and
the global connection of comparative residuals to learn second-order feature statistics in
order to obtain more representative features. The network structure we propose mainly
includes five parts: shallow feature extraction block, deep feature extraction block based
on multi-scale interaction mechanism, global feature fusion block, upsampling block, and
image reconstruction block, as shown in Figure 2.

As shown in Equation (1), ILR represents the input image, and the network uses a
convolution layer to extract the shallow features of the input image ILR. The shallow feature
extraction block can be expressed as follows:

XSF = FSF(ILR) (1)

where FSF(·) represents a simple single-layer convolution mapping, which aims to achieve
shallow feature extraction. The shallow feature XSF is extracted through single-layer
convolution, and then XSF is input into the deep feature extraction block based on multi-
scale interaction mechanism to obtain the high-dimensional feature XPF after feature
mapping, which is expressed as Equation (2):

XPF = FDPAM(XSF) (2)
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Figure 2. The architecture of our proposed lightweight image reconstruction network (MSFN).

The deep feature extraction block is composed of M feature interaction blocks (FIBs)
and M skip connections, where FDPAM(·) represents the mapping function corresponding
to the deep feature extraction block, and XSF represents extracted feature maps with deep
receptive fields. The features extracted from each FIB are first concatenated in the channel
dimension in series to form new high-dimensional features, and then a single-convolution
layer is used to reduce the dimensionality of the obtained high-dimensional features.
Compared with the existing SISR methods, our feature extraction block based on the multi-
scale feature interaction mechanism proposed in this paper can make the network more
effectively use the extracted features and suppress invalid features. Moreover, this block
can compare and fuse the receptive field information of different scales in the original
image, fully retain the texture information of the low-resolution (LR) image, and effectively
improve the quality of the reconstructed image. The features extracted from FIB are input
into the global feature fusion block, and the feature information extracted at different stages
is retained to the maximum extent by means of global connection. The fused feature XGF is
shown in Equation (3):

XGF = FGFF([XPF1 , XPF2 · · ·XPFm ]) (3)

where XPFm represents the high-dimensional feature extracted by the M-th FIB. The feature
information extracted by the M FIBs is input into the mapping function FGFF(·) corre-
sponding to the feature fusion block, and the feature information is spliced in the channel
dimension to obtain the global feature XGF based on the entire network.

Then, the features after fusion and transformation are used as the input of upsampling
block, and the input is upsampled by using the method of sub-pixel convolution [12] to
obtain a high-resolution (HR) feature mapping. The features after upsampling are shown
in Equation (4):

XSR = FL
UP(XGF) = PS(XGF) (4)

PS(Tx,y,c·r2) = Trx,ry,c (5)

In the above Equation, FL
UP(·) represents the upsampling operation based on sub-pixel

convolution, and XSR represents the high-resolution (HR) feature map output after upsam-
pling. At present, the commonly used upsampling methods in the field of super-resolution
(SR) reconstruction include interpolation operation, transposed convolution operation, and
sub-pixel convolution operation. The sub-pixel convolution operation achieves upsampling
by rearranging pixels, reducing the amount of model parameters. Therefore, in order to
make the network achieve better results in terms of reconstruction rate and accuracy, we
choose to implement upsampling through sub-pixel convolution operation. In Equation (4),
PS(·) represents a periodic sorting operator, which rearranges the feature map with a
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size of H × W × C · r2 into a feature map with a shape of rH × rW × C. Equation (5)
mathematically describes the subpixel upsampling operation, the effect of which is shown
in Figure 3.

Figure 3. Sub-pixel sample operation.

3.2. Multi-Scale Feature Interaction Block

In this section, we provide more details on the multi-scale FIB. The FIB is the main
structure for feature mapping and local fusion in the network, which constructs N multi-
scale feature interaction components (MSCs) and N channel attention blocks (CABs) for
pixel information of different scales. The FIB structure is shown in Figure 4.

Figure 4. Multi-scale feature interaction block (FIB).

The input of each FIB needs to pass through the MSC to extract the feature information
under the condition of multiple receptive fields. As shown in Equation (6), the output



Mathematics 2022, 10, 1096 7 of 17

feature Xi−1
out of the i − 1th MSC is the input feature Xi

in of the i-th MSC. Fi
MSC(·) is the

mapping relationship corresponding to the i-th MSC, through which we can extract the
interaction and spatial information of the regional features of Xi

in at different scales, so that
the high-frequency information and edge texture details of the input image relatively can
be completely preserved by the feature Xi

out.

Xi
out = Fi

MSC(Xi
in) (Xi

in = Xi−1
out ) (6)

The specific architecture of the MSC is shown in Figure 5. It can be seen that the MSC
is mainly composed of three filters of different scales, and the convolution kernel sizes
of the filter are 1 × 1, 3 × 3, and 5 × 5, respectively. MSCs enrich spatial information by
expanding receptive fields, in which the large-scale filters are mainly used to extract feature
attention information in different regions, and the small-scale filters are used to enhance the
correlation degree between local regions. We pad the edge of the feature map with elements
with zero pixel value to ensure that the size of the feature map remains unchanged after
the convolution operation. When the size of the convolution kernel of the filter is 3 × 3 and
5 × 5, the corresponding edge filling scale is 1 and 2, respectively. When the size of the
convolution kernel of the filter is 1 × 1, no edge filling is performed in the feature map.

Figure 5. Multi-scale feature extraction component.

The MSC uses filters of different scales to extract and enhance feature information,
and the enhanced features are added pixel by pixel according to their weights to obtain a
new feature map with rich spatial elements, as shown in Equations (7) [31], (8), and (9):

Xi = bi +
Cin−1

∑
j=0

Wi × Xpre (i = 1, 2, 3) (7)

XMF =
3

∑
i=1

ki × Ci × Xi (ki = 1, i = 1, 2, 3) (8)

Ci =
1
|Xi|

(i = 1, 2, 3) (9)

In Equation (7), W1, W2, and W3 represent the weight coefficients corresponding to
filters with convolution kernel sizes 1 × 1, 3 × 3, and 5 × 5, respectively. As shown
in Figure 6, convolution kernels of different scales focus on the correlation information
between different regions of the same object, and then perform weighted summation for
the extracted feature information. In Equation (9), Ci represents the two-norm value of
each feature vector, and each feature map is normalized by this value. In Figure 6, k1, k2,
and k3 represent the corresponding weight coefficients of feature information extracted
from each convolution kernel, respectively. In this paper, k1 = k2 = k3 = 1, which makes the
extracted feature map XMF have rich spatial information features and regional interactions,
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and is helpful for the restoration and construction of key features and edge information in
subsequent image reconstruction.

Figure 6. Multi-scale convolution operation.

The features extracted by the feature interaction component are firstly input into the
channel attention component, then the output result is input into the remaining N − 1
MSCs and CABs for iterative optimization; finally, the features obtained at each stage
are spliced in the channel dimension, and then the high-dimensional feature Xi is ob-
tained by residual connection with the initial input feature Xpre. Specifically, as shown in
Equations (10) and (11):

Xi = Fi
CAB(Fi

MSC(· · · F1
CAB(F1

MSC(Xpre)))) (i = 1, 2, · · · , N) (10)

Xt = Fconv1(Concat[Fi
conv1(X1), · · · , FN−1

conv1(XN−1)] + XN) + Xpre (11)

where Fi
MSC(·) and Fi

CAB(·) represent the relationship corresponding to the i-th MSC and
CAB, respectively. We use a single convolutional layer to reduce the dimensionality of the
feature maps Xi obtained at each stage, then splice the dimension-reduced features in the
channel dimension, and finally add the original feature Xpre on the pixel-level dimension
to obtain the final feature map Xt.

4. Experiments

In this section, we firstly test the influence of the number of FIBs and channels on the
quality of the reconstructed image; secondly, we perform test experiments on SR benchmark
datasets such as Set5 [32], Set14 [33], Urban100 [34], BSD100 [35], and Manga109 [36]; and
then we use the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) of the
Y-channel in YCbCr as quantitative indicators to compare the experimental data with other
excellent super-resolution (SR) methods. Finally, we visualize the reconstruction results
and analyze the reconstruction effects from a subjective visual perspective.

4.1. Training Settings

In order to compare with existing network algorithms, such as DRRN [14], CARN [37],
MemNet [38], and IMDN [28], we use the same training dataset—the DIV2K dataset [39].
The dataset used in this paper includes a total of 800 training images, 100 validation
images, and 100 test images, and contains rich scenes with rich edge and texture details.
Meanwhile, we perform data enhancement on the training images [40] by using random
rotation, horizontal flip, and small window slice to make the training data expand to eight
times the original one, so that it can adapt to image reconstruction problems with different
tilt angles.

In the training phase, we set batch size to 16, LR input size to 64 × 64, and the number
of channels in the convolution layer to 48. The deep feature extraction block based on multi-
scale feature interaction mechanism contains six FIBs, and each FIB contains four MSCs and
four CABs. Among them, the selection of the number of channels and the numbers of FIBs
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will be explained in detail in Section 4.2 of this paper. Meanwhile, the model parameters
are optimized using the Adam [41] algorithm, which are set to β1 = 0.9, β2 = 0.999, and
ε = 10−8. The learning rate is initially set to 10−3 by using weight normalization and then
decreased to half each 200 epoch of back-propagation. All the experiments were completed
on a computer with the following specifications: Intel i7-9700, 32 GB RAM, and NVIDIA
GeForce RTX2080Ti 12 GB GPU.

4.2. Ablation Experiment

We first study the influence of the number of multi-scale feature interaction blocks
(FIBs) in the model on the final experimental results, taking the DIK2K dataset as the
training object, and then we test the quantitative indicators of the model on the Set14
dataset. The experimental results are shown in Table 1 and Figure 7.

Figure 7. The influence of the number of FIBs on the model reconstruction effect. (a) LOSS vs. number
of epochs; (b) PSNR vs. number of epochs; (c) SSIM vs. number of epochs. The influence of the
number of channels in the FIB on the model reconstruction effect. (d) LOSS vs. number of epochs;
(e) PSNR vs. number of epochs; (f) SSIM vs. number of epochs.

Table 1. The influence of the number of FIBs on the model reconstruction effect.

Scale Number of FIBs Number of Channels Params (K)
Set14

PSNR (dB) SSIM

4×
4

48
395 28.47 0.7789

6 571 28.61 0.7814
8 747 28.69 0.7824

In order to better understand the relationship between the number of FIBs and the
quality of image reconstruction, we set the number of channels to 48, control the number,
and keep parameters of other components in the model unchanged, and only change
the number of FIBs. It can be seen from Table 1 that the image reconstruction quality is
positively correlated with the number of FIBs. Here we set the scaling factor to four: it
shows that when the number of FIBs increases from four to six, the model parameters are
relatively increased by 176 K, and the PSNR of reconstructed images is relatively increased
by 0.14, which indicates that the reconstruction quality has been significantly improved.
When the number of FIBs increases from six to eight, the SSIM value of the reconstructed
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image is improved to 0.7824. The influence curves of the number of FIBs on the LOSS
value, PSNR value, and SSIM value of reconstruction results are shown in Figure 7a–c.
As the number of FIBs increases, the LOSS value of reconstructed image relative to the
original image decreases, while the value of quantitative indicators such as PSNR and
SSIM increases.

In order to verify the influence of the number of channels in the FIB on the reconstruc-
tion quality of the model, we perform comparative experiments on models with different
numbers of channels. It can be seen from Table 2 that as the number of channels increases,
the reconstruction quality of the model for the Urban100 dataset increases, but the number
of model parameters also increases sharply. When the number of channels is adjusted from
48 to 64, the number of the entire model parameters is greatly increased from 571 K to
1004 K, while the SSIM value is only increased by 0.0009. Figure 7d–f show the comparison
of LOSS value, PSNR value, and SSIM value of models based on different number of chan-
nels on Set5 dataset, respectively. It can be found that although the image reconstruction
quality can be improved by increasing the number of channels in FIB, the number of model
parameters also increases sharply, as shown in Table 2. Therefore, from the perspective of
model lightweight, the larger number of channels is not the better one, and it needs to be
considered comprehensively in combination with the number of model parameters. As
can be seen from Tables 1 and 2 and Figure 7, when we set the number of FIBs to six and
the number of channels to 48 after considering comprehensively, the model has the best
comprehensive performance in terms of parameter number and reconstruction effect.

Table 2. The influence of the number of channels in the FIB on the model reconstruction effect.

Scale Number of FIBs Number of Channels Params (K)
Set5

PSNR (dB) SSIM

4× 6
48 571 32.12 0.8941
56 772 32.16 0.8947
64 1004 32.23 0.8950

In order to further explore the operation mechanism of feature extraction from
different-sized convolution kernels and their influence on reconstructed images, we stripped
the feature map extracted from convolution layers of the first MSC at different scales in
the second FIB and performed visual analysis on the separated features. Figure 8b shows
that the small-scale convolution kernel pays more attention to the pixel information of the
shallow layer, focusing on extracting the small-resolution features in the original image. By
analyzing Figure 8c,d, we can find that the larger the size of the convolution kernel, the
more global the extracted information, and the more attention is given to the relevance
of local information. Therefore, using convolution kernels of different scales to extract
and pay attention to spatial information of different levels has theoretical significance and
practical effect in terms of visualized results.

4.3. Quantitative Analysis

We compared the proposed MSFN with commonly used baseline SR models with
×2, ×3, and ×4 scales, including SRCNN [11], FSRCNN [42], VDSR [20], LapSRN [43],
DRRN [14], MemNet [38], LESRCNN [29], SRMDNF [44], SRDenseNet [45], CARN [37],
and IMDN [28], and here we use PSNR and SSIM [46] as quantitative evaluation metrics.
PSNR evaluates the distortion level between the image and the target image based on
the error between the corresponding pixels. PSNR is the most common and widely used
objective evaluation metric of images. In order to compare the reconstruction performance
with the mainstream super-resolution algorithm, PSNR is selected as one of the quantitative
evaluation metrics. However, since PSNR does not take into account the visual characteris-
tics of human eyes, the evaluation results are often inconsistent with people’s subjective
feeling. Therefore, we compare the reconstruction results of each algorithm on SSIM metric.
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SSIM is a full-reference image quality evaluation metric, which measures image similarity
from the three aspects of brightness, contrast, and structure. SSIM is more consistent with
the characteristics of human eye observation images in the objective world.

Figure 8. Feature map visualization: (a) input image; (b) feature map output by the convolution
kernel with a size of 1 × 1; (c) feature map output by the convolution kernel with a size of 3 × 3;
(d) feature map output by the convolution kernel with a size of 5 × 5.

The specific results are shown in Table 3 (the red text font represents the optimal
results, the number of FIBs in the MSFN model and the MSFN-S model is set to six, the
number of channels is set to 48, and the convolution kernel of MSC in the MSFN-S model is
set to 1 × 1, 3 × 3, and 1 × 1, respectively).

It can be seen from Table 3 that when the scaling factor is 2, the PSNR value of the
MSFN model proposed in this paper is increased by 0.25 dB, 0.25 dB, 0.15 dB, 0.32 dB,
and 0.61 dB on the five datasets, respectively, compared with the CARN model of the
same parameter scale; it also can be seen that the MSFN model is superior to the CARN
model in reconstruction effect. When the scaling factor is 3, the number of parameters of
the small-scale MSFN-S model is similar to that of the LESRCNN model, but the image
reconstruction quality is much higher than that of the LESRCNN model. The test result
on the BSD100 dataset is increased by 0.2 dB, which greatly improves the quality of the
reconstructed image, so that the reconstructed image contains rich original information
and texture details. When the scaling factor is 4, we screened out the model whose
reconstruction quality exceeds 32.10 dB on Set5, among which the MSFN-S model has
the smallest number of parameters, and the MSFN-S model obtains better results in the
reconstruction tests of other datasets. With Manga109 as the test dataset, the SSIM value
of the MSFN reconstructed image is the best in the larger model structure with more than
1000 K parameters, and the optimal value is 0.9089, which is improved by 0.0065 compared
with the SRMDNF model of the same scale.
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Table 3. Average PSNR/SSIM value for scale factor ×2, ×3, and ×4 on datasets Set5, Set14, BSD100,
Urban100, and Manga109.

Method Scale Params Set5 Set14 BSD100 Urban100 Manga109
PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM PSNR/SSIM

Bicubic

2×

- 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 30.80/0.9339
SRCNN 57 K 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 35.60/0.9663

FSRCNN 13 K 37.05/0.9560 32.66/0.9090 31.53/0.8920 29.88/0.9020 36.67/0.9710
VDSR 666 K 37.53/0.9590 33.05/0.9130 31.90/0.8960 30.77/0.9140 37.22/0.9750

LapSRN 813 K 37.52/0.9591 33.08/0.9130 31.08/0.8950 30.41/0.9101 37.27/0.9740
DRRN 297 K 37.74/0.9591 33.23/0.9136 32.05/0.8973 31.23/0.9188 37.60/0.9736

MemNet 678 K 37.78/0.9597 33.28/0.9142 32.08/0.8978 31.31/0.9195 37.72/0.9740
LESRCNN 516 K 37.65/0.9586 33.32/0.9148 31.95/0.8964 31.45/0.9206 -/-
SRMDNF 1511 K 37.79/0.9601 33.32/0.9159 32.05/0.8985 31.33/0.9204 38.07/0.9761

CARN 1592 K 37.76/0.9590 33.52/0.9166 32.09/0.8978 31.92/0.9256 38.36/0.9764
IDN 715 K 37.83/0.9600 33.30/0.9148 32.08/0.8985 31.27/0.9196 -/-

IMDN 694 K 38.00/0.9605 33.63/0.9177 32.19/0.8996 32.17/0.9283 38.88/0.9774
MSFN-S 555 K 37.96/0.9603 33.61/0.9181 32.15/0.8988 32.14/0.9272 38.85/0.9772
MSFN 1568 K 38.01/0.9606 33.77/0.9193 32.24/0.9000 32.24/0.9286 38.97/0.9776

Bicubic

3×

- 30.39/0.8682 27.55/0.7742 27.21/0.7385 24.46/0.7349 26.95/0.8556
SRCNN 8 K 32.75/0.9090 29.30/0.8215 28.41/0.7863 26.24/0.7989 30.48/0.9117

FSRCNN 13 K 33.18/0.9140 29.37/0.8240 28.53/0.7910 26.43/0.8080 31.10/0.9210
VDSR 666 K 33.67/0.9210 29.78/0.8320 28.83/0.7990 27.14/0.8290 32.01/0.9340

LapSRN 813 K 33.82/0.9227 29.87/0.8230 28.82/0.7980 27.07/0.8280 32.31/0.9350
DRRN 297 K 34.03/0.9244 29.96/0.8349 28.95/0.8004 27.53/0.8378 32.42/0.9359

MemNet 678 K 34.09/0.9248 30.00/0.8350 28.96/0.8001 27.56/0.8376 32.51/0.9369
LESRCNN 516 K 33.93/0.9231 30.12/0.8380 28.91/0.8005 27.70/0.8415 -/-
SRMDNF 1528 K 34.12/0.9254 30.04/0.8382 28.97/0.8025 27.57/0.8398 33.00/0.9403

CARN 1592 K 34.29/0.9255 30.29/0.8407 29.06/0.8034 28.06/0.8493 33.49/0.9440
IDN 715 K 34.11/0.9253 29.99/0.8354 28.95/0.8013 27.42/0.8359 -/-

IMDN 703 K 34.36/0.9270 30.32/0.8417 29.09/0.8046 28.17/0.8519 33.61/0.9445
MSFN-S 562 K 34.31/0.9265 30.33/0.8421 29.11/0.8053 28.22/0.8531 33.65/0.9451
MSFN 1574 K 34.47/0.9275 30.38/0.8428 29.20/0.8082 28.55/0.8549 33.71/0.9463

Bicubic

4×

- 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 24.89/0.7866
SRCNN 8 K 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 27.58/0.8555

FSRCNN 13 K 30.72/0.8660 27.61/0.7550 26.98/0.7150 24.62/0.7280 27.90/0.8610
VDSR 666 K 31.35/0.8830 28.02/0.7680 27.29/0.7260 25.18/0.7540 28.83/0.8870

LapSRN 813 K 31.54/0.8850 28.19/0.7720 27.32/0.7270 25.21/0.7560 29.09/0.8900
DRRN 297 K 31.68/0.8888 28.21/0.7720 27.38/0.7284 25.44/0.7638 29.18/0.8914

MemNet 678 K 31.74/0.8893 28.26/0.7723 27.40/0.7281 25.50/0.7630 29.42/0.8942
LESRCNN 516 K 31.88/0.8903 28.44/0.7772 27.45/0.7313 25.77/0.7732 -/-
SRMDNF 1552 K 31.96/0.8925 28.35/0.7787 27.49/0.7337 25.68/0.7731 30.09/0.9024

SRDenseNet 2015 K 32.02/0.8934 28.50/0.7782 27.53/0.7337 26.05/0.7819 -/-
CARN 1592 K 32.13/0.8937 28.60/0.7806 27.58/0.7349 26.07/0.7837 30.40/0.9082

IDN 715 K 31.82/0.8903 28.25/0.7730 27.41/0.7297 25.41/0.7632 -/-
IMDN 715 K 32.21/0.8948 28.58/0.7811 27.56/0.7353 26.04/0.7838 30.42/0.9074

MSFN-S 571 K 32.12/0.8941 28.61/0.7814 27.56/0.7348 26.02/0.7834 30.45/0.9075
MSFN 1583 K 32.26/0.8946 28.65/0.7815 27.62/0.7364 26.34/0.7906 30.58/0.9089

Red color indicates the best performance.

In order to understand the comprehensive performance of each model, we compare
the amount of computational complexity required in the image reconstruction process, the
inference time, and the PSNR value of the reconstruction result with those of the models
such as LESRCNN [29], CARN [37], IMDN [28], and MSFN-S.

FLOPs stands for floating point operands and can be used to measure the complex-
ity of algorithms and models. Equation (12) describes the theoretical concept of FLOPs
mathematically [47]:

FLOPs = (2× Ci × K2 − 1)× H ×W × Co (12)
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Ci and Co represent the input and output channels, respectively, K represents the size
of the convolution kernel, and H and W represent the size of the output feature map. We
randomly select an image from the Set14 dataset with a resolution of 528 × 656 as the test
image. We input the image into each reconstruction model, and calculate the computational
complexity required by the convolution layer in each model according to Equation (12).
Meanwhile, we record the inference time and reconstruction effect in Table 4. From the
perspective of inference time, MSFN-S inference test image only takes 31 ms, while IMDN
and CARN model need 37 ms and 62 ms to complete inference, respectively. From the
perspective of image reconstruction quality, MSFN-S has the highest image quality, with
which the value of PSNR reaches 26.67 dB. Therefore, the MSFN-S model is more efficient
than the other three models in terms of information timeliness and reconstruction capability.

Table 4. Complexity of five networks for SISR.

Method FLOPs (G) Time (ms) PSNR (dB)

LESRCNN 77 44 26.37
CARN 41 62 26.57
IMDN 21 37 26.62

MSFN-S 18 31 26.67

4.4. Qualitative Visual Analysis

Since quantitative indicators such as PSNR and SSIM do not pay attention to the
continuity of local details and cannot fully reflect the image quality, we make a visual
analysis of the reconstructed images of each model. Here, we use img005 in the Set14
dataset, img019 in the BSD100 dataset, img026 in the Urban100 dataset, and img093 in
the Manga109 dataset for the analysis of visualization, with the results shown in Figure 9,
from which we can see that the models SRCNN, DRRN, MemNet, and LESRCNN have
weak ability to reconstruct edge information and lack relatively clear line information. For
example, in the reconstruction result of the img005 image, the edge lines of the headwear
are blurry, and the contours of small objects cannot be restored well, while the reconstructed
image of the MSFN model has better line information. From the reconstructed image of
img019 by MSFN, it can be seen that MSFN can better restore the details of the bifurcation in
the upper left corner of the original image, while models such as CARN cannot. Compared
with IMDN and other models, the MSFN model has improved its ability to recover key
information of the original image. In the original image of img093, there is a black spot in
the lower left corner of the eye. Only the MSFN model pays attention to the continuity of the
global information and local details of the original image, so that the detailed information
of the black spot is better reconstructed. By comparing the visualization results, it can
be seen that the MSFN model has a certain improvement in image reconstruction effect
compared with the existing models.

In order to verify the correctness more accurately of the subjective judgments of various
reconstruction methods, we designed an image definition questionnaire that requires
respondents to score the definition of the reconstruction results of each model according to
their subjective feelings and select the best restored image given the original image. A total
of 108 valid questionnaires were collected in this survey, and the final results are shown in
Figure 10, where the y-axis label of the line graph in Figure 10 is the score, which indicates
the respondent’s definition score of the reconstructed image. Scores range from 0 to 10, with
higher scores indicating clearer images to respondents. The y-axis of the bar chart is labeled
as frequency, which indicates the number of times interviewees select the reconstructed
image as the best restored image. Figure 10c is a subjective analysis of the reconstruction
results of img093. It can be seen that the sharpness scores of the reconstruction results of
MSFN and MSFN-S are higher than the reconstruction results of the other algorithms. Since
MSFN better restores the eye details of the img093, such as the outline of the eye edge and
black spots, the number of people who think that the MSFN reconstruction result is closest
to the original image is the largest. From Figure 10b,d, it can be found that people think that
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the reconstructed images of MSFN are more realistic and have higher definition. Therefore,
from the perspective of subjective visualization, we can conclude that the reconstruction
effect of the MSFN model is better, and the reconstructed image has more local details.

Figure 9. Comparison of reconstructed HR images of img005, img019, img026, and img093 by
different SR algorithms with the scale factor ×4.
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Figure 10. Subjective analysis of different reconstructed images. (a) Subjective analysis of recon-
struction results of img005; (b) subjective analysis of reconstruction results of img019; (c) subjective
analysis of reconstruction results of img093; (d) subjective analysis of reconstruction results of img026.

5. Conclusions

We propose a lightweight image reconstruction network based on multi-scale local
interaction and global fusion mechanism. The network uses filters of different sizes to pay
attention to the interactive information and correlation degree of different regions of the
same pixel, so that the convolution kernels of the same level have different sizes of receptive
fields, and retain the rich spatial information of the original image under the condition
of fewer parameters. Therefore, our proposed model is superior to other image super-
resolution (SR) models of the same level in both subjective visual effects and quantitative
indicators. Although the effectiveness of the proposed method has been verified in this
paper, we will carry out further study in other applications (such as image denoising and
blur reduction) in the future. Besides this, our proposed method is only applied to the
models with magnification factor of 2, 3, and 4, and the customization of magnification
factor is very important for practical application scenarios. Therefore, the customization of
magnification factor of this model needs to be further studied.
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