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Abstract: Traditional topology optimization of thermo-elastic structures is based on deterministic
conditions, without considering the influence of uncertainty factors. To address the impact uncer-
tainty on structural strength, a reliability-based topology optimization of thermo-elastic structure
with stress constraint is proposed. The probabilistic uncertainty quantities are associated with the
structural material property, mechanical loads and the thermal stress coefficient with the topology
optimization formulation considering volume minimization and stress constraint. The relaxation
stress method combined with normalized p-norm function is adopted to condense whole element
stresses into the global stress measurement that approximates the maximum stress. The adjoint
variable method is utilized to derive the sensitivity of the stress constraint and the optimization
problem is solved by the method of moving asymptote (MMA). Finally, several numerical examples
are presented to demonstrate the effectiveness and validity of the proposed approach. Compared
with the deterministic design, the reliability design has distinct topological configurations and the
optimized structures maintain a higher reliability level.

Keywords: thermo-elastic structure; topology optimization; reliability analysis; stress constraint
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1. Introduction

Various mechanical parts, such as turbines, rockets and battery systems, are subjected
to both thermal and mechanical loads because of the working environment with coupled
temperature and structural fields. In this scenario, it is necessary for the thermo-elastic de-
sign to consider the temperature factor’s impact on structural strength to prevent structural
failure [1].

In recent years, topology optimization methods are widely used in thermo-elastic
structure design, including the variable density method, the homogenization method,
the evolutionary optimization method, the level set method, etc. Rodrigue et al. [2] first
proposed the topology optimization of thermo-elastic structures by the homogenization
method. Du et al. [3] performed the topology optimization of thermal-driven compliant
mechanisms by the variable density method. Li et al. [4] conducted a study on the optimal
design of thermo-elastic structures under the non-uniform temperature field based on the
evolutionary optimization method. Deng et al. [5] used the level set method to derive the
topological sensitivity information for the thermo-elastic structures. Most of the studies
in the above-mentioned literature are based on the compliance minimization, while the
strength is an essential design criterion in engineering practice. Recently, it has been stated
in Ref. [6] that the topology optimization model of compliance minimization is not suitable
for thermo-elastic topology optimization, because when the temperature load is comparable
to the mechanical load, compliance minimization cannot obtain an optimal structure with
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reasonable strength. More researches have illustrated that simple reinforcement techniques
cannot sufficiently solve the problem of thermo-elastic structural strength failure caused by
destructive stress [7]. Therefore, stress-based topology optimization design is necessary
and has been gradually emerged.

Topology optimization related with stress constraint is the most challenging research
field. This is mainly due to the following three problems: (i) the singularity problem, (ii) the
local nature of stresses, and (iii) the highly nonlinear behavior of stress constraints [8].
According to the relevant literature, there are some efficient approaches to deal with the
above-mentioned problems. Regarding the singular phenomenon, the commonly used
methods include ε-relaxation techniques [9,10], qp-relaxation techniques [11,12], etc. For
the local nature of stress, local stress constraints are transformed into global stress constraint
by using aggregation function, including the p-norm [13,14] and KS-function [15]. In ad-
dition to the above numerical problems, the third challenge is the highly nonlinear stress
behavior wherein stress distribution is highly sensitive to even subtle topological variations,
particularly at critical regions with high stress concentration [16]. This feature is reflected
in the tendency of the optimization iterations to have repeated oscillations. To stabilize the
convergence, a density filtering method and suitable optimization solution algorithm were
adopted by Le et al. [17]. Recently, Deaton et al. [18] investigated the topology optimization
problem of thermo-elastic structures under stress constraint. However, the above studies
on topology optimization considering stress constraint are based on deterministic topology
optimization (DTO). In practical engineering, the material properties and the mechanical
loads are often uncertain due to the differences of the internal conditions and the time-
varying nature of the external environment. These uncertainties maybe affect the reliability
of the structural performance and even lead to failure [19–21]. Thus, reliability-based
topology optimization (RBTO) is becoming more and more prominent.

According to the different mathematical tools used to describe the properties of un-
certainty, uncertainty can be divided into stochastic uncertainty and epistemic uncertainty.
The former describes the inherent variability in the physical system or working envi-
ronment, also known as objective uncertainty, and usually uses probabilistic methods to
model random variables or stochastic processes, while the latter is mainly due to sub-
jective knowledge limitations or incomplete information. The resulting, also known as
subjective uncertainty, can be modeled by non-probabilistic methods such as fuzzy anal-
ysis [22]. Therefore, reliability topology optimization considering uncertainty conditions
is mainly divided into probabilistic and non-probabilistic types. At present, the research
on reliability topology optimization design with random variables as a probability dis-
tribution is relatively mature. Kharmanda et al. [23] first combined structural reliability
analysis with deterministic topology optimization and established an effective reliability
flowchart for structural strain energy minimization. Jung et al. [24] investigated the re-
liability topology optimization for the three-dimensional geometric nonlinear structure
design. Zhao et al. [25] studied the multi-material topology optimization problem with
reliability constraints considering the effects of incomplete measurement of structures,
inaccurate information, and insufficient cognition on structures. For practical engineering
applications, Silva et al. [26] adopted a single-loop topology optimization mathematical
model of components and systems and applied it to the design of automotive control arms,
and the results showed that the method has good practicality and efficiency.

To the author’s knowledge, this is the first attempt to reliability-based topology opti-
mization of thermo-elastic structure with stress constraint. The material property, thermal
stress coefficient and mechanical loads are chosen as uncertainty variables with the prob-
ability distributions. Based on probability theory, the structural topology optimization
design method considering stress constraint is combined with the existing reliability struc-
tural topology optimization model [27]. A reliability-based topology optimization design
method for thermo-elastic structures under global stress constraint is proposed. The RBTO
and the DTO design are compared to verify the effectiveness and feasibility of the pro-
posed method.
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2. Finite Element Formulation of Thermo-Elastic Structure

Figure 1 illustrates the generalized design domain Ω for the thermo-elastic structure
problem, which consists of the predefined design domain containing the fixed displacement
boundary Γd, surface mechanical load Fm applied on the boundary Γf, and the uniform
temperature variation ∆T(x, y). In addition, the isotropic material is considered and
the design domain is discretized into quadrilateral elements and eight-node hexahedral
elements in 2D and 3D problems, respectively.

Figure 1. Generalized design domain of thermo-elastic structure.

For the thermo-elastic structure coupled with temperature and mechanical loads, the
static equilibrium equations can usually be expressed as

K(ρ)U(ρ) = Fm + Fth(ρ) (1)

where ρ is the density variable vector, K(ρ) is the structural global stiffness matrix, U(ρ) is
the structural nodal displacement vector, Fm is the mechanical load vector, and Fth(ρ) is the
temperature load vector due to thermal strain. The stiffness matrix K(ρ) is assembled by

K(ρ) =
Ne

∑
e=1

∫
Ωe

BT
e De(ρe)BehdΩe (2)

where Ne is the total element number, Ωe represents the element domain, h is the thickness
of the planar element, Be is the element strain-displacement matrix, De(ρe) is the material
elasticity matrix of element e [28]. Adopting the SIMP material interpolation method, De(ρe)
can be expressed as a function of the material elastic modulus, defined by

De(ρe) = E(ρe)D0 = ρe
αE0D0 (3)

where E(ρe) is the elastic modulus of element e, α is the elastic modulus penalty factor, E0 is
the elastic modulus of the solid material, D0 is the coefficient matrix for an element with
unit elastic modulus.

The temperature load Fth(ρ) can be assembled by accumulating the element tempera-
ture load, defined as

Fth(ρ) =
Ne

∑
e=1

E(ρe)
∫

Ωe
Be

TD0εe
th(ρe)dΩe (4)

where
εe

th(ρe) = γ(ρe)∆Tφ (5)

where εe
th(ρe) is the thermal strain vector for the element, γ(ρe) is the material thermal

expansion coefficient, ∆T is the amount of uniform variation of the temperature, φ is
defined as [1, 1, 0] T in 2D problems and [1, 1, 1, 0, 0, 0]T in 3D problems. Substituting
Equation (6) into Equation (5) yields

It is noted that E(ρe) and γ(ρe) are both concerned with the element density variables.
Hence, by using the thermal stress coefficient (TSC) [29], the parameters are combined into
the single thermal stress coefficient, defined as
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δ(ρe) = E(ρe)γρe) = ρe
kE0γ0 = ρe

kδ0 (6)

where γ0 is the expansion coefficient of the solid material, k is the thermal stress penalty
factor, δ0 is the thermal stress coefficient of the solid material.

Substituting Equations (5) and (6) into Equation (4), Fth(ρ) can be expressed as

Fth(ρ) =
Ne

∑
e=1

δ(ρe)∆T
∫

Ωe
Be

TD0φdΩe (7)

3. Deterministic Topology Optimization of Thermo-Elastic Structure
3.1. Mathematical Model of Deterministic Topology Optimization

With regard to the deterministic topology optimization of the thermo-elastic structure
problem, the volume minimization and stress constraint are considered to satisfy the static
strength failure and lightweight design. The deterministic topology optimization of the
thermo-elastic structure can be established as

f ind ρ

min V(ρ) =
Ne
∑

e=1
ρeve

s.t.K(ρ)U(ρ) = Fm + Fth(ρ)

σVM
e (ρ) ≤ σs (e = 1, 2, . . . , Ne)

0 < ρmin ≤ ρe ≤ 1(e = 1, 2, . . . , Ne)

(8)

where ρ is the density variable vector, V(ρ) is the overall structural volume, ve is the element
volume, σe

VM(ρ) is the von Mises stress of each element, σs is the material yield strength,
and ρmin is the lower limit of the design variable.

3.2. Global Stress Constraint

The topological optimization of the stress-constrained structure appears as a singular
solution phenomenon, i.e., the density of the element tends to zero, yet the stress of the
element is a non-zero value. To solve the singular solution phenomenon, based on the
SIMP material interpolation model, the stress relaxation method is used to penalize the
element stresses in the form of

σe(ρ) = ρ
q
e σe0 (9)

where σe(ρ) is the interpolated element stress, q is the intensity penalty factor, and σe0 is
the stress vector at the center of the eth element, defined as

σe0 = E0(D0BeUe −D0γ0φ∆T) (10)

where Ue is the nodal displacement vector of the element. The element stress vector σe0 in
2D and 3D problems is respectively expressed as

For 2D problems,
σe0 =

[
σex, σey, τexy

]
(11)

For 3D problems,
σe0 =

[
σex, σey, σez, τexy, τeyz, τezx

]
(12)

where σex, σey and σez are the stress components in the x, y and z directions of element e,
respectively. τexy, τeyz, and τezx are the shear stress components on the xy, yz, and zx planes
of the element e, respectively.

The fourth strength theorem is used as the failure criterion of the material, the von
Mises stress σe

VM of the element can be obtained from the three components of the element
stress vector, expressed as

σVM
e =

√
σT

e Mσe (13)

The Stress coefficient matrix M, in 2D and 3D problems are respectively expressed as
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For 2D problems,

For 2D problems, M =

 1 −1/2 0
−1/2 1 0

0 0 3

 (14)

For 3D problems,

M =



1 −1/2 −1/2 0 0 0
−1/2 1 −1/2 0 0 0
−1/2 −1/2 1 0 0 0

0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 (15)

In order to reduce the problem of computational burden caused by numerous local
stress constraints, the p-norm function is adopted to construct the global stress constraint,
denoted as

σPN =

(
Ne

∑
e=1

(
σVM

e
σs

)p) 1
p

(16)

where p is the aggregation parameter. Note that p tends to infinity, and σPN is equivalent to
max(σe

VM/σs). The stress constraint is equivalent to the global stress constraint, defined as

σPN ≤ 1 (17)

However, when p enlarges, the degree of nonlinearity of the aggregation function
increases that leads to oscillation convergence in the optimization process. Otherwise,
with smaller p, the aggregation function cannot capture the maximum of the stress [30].
To overcome this defect, a revised coefficient is introduced into the constraint equation,
expressed as

σPN = cσPN ≤ 1 (18)

where c is the revised coefficient, and before each optimization process, is defined as

c =
max

(
σVM

e
)

σs · σPN (19)

4. Reliability-Based Topology Optimization of Thermo-Elastic Structure
4.1. Reliability-Based Topology Optimization Problem Description

Reliability is an important property reflecting the degree of structural safety [31].
The reliability-based optimization design measures the uncertainty of the structure by the
failure probability or reliability index. While pursuing the optimal structural performance,
it reduces the probability of the structure failure under the influence of uncertain factors,
thereby improving the safety of the structure. Reliability-based topology optimization is a
combination of reliability analysis and deterministic topology optimization design, aiming
to integrate the problem of structural optimization and reliability constraint. The RBTO is
slightly different from the traditional reliability structure optimization, and the variables
are mainly divided into deterministic variables and random variables. The deterministic
variables are used to characterize the physical density ρ (in the case of the variable density
method), which are the design variable for topology optimization. And the random
variables Y, which are used to characterize the structural uncertainty factor, are continuous
variables. This paper mainly studies random uncertain variables, such as the material
properties of structures, loads, etc., which are suitable for using probability theory to
describe their distribution characteristics [32]. In order to facilitate the calculation, it is
generally necessary to standardize the non-normally distributed random variables into
mutually independent standard normal random variables u.
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4.2. Mathematical Model of Reliability-Based Topology Optimization

Based on the above description of the random variables, a mathematical model for
reliability-based topology optimization of thermo-elastic structure is established. Consider-
ing a general RBTO formulation, the stress constraint of Equation (8) is simply transformed
into a probabilistic constraint, as follows

f ind ρ

min V(ρ) =
Ne
∑

e=1
ρeve

s.t. Pr[G(ρ, Y) ≤ 0] = Pf ≤ P∗f
Pf =

∫
G≤0 fY(y)dy1 · · · dyn

0 < ρmin ≤ ρe ≤ 1(e = 1, 2, . . . , Ne)

(20)

This optimization model is expressed as finding the optimized structural configuration,
i.e., minimizing the overall structural volume under the reliability stress constraint. Y is
a vector of random variables, G is a limit state function, fY (y) is the joint probability
density function of Y, Pr is the probability sign, Pf is the failure probability, obtained by
multidimensional integration, and Pf

* is the value of the permissible failure probability. In
reliability analysis, the limit state is defined as G (ρ, Y) = 0, the failure state and the safety
state are G (ρ, Y) < 0 and G (ρ, Y) > 0, respectively.

In practical engineering, it is difficult to solve the multidimensional integral to obtain
the exact probability density distribution. Therefore, approximate analytical methods are
generally used to calculate the failure probability, such as the first order second moment
method [33] and the first order reliability method [34]. The first order reliability method is
selected in this paper to approximate the failure probability.

According to the stress intensity interference theory [35,36], this paper characterizes
the limit state function, G, in terms of the load-bearing capacity of the structure, denoted as

G(ρ, Y) = R− S = σs − σVM
e (ρ, Y) (21)

where R denotes the structural resistance and S denotes the load variable. In this paper,
we consider the possibility that the random variables may cause the von Mises stress
somewhere in the structure to exceed the yield strength limit of the material, thus causing
the structure to fail. So here R is denoted as the yield strength σs of the material and S is
denoted as the von Mises stress σe

VM(ρ, Y) of element. G > 0, the structure is reliable, G < 0,
the structure fails, and G = 0, the structure is in the limit state.

If both R and S obey normal distribution, their mean and variance are ϕR, ϕS and σR,
σS, respectively. Then G also obeys normal distribution, and let its mean and variance be
ϕG and σG, respectively. Therefore, the failure probability can be expressed as

Pf = Pr[σs − σVM
e (ρ, Y) ≤ 0] = Φ

(
ϕS − ϕR

(σ2
R + σ2

S)
1/2

)
= Φ

(
− ϕG

σG

)
(22)

where Φ is the standard cumulative distribution function.
Introducing the reliability index β, let be

β =
ϕG
σG

(23)

Using the first order reliability method, the calculation of the probability of failure is
converted into a measurable reliability index β, which is specifically expressed as the mini-
mum distance from the origin to the limit state function in the normalized space (u space)
with the most probable point (MPP) being searched, as shown in Figure 2. According to
the corresponding relationship of the failure probability and the reliability index in the
first order reliability method, the failure probability constraint can be transformed into the
following reliability index constraint
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Pf = Φ(−β)

P∗f = Φ(−β∗)

Pf ≤ P∗f ⇒ β ≥ β∗
(24)

where β* is the target reliability index, and the intersection point u* is the design point,
also known as the most probable failure point (MPP). The random variable Y needs to be
normalized into an independent standard normal random variable u, expressed as u = T(Y),
or Y = T−1(u). In the standard normal space, u is given by the following expression,
defined as

u =
Y−ϕy

σy
(25)

where ϕy and σy are the vector of mean values and the standard deviations associated with
Y, respectively.

Figure 2. Geometric description of reliability index in standard normal space.

After the above transformation, in the standard normal space, the limit state function
is then transformed into

G(ρ, Y) = G
((

ρ, T−1(u)
)
= Q(ρ, u) (26)

4.3. Reliability-Based Topology Optimization for Thermo-Elastic Structures

The design variables and random variables in the reliability-based topology opti-
mization are respectively assigned into deterministic topology optimization and reliability
analysis and are independent of each other, which leads to the reliability-based topology
optimization computation intensively and makes it difficult to converge [37]. Therefore,
the proposed predecessor-decoupling hybrid method is adopted that decomposed the
RBTO problem into two successively independent design processes that the deterministic
topology optimization and reliability analysis.

In the reliability analysis, the MPP point u* is obtained by solving the following
mathematical model according to the geometric meaning of the reliability index β in
Figure 2.  min

u
‖u‖ = β =

√
∑u2

i

s.t.β(u) ≥ β∗
(27)

The sensitivity of the reliability index concerning the normal random variable can be
expressed as

∂β

∂ui
=

1
2

(
∑u2

i

)−1/2
2ui =

ui
β

(28)



Mathematics 2022, 10, 1091 8 of 22

The sensitivity of the objective function with respect to the chosen means of random
variables can simply be calculated using the classical finite difference approach, written as

∂V
∂ϕyi

=
∆V

∆ϕyi

=
V
(

ϕyi + ∆ϕyi

)
−V

(
ϕyi

)
∆ϕyi

(29)

where ϕyi and σyi are the mean value and standard deviation of the random variable
yi, respectively.

According to the above sensitivity calculation result, the revised random variable y*

through Rosenblatt inverse transform, is defined as{
y∗i = ϕyi + u∗i σyi , ∂V

∂ϕyi
≥ 0

y∗i = ϕyi − u∗i σyi , ∂V
∂ϕyi
≤ 0

(30)

5. Sensitivity Analysis

The sensitivity of the structural volume respect to the element density can be obtained
by the direct differentiation method, defined by

∂V(ρ)

∂ρe
= v0 (31)

The sensitivity information of the stress relative to the element density is obtained
by the adjoint variable method. The Lagrangian function C of the stress is constructed by
introducing the Lagrangian product factor as

C = σPN − λT
(

K(ρ)U− Fm − Fth(ρ)
)

(32)

The sensitivity of the Lagrangian function with respect to the element density is
derived as

∂C
∂ρe

=
∂σPN

∂ρe
− λT

(
∂K(ρ)

∂ρe
U + K(ρ)

∂U
∂ρe
− ∂Fm

∂ρe
− ∂Fth(ρ)

∂ρe

)
(33)

According to the chain rule, it is easy to obtain the sensitivity corresponding the
element density ρe as

∂σPN

∂ρe
=

Ne

∑
i=1

c
∂σPN

∂σVM
e

(
∂σVM

e
∂σe

)T
∂σe

∂ρe
(34)

From the above equation, the sensitivity information for solving the global stress can
be obtained by combining the derivative of the p-norm function with respect to the von
Mises stress, the derivative of the von Mises stress with respect to the stress component, and
the derivative of the stress component with respect to the design variable. This sensitivity
information is performed separately.

5.1. Derivative of the p-Norm Function with Respect to the Von Mises Stress

Taking the expression of Equation (16), the derivative information of the p-norm
function to the von Mises stress of each element can be obtained as

∂σPN

∂σVM
e

=

(
Ne

∑
e=1

(
σVM

e
σs

)p) 1
p−1(

σVM
e
σs

)p−1 1
σs

(35)

5.2. Derivative of the Von Mises Stress with Respect to the Stress Component

For planar and spatial structural problems, the derivatives of element stress with
respect to the stress components are respectively described as
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For 2D problems, 

∂σVM
e

∂σex
= 1

2σVM
e

(
2σex − σey

)
∂σVM

e
∂σey

= 1
2σVM

e

(
2σey − σex

)
∂σVM

e
∂τexy

=
3τexy

σVM
e

(36)

For 3D problems, 

∂σVM
e

∂σex
= 1

2σVM
e

(
2σex − σey − σez

)
∂σVM

e
∂σey

= 1
2σVM

e

(
2σey − σex − σez

)
∂σVM

e
∂σez

= 1
2σVM

e

(
2σez − σex − σey

)
∂σVM

e
∂τexy

=
3τexy

σVM
e

∂σVM
e

∂τexz
= 3τexz

σVM
e

∂σVM
e

∂τezx
= 3τezx

σVM
e

(37)

5.3. Derivative of Stress Components with Respect to Design Variable

The derivative of the element stress component with respect to the density variable is
obtained as

∂σe

∂ρe
= qρ

q−1
e E0(D0BeUe −D0γ0φ∆T) + ρ

q
e E0D0Be

∂Ue

∂U
∂Ue

∂ρe
(38)

Considering the loading independence, the derivative of the mechanical load Fm on
the element density can be ignored, and combining Equation (35) with Equation (34) and
substituting it into Equation (33), we can obtain

∂C
∂ρe

=
Ne
∑

e=1
c ∂σPN

∂σVM
e

(
∂σVM

e
∂σe

)T
qρ

q−1
e E0(D0BeUe −D0γ0φ∆T)

−λT
(

∂K(ρ)
∂ρe

U− ∂Fth(ρ)
∂ρe

)
+

[
Ne
∑

e=1
c ∂σPN

∂σVM
e

(
∂σVM

e
∂σe

)T
ρ

q
e E0D0Be

∂Ue
∂U − λTK(ρ)

]
∂Ue
∂ρe

(39)

In order to eliminate the unknown displacement sensitivity term, let the term contain-
ing ∂U/∂ρe be zero, then the adjoint vector equation is established as

K(ρ)λ =
Ne

∑
e=1

c
∂σPN

∂σVM
e

ρ
q
e E0

(
∂Ue

∂U

)T
BT

e DT
0

(
∂σVM

e
∂σe

)
(40)

Then the corresponding sensitivity is

∂C
∂ρe

=
Ne
∑

e=1
c ∂σPN

∂σVM
e

(
∂σVM

e
∂σe

)T
qρ

q−1
e E0qρ

q−1
e E0(D0BeUe −D0γ0φ∆T)

−λT
(

∂K(ρ)
∂ρe

U− ∂Fth(ρ)
∂ρe

) (41)

Combining Equation (4) information, the derivation of Equations (2) and (7) can
respectively obtain the sensitivity of stiffness matrix K(ρ) and temperature load vector
Fth(ρ), defined as

∂K(ρ)

∂ρe
=

Ne

∑
e=1

αρα−1
e E0

∫
Ωe

BT
e D0BehdΩe (42)
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∂Fth(ρ)

∂ρe
=

Ne

∑
e=1

kρk−1
e δ0∆T

∫
Ωe

BT
e D0φdΩe (43)

6. Density Filtering

In order to avoid the phenomenon of checkerboard and intermediate elements in the
topology optimization results, the density filtering technology [38] is used to suppress the
problems that are defined as

ρe =
1

∑i∈Ne Hei
∑

i∈Ne

Heixi (44)

where ρe is the element density, which is used to calculate the volume and stiffness matrix
of the element, xi is the design variable of the element, Ne is the number of all elements
whose distance from the center of element e is less than the filter radius rmin, and Hei is the
linear distance function, namely

Hei = max(0, rmin − ∆(e, i)) (45)

where ∆(e, i) is the distance between the centers of element e and element i.
The difference between the design variable x and the physical density ρ can be noted

here. The finite element model is parameterized using the density variable ρe contained in
ρ. The density variable is now calculated by applying a density filter to the design variable
x. For sensitivity consistency, the following chain rule is used, where g is the objective or
constraint function

∂g
∂xj

= ∑
e∈Nj

∂g
∂ρe

∂ρe

∂xj
= ∑

e∈Nj

1
∑i∈Ne Hei

Hje
∂g
∂ρe

(46)

The method of moving asymptote (MMA) [39] is used to solve the reliability-based
stress-constrained topology optimization problem for thermo-elastic structures. Due to
the highly nonlinear behavior of the stress constraint, the optimization process is prone
to iterative oscillations and even non-convergence. To avoid non-convergence, then an
external move limit m is imposed on the MMA algorithm to limit the maximum absolute
value of the difference between the design variables updated during the current iteration
and the previous iteration step.

In summary, the design of the reliability topology optimization of thermo-elastic struc-
tures considering the stress constraint based on the hybrid precursor-decoupling format is
decoupled into two parts executed in separate sequences: the precursor reliability analysis
and the deterministic topology optimization. The specific process is: first, according to
the geometric meaning of the reliability index in the primary reliability method, seek the
design point that satisfies the target reliability index; then, according to the sensitivity
information of the random variable, modify the random variable and convert it into a
deterministic parameter; finally, the deterministic topology optimization design is carried
out. The specific optimization flowchart is shown in Figure 3.
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Figure 3. Flowchart of reliability topology optimization in hybrid format.

7. Numerical Examples

In this section, three numerical examples of reliability-based stress-constrained topology
optimization of thermo-elastic structures are selected to verify the effectiveness of the proposed
method. The selected materials are chosen with the Young’s modulus E = 2.1 × 105 MPa,
Poisson’s ratio µ = 0.3, thermal expansion coefficient γ0 = 12.1 × 10−6/◦C. The p-norm penal-
ization factor is p = 8. The penalty factors are defined as α = 3, k = 3, and q = 0.8. The initial
element density values are taken as 1. The corresponding initial design domain volume is
V0, and the ratio V/V0 of the optimized structure volume to the initial structure volume is
used as the objective function, and the temperature field is uniformly varying.

7.1. 2D L-Shaped Beam Structure

The design domain of the L-shaped beam structure is illustrated in Figure 4. The design
domain has dimensions of 120 mm × 120 mm with a thickness of 1 mm and is discretized
into 14,400 quadrilateral elements. The top end of the L-shaped beam structure is clamped
and the mechanical load Fm is applied to the upper right end of the structure, which is
uniformly distributed over six adjacent nodes to avoid stress concentration. The stress
constraint value for the structure is 235 MPa, and the amount of temperature change
∆T = 10 ◦C.

Figure 4. Design domain of L-shaped beam.
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For the reliability analysis, the random variables are chosen as Y = (Fm, E, δ0)T, and
assume that they obey normal probabilistic distribution. The mean value of mechanical
load, Young’s modulus and thermal stress coefficient are ϕF

m = 280 N, ϕE = 2.1 × 105 MPa
and ϕδ0 = 2.541 MPa/◦C, respectively. The variance is set to 5% of the mean value and the
permitted reliability index is set to 3.0.

The detailed evolution of the deterministic and reliable structures and the von Mises
stress distribution are shown in Figures 5 and 6, respectively, and the initial structural
maximum on the von Mises stress value is 246.82 MPa. The optimized deterministic
and reliable topological configurations and von Mises stress distributions are shown in
Figures 7 and 8, respectively. The corresponding topology optimization results are shown
in Table 1, and the reliability indexes are calculated using the Monte Carlo simulation
method, where u1, u2, and u3 correspond to the standard normalized variable values of the
random variables Fm, E, and δ0, respectively.

Figure 5. Structural evolution for deterministic topology optimization with stress distribution (a–h).

Figure 6. Structural evolution for reliability topology optimization with stress distribution (a–h).
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Figure 7. Deterministic topology optimization result of L-beam structure (14,400 elements): (a) Topo-
logical structure; (b) Von Mises stress distribution.

Figure 8. Reliability topology optimization result of L-beam structure (14,400 elements): (a) Topologi-
cal structure; (b) Von Mises stress distribution.

Table 1. Comparison of topology optimization design results.

Approach Volume
Fraction (%)

Reliability
Index (β)

Computing
Time (s)

Max Von Mises
Stress (MPa) MPP (u1, u2, u3)

DTO 19.8 1.7759 × 10−5 371.63 234.95 -
RBTO 24.3 2.9745 395.49 234.60 (1.7321, 1.7321, 1.7321)

In addition, in order to illustrate that the number of elements in the divided design
domain has no obvious effect on the optimized topology, the design domain shown in
Figure 4 is discretized into 6400 quadrilateral elements, where the mechanical load Fm does
not change, and is applied to the upper right end of the structure and uniformly distributed
over four adjacent nodes. The optimized deterministic and reliable topologies and von
Mises stress distributions are shown in Figures 9 and 10, respectively.

By observing Figures 5 and 6 and Table 1, it can be seen that the right-angle corner
of the initial structure is the stress concentration area, and the maximum von Mises stress
exceeds the material strength. The structure after deterministic and reliable topology
optimization not only reduces the maximum von Mises stress, but also meets the strength
requirements of the material, and the original stress concentration corner evolves into a
rounded structure, which alleviates the stress concentration phenomenon.
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Figure 9. Deterministic topology optimization result of L-beam structure (6400 elements): (a) Topo-
logical structure; (b) Von Mises stress distribution.

Figure 10. Reliability topology optimization result of L-beam structure (6400 elements): (a) Topologi-
cal structure; (b) Von Mises stress distribution.

The results for DTO and RBTO show very different optimal topologies, where DTO
is less reliable and therefore allows less margin for performance fluctuations and an in-
creased probability of structural failure when parameter variations that are considered as
random variables are considered. The topology obtained from RBTO uses about 4% more
material than DTO to make the structure meet the target reliability index. We also find
that RBTO obtains a slightly lower computational efficiency due to the need to solve the
MPP in the reliability analysis. In terms of the respective stress distribution, the RBTO
presents a more uniform stress distribution in the structure compared to the DTO, and the
structure is subjected to a smaller maximum von Mises stress value. Finally, comparing the
topological configurations in Figures 7 and 8 with Figures 9 and 10, respectively, it can be
seen that the deterministic and reliable topological configurations under different numbers
of elements are relatively similar, which indicates that the number of elements does not
have a significant effect on the topological configuration, that is, the proposed method is
mesh independence.

The volume fraction and maximum von Mises stress iteration curves for the DTO and
RBTO processes shown in Figures 7 and 8 are shown in Figure 11. The results show that
the iterative oscillation of the maximum von Mises stress during optimization is caused by
the highly nonlinear behavior of the stress constraint. Compared with DTO, the fluctuation
degree of the maximum von Mises stress in the iterative process of RBTO is reduced, and
the iterative process is more stable. The above analysis can show that the proposed method
is feasible and effective.
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Figure 11. Volume fraction and maximum von Mises stress iteration curves of (a) DTO and (b) RBTO.

7.2. 2D T-Shaped Beam Structure

The design domain of the T-beam structure is shown in Figure 12. The design domain is
160 mm× 100 mm in structural dimensions and 1 mm in thickness, which is discretized into
16,000 four-node elements. The left and right sides of the structure are solidly supported,
and the mechanical loads Fx

m and Fy
m are applied to the upper right end of the structure,

which are uniformly distributed to the five adjacent nodes horizontally. The stress constraint
value for the structure is 235 MPa.

Figure 12. Design domain of T-shaped beam.

For the reliability analysis, the random variables are chosen as Y = (Fx
m, Fy

m, E, δ0)T,
and assume that they obey normal probabilistic distribution. The mean value of mechanical
loads, Young’s modulus and thermal stress coefficient are ϕFx

m = 350 N, ϕFy
m = 300 N,

ϕE = 2.1 × 105 MPa and ϕδ0 = 2.541 MPa/◦C, respectively. The variance is set to 10% of the
mean value.

The initial stress distribution of the structure is shown in Figure 13, and the maximum
von Mises stress value is 315.04 MPa. In order to consider the effect of different temperature
variations ∆T on the topology optimization results, when the temperature variations ∆T
are set to 20 ◦C and 30 ◦C, the DTO and RBTO topologies and von Mises stress distribu-
tions obtained are shown in Figures 14 and 15, respectively. The corresponding topology
optimization results are shown in Table 2, and the reliability indexes are calculated using
the Monte Carlo simulation method, where u1, u2, u3 and u4 correspond to the standard
normalized variable values of the random variables Fx

m, Fy
m, E and δ0, respectively.
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Figure 13. Initial structural stress distribution.

Figure 14. Topology optimization results of T-beam (∆T = 20 ◦C): (a) DTO topological structure (b) DTO
Von Mises stress distribution; (c) RBTO topological structure; (d) RBTO Von Mises stress distribution.

Figure 15. Topology optimization results of T-beam (∆T = 30 ◦C): (a) DTO topological structure; (b) DTO
Von Mises stress distribution; (c) RBTO topological structure; (d) RBTO Von Mises stress distribution.
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Table 2. Comparison of topology optimization design results.

∆T (◦C) Approach Volume
Fraction (%)

Reliability
Index (β)

Computing
Time (s)

Max Von Mises
Stress (MPa)

MPP
(u1, u2, u3, u4)

20
DTO 10.2 2.0201 × 10−5 354.02 234.96 -

RBTO 13.5 3.9722 428.21 234.72 (2.000, 2.000, 2.000, 2.000)

30
DTO 11.2 2.5426 × 10−5 359.37 234.85 -

RBTO 14.4 3.9764 435.19 234.53 (2.000, 2.000, 2.000, 2.000)

By comparing the above optimization results with the initial structure, it can be seen
that the right-angle part of the original structure evolves into a slightly rounded shape,
which relieves the stress concentration, the stress distribution of the structure is uniform,
and the design results of both DTO and RBTO meet the stress constraint requirements.

Comparing the reliability indicators of DTO and RBTO results in Table 2, we can see
that the reliability level of the DTO results is close to 0, so the probability of structural
failure is higher. The reliability index of RBTO results has been improved compared with
that of the DTO results, but the target reliability has not been achieved precisely, and it also
reflects that the proposed method can effectively improve the reliability of the structure, but
the computational accuracy is still slightly inadequate. Compared with DTO, the structures
obtained by RBTO are both significantly different, and the reliability of the structure is
improved, and the overall stress distribution of the structures is more uniform.

A comparative analysis of the optimization results of the structures in Table 2 shows
that the topologies of both DTO and RBTO are slightly different for different temperature
variations ∆T. This is mainly due to the fact that as the temperature variation ∆T increases,
the temperature load enlarges and more material needs to be filled to bring the structures
to the allowed reliability index, which leads to a slight increase in volume.

The volume fraction and maximum von Mises stress iteration curves for the DTO
and RBTO at different temperature variations ∆T are shown in Figure 16, respectively.
Compared with DTO, RBTO has less fluctuation of the maximum von Mises stress during
the iterative process. It can be demonstrated that it is necessary and effective to incorporate
the reliability analysis into the stress-constrained topology optimization of a thermo-elastic
problem considering the uncertainties of mechanical loads, the thermal stress coefficient,
and the material’s property.

Figure 16. Volume fraction and maximum von Mises stress iteration curves of (a) DTO (∆T = 20 ◦C)
and (b) RBTO (∆T = 20 ◦C); (c) DTO (∆T = 30 ◦C) and (d) RBTO (∆T = 30 ◦C).
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7.3. 3D L-Shaped Beam Structure

In this section, we extend the previous 2D L-bracket example to a 3D design prob-
lem. The design domain of the 3D L-beam structure is shown in Figure 17. The design
domain size is 50 mm × 50 mm and the thickness is 4 mm. The domain is discrete into
10,000 eight-node hexahedral elements. The upper left of the structure is fixed. The mechan-
ical load Fm is applied vertically downward on the right side of the structure. The stress
constraint value for the structure is 235 MPa and the amount of temperature change
∆T = 30 ◦C.

Figure 17. 3D L-beam design domain.

For the reliability analysis, the random variables are chosen as Y = (Fm, E, δ0)T and
assume that they obey normal probabilistic distributions. The mean values of mechanical
load, Young’s modulus and thermal stress coefficient are ϕF

m = 67 N, ϕE = 2.1 × 105 MPa
and ϕδ0 = 2.541 MPa/◦C, respectively. The variance is set to 7% of the mean value, and the
permissible reliability index is set to 5.0.

The initial structural stress distribution is shown in Figure 18 and the maximum
von Mises stress value is 273.81 MPa. The deterministic and reliable topologies and von
Mises stress distributions are shown in Figures 19 and 20, respectively. The corresponding
topology optimization results are shown in Table 3, and the reliability indexes are calculated
using the Monte Carlo simulation method, where u1, u2, and u3 correspond to the standard
normalized variable values of the random variables Fm, E, and δ0, respectively.

Figure 18. Initial structural stress distribution.
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Figure 19. Deterministic topology optimization results for 3D L-shaped beam: (a) Topological
structure; (b) Von Mises stress distribution.

Figure 20. Reliability topology optimization results for 3D L-shaped beam: (a) Topological structure;
(b) Von Mises stress distribution.

Table 3. Comparison of topology optimization design results.

Approach Volume
Fraction (%)

Reliability
Index (β)

Computing
Time (s)

Max Von Mises
Stress (MPa) MPP (u1, u2, u3)

DTO 12.8 4.2818 × 10−5 326.02 234.93 -
RBTO 15.7 4.9864 383.62 234.65 (2.8868, 2.8868, 2.8868)

From the above optimization results, it can be seen that the DTO and RBTO optimal
configurations also achieve the maximum von Mises stress constraint.

The analysis of the DTO and RBTO results show that the DTO result has a lower
reliability level and a higher probability of structural failure. Similar to the 2D L-shaped
problem, the structure obtained by RBTO has a significant difference compared to the DTO
result, mainly in the filling of the lower part of the structure with bar material that increases
the structural volume. In terms of stress distribution, the structure obtained by RBTO has
more uniform stress distribution than that obtained by DTO, and the structure is more
reliable and stable.

The volume fraction and maximum von Mises stress iteration curves of DTO and RBTO
are shown in Figure 21, respectively. This 3D example proves that the reliability-based
stress-constrained topology optimization method for thermo-elastic structures proposed in
this paper is also applicable to the 3D structures problem, which has practical significance
and application prospects for solving the uncertainty problem of thermo-elastic structures.



Mathematics 2022, 10, 1091 20 of 22

Figure 21. Volume fraction and maximum von Mises stress iteration curves of (a) DTO and (b) RBTO.

8. Conclusions

In this paper, the reliability analysis is integrated into SIMP-based topology optimiza-
tion to solve the uncertainty problem in the stress-constraint topology optimization of
thermo-elastic structures. The thermo-elastic topology optimization model based on global
stress constraint considering the combined effect of temperature and mechanical load is
established. The material property, the mechanical load and thermal stress coefficient are
considered as uncertainty variables. Combining the deterministic topology optimization
with the reliability hybrid method, the following conclusions can be drawn.

The structures after DTO and RBTO can satisfy the stress constraints, and the stress
concentration phenomenon is alleviated. They differ in that the optimal topology obtained
by the proposed RBTO method is more reliable than that obtained by the DTO method,
and the RBTO exhibits significantly different topologies.

The corresponding DTO and RBTO results are also distinct for different temperature
variations. It is also noted that as the temperature change increases, more material needs to
be filled to meet the stress constraint and to reach the allowable reliability requirement.

The feasibility and effectiveness of the proposed method is verified by the 3D numeri-
cal example. It is shown that it is necessary to consider the uncertainty of the mechanical
loads and material properties, thermal stress coefficients, and to incorporate the reliability
concept into topology optimization.

In addition, the results of the above numerical examples show that the RBTO method
in the predecessor-decoupling hybrid format used in this paper does not consider the
influence of the functional function in the reliability analysis, so the calculation accuracy is
slightly deficient. Therefore, further development of this work can try to introduce different
reliability topology optimization methods for thermo-elastic structures with non-uniform
temperature distribution for discussion to reduce the limitations.
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