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Abstract: This paper aims to improve Hille oscillation criteria for the third-order functional dynamic

equation
{

p2(ξ)φγ2

([
p1(ξ)φγ1

(
y∆(ξ)

)]∆)}∆
+ a(ξ)φγ(y(g(ξ))) = 0, on an above-unbounded time

scale T. The obtained results improve related contributions reported in the literature without
restrictive conditions on the time scales. To demonstrate the essential results, an example is presented.
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1. Introduction

Stefan Hilger presented the theory of dynamic equations on time scales in his Ph.D.
thesis in 1988 in an attempt to unify continuous and discrete analysis, which has recently
gained a lot of attention, see [1]. A time scale T is an arbitrary closed subset of the reals, and
the classical theories of differential and difference equations are represented by situations,
where this time scale is equal to the reals or integers. There are a variety of different
intriguing time scales that can be used in a variety of ways (see [2]). This novel theory of
“dynamic equations” unites the related theories for differential equations and difference
equations and extends these traditional cases to “in-between” circumstances. That is, when
T=qN0 := {qn : n ∈ N0 for q > 1} (which has major applications in quantum theory, see [3]),
we may treat the so-called q−difference equations, which can be applied to different types
of time scales such that T = hN, T = N2 and T = Tn, the set of the harmonic numbers.
We assume that the reader is familiar with the fundamentals of time scales and time scale
notation; see [2,4,5], for an excellent introduction to time scale calculus.

Oscillatory properties of solutions to dynamic equations on time scales are gaining
popularity due to their applications in engineering and natural sciences. This work is on
the asymptotic and oscillatory behavior of the third-order functional dynamic equation:{

p2(ζ)φγ2

([
p1(ζ)φγ1

(
y∆(ζ)

)]∆
)}∆

+ a(ζ)φγ(y(g(ζ))) = 0 (1)

on an above-unbounded time scale T, where φβ(u) := |u|β−1u, β > 0; γ1, γ2, γ := γ1γ2 > 0;
a is a positive rd−continuous function on T; and g : T→ T is a rd−continuous nonde-
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creasing function , such that limt→∞ g(t) = ∞; and pi, i = 1, 2, are positive rd−continuous
functions on T such that: ∫ ∞

ζ0

∆t

p1/γi
i (t)

= ∞, i = 1, 2. (2)

Throughout this paper, we let:

Hi(ζ, τ) := φγi−1

(∫ ζ

τ
φ−1

γi−1

(
Hi−1(t, τ)

pi−1(t)

)
∆t
)

, i = 1, 2, 3,

with:
H0(t, τ) :=

1

p1/γ2
2 (t)

, p0 = γ0 = 1

and:
y[i](ζ) := pi(ζ)φγi ([y

[i−1](ζ)]∆), i = 1, 2, with y[0](ζ) = y. (3)

By a solution of Equation (1) we mean a nontrivial real–valued function y ∈ C1
rd[Ty, ∞)T

for some Ty ≥ ζ0 for a positive constant ζ0 ∈ T such that y[1](ζ), y[2](ζ) ∈ C1
rd[Ty, ∞)T and

y(ζ) satisfies Equation (1) on [Ty, ∞)T, where Crd is the space of right-dense continuous
functions. Solutions that vanish in the neighborhood of infinity will be excluded from
consideration. If a solution y of (1) is neither eventually positive nor eventually negative, it
is said to be oscillatory; otherwise, it is nonoscillatory. For nonoscillatory solutions of (1),
we assume that:

N0 :=
{

y(ζ) : y[i−1](ζ) y[i](ζ) > 0, i = 1, 2, eventually
}

and:
N1 :=

{
y(ζ) : y[i−1](ζ) y[i](ζ) < 0, i = 1, 2, eventually

}
.

In this paper, we establish some Hille oscillation criteria known on second-order
differential equations (see [6]) for the third-order functional dynamic equation. Our criteria
improve related contributions reported in the literature without restrictive conditions on
the time scales, contrary to some previous works, see Section 2.

This paper is organized as follows: after this introduction, we state some previous
results for third-order dynamic equations on time scales in Section 2. The main results
are given in Section 3 after several technical lemmas are derived. Some examples are
introduced at the end of Section 3. Discussions and Conclusions are listed in Section 4.

2. Preliminaries

In this section, we present some oscillation criteria for dynamic equations connected
to our main findings that will be related to our main results for Equation (1) and explain
the important contributions of this work.

Erbe et al. [7] established Hille oscillation criteria for the third-order dynamic equation:

y∆∆∆(ζ) + a(ζ)y(ζ) = 0. (4)

The following are the main findings of [7]:

Theorem 1 ([7]). Every solution of Equation (4) is either oscillatory or tends to zero eventually
provided that: ∫ ∞

ζ0

∫ ∞

ω

∫ ∞

τ
a(t)∆t ∆τ ∆ω = ∞ (5)

and:

lim inf
ζ→∞

ζ
∫ ∞

ζ

h2(t, ζ0)

σ(t)
a(t)∆t >

1
4

, (6)
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where h2(t, ζ0) is the Taylor monomial of degree 2, see ([2] [Section 1.6]).

Saker [8] considered the dynamic equation as:{
p2(ζ)

[
y∆∆(ζ)

]γ2
}∆

+ a(ζ)yγ2(g(ζ)) = 0, (7)

where g(ζ) ≤ ζ, γ2 is a quotient of odd positive integers, and p2 is a nondecreasing
functions on T. Hille oscillation criteria for (7) have been established, one of which we
give below.

Theorem 2 ([8] Theorem 3.4). Every solution of Equation (7) is either oscillatory or tends to zero
eventually provided that: ∫ ∞

ζ0

∆t

p1/γ2
2 (t)

= ∞, (8)

∫ ∞

ζ0

∫ ∞

ω

[
1

p2(τ)

∫ ∞

τ
a(t)∆t

]1/γ2

∆τ∆ω = ∞, (9)

and:

lim inf
ζ→∞

ζγ2

p2(ζ)

∫ ∞

σ(ζ)

(
h2(g(t), ζ0)

σ(t)

)γ2

a(t)∆t >
γ

γ2
2

lγ2
2 (1 + γ2)1+γ2

, (10)

where l := lim infζ→∞
ζ

σ(ζ)
.

Theorem 3 ([8] Corollary 3.5). Assume that (5) holds with p2(ζ) = 1 and γ2 = 1. If:

lim inf
ζ→∞

ζ
∫ ∞

σ(ζ)

h2(g(t), ζ0)

σ(t)
a(t)∆t >

1
4l

. (11)

Every solution of the equation:

y∆∆∆(ζ) + a(ζ)y(g(ζ)) = 0 (12)

is either oscillatory or tends to zero eventually.

When g(ζ) = ζ, condition (11) becomes:

lim inf
ζ→∞

ζ
∫ ∞

σ(ζ)

h2(t, ζ0)

σ(t)
a(t)∆t >

1
4l

. (13)

When comparing (6) and (13), it is clear that [7] improves [8] for Equation (4) since:

1
4l
≥ 1

4
and ζ

∫ ∞

σ(ζ)

h2(t, ζ0)

σ(t)
a(t)∆t ≤ ζ

∫ ∞

ζ

h2(t, ζ0)

σ(t)
a(t)∆t.

Wang and Xu in [9] considered the third order dynamic equation:(
p2(ζ)

[
(p1(ζ)y∆(ζ))∆

]γ2
)∆

+ a(ζ)y(ζ) = 0,

under certain restrictive conditions on the time scales. Agarwal et al. [10] suggested some
Hille type oscillation criteria to the third-order delay dynamic equation as follows:(

p2(ζ)(p1(ζ)y∆(ζ))∆
)∆

+ a(ζ)y(g(ζ)) = 0, (14)
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where g(ζ) ≤ ζ on [ζ0, ∞)T and under the canonical type assumptions:∫ ∞

ζ0

∆t
pi(t)

= ∞, i = 1, 2, (15)

and: ∫ ∞

ζ0

1
p1(ω)

∫ ∞

ω

1
p2(τ)

∫ ∞

τ
a(t)∆t ∆τ ∆ω = ∞. (16)

One of these results in [10] reads as follows.

Theorem 4 ([10]). Every solution of Equation (14) is either oscillatory or tends to zero eventually
if (15) and (16) hold, and:

lim inf
ζ→∞

H1(ζ, ζ0)
∫ ∞

ζ

H2(g(t), ζ0)

H1(σ(t), ζ0)
a(t)∆t >

1
4

. (17)

The results in [10] included the results that were established in [7]. We note that the results obtained
in [8,10] are proved only when g(ζ) ≤ ζ and cannot be applied when g(ζ) ≥ ζ. Agarwal et al. [11]
examined a generalized third-order delay dynamic Equation (1) and gave some new oscillation criteria
under the canonical type conditions.∫ ∞

ζ0

∆t

p1/γi
i (t)

= ∞, i = 1, 2, (18)

and: ∫ ∞

ζ0

(
1

p1(ω)

∫ ∞

ω

(
1

p2(τ)

∫ ∞

τ
a(t)∆t

)1/γ2

∆τ

)1/γ1

∆ω = ∞. (19)

We quote below one of the most interesting ones for Eq. due to Hille.

Theorem 5 ([11]). Every solution of Equation (1) is either oscillatory or tends to zero eventually if
(18) and: (19) hold, and:

lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

σ(ζ)

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t >
γ

γ2
2

lγ2
2 (1 + γ2)1+γ2

, (20)

where l := lim infζ→∞
H1(ζ,ζ0)

H1(σ(ζ),ζ0)

ϕ(ζ) :=
{

ζ, g(ζ) ≥ ζ,
g(ζ), g(ζ) ≤ ζ.

(21)

We note that the critical constant in (17) is 1
4 and in (20) is γ

γ2
2

lγ2
2 (1+γ2)

1+γ2
, which is 1

4l ≥
1
4

if γ2 = 1 and depends on a concrete time scale; so the critical constant in [10] is better than
the one in [11].

Recently, Hassan et al. [12] improved the results of [7–11] for Equation (14). We
include one of intriguing ones for Equation (14).

Theorem 6 ([12]). Every solution of Equation (14) is either oscillatory or tends to zero eventually
if (15) and: (16) hold, and

lim inf
ζ→∞

H1(ζ, ζ0)
∫ ∞

ζ

H2(ϕ(t), ζ0)

H1(t, ζ0)
a(t)∆t >

1
4

, (22)

where ϕ(ζ) is defined as in (21).
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We noted that, when g(ζ) = ζ and p1(ζ) = p2(ζ) = 1, condition (22) improves
condition (6); when g(ζ) ≤ ζ and p1(ζ) = 1, condition (22) improves condition (10); and
when g(ζ) ≤ ζ, condition (22) improves condition (17). In addition, the critical constant
in (22) does not depend on a concrete time scale. The reader is directed to papers [6,13–31]
and the sources listed therein.

As a result of the above findings, this paper intends to improve Hille oscillation
conditions (6), (11), (13), (17) and (20) for the generalized dynamic Equation (1). All of the
functional inequalities reported in this paper are assumed to hold in the eventually, that is,
for all sufficiently large ζ.

3. Main Results

We begin this section with the preliminary lemmas listed below, which will be crucial
in the proof of the main results. We omit the details proving the first lemma that follows
directly from the canonical form ((2) holds) of Equation (1).

Lemma 1. If y(ζ) is a nonoscillatory solution of Equation (1), then y ∈ N0 ∪N1, eventually.

Lemma 2. If y ∈ N0, then |y
[1](ζ)|

H1(ζ,ζ0)
is strictly decreasing on (ζ0, ∞)T and:

φγ1(y(ζ))
y[1](ζ)

≥ H2(ζ, ζ0)

H1(ζ, ζ0)
. (23)

Proof. Without loss of generality, assume that:

y[i](ζ) > 0, i = 0, 1, 2 and y(g(ζ)) > 0 on [ζ0, ∞)T.

By using the fact that y[2](ζ) is strictly decreasing on [ζ0, ∞)T. Then for ζ ∈ [ζ0, ∞)T,

y[1](ζ) ≥
∫ ζ

ζ0

φ−1
γ2

(
y[2](t)

)
H0(t, ζ0) ∆t

≥ φ−1
γ2

(
y[2](ζ)

) ∫ ζ

ζ0

H0(t, ζ0) ∆t

= φ−1
γ2

(
y[2](ζ)

)
H1(ζ, ζ0).

Hence, we conclude that, for ζ ∈ (ζ0, ∞)T,

(
y[1](ζ)

H1(ζ, ζ0)

)∆

=
H0(ζ, ζ0)

{
φ−1

γ2

(
y[2](ζ)

)
H1(ζ, ζ0)− y[1](ζ)

}
H1(ζ, ζ0)H1(σ(ζ), ζ0)

< 0.

Thus y[1](ζ)
H1(ζ,ζ0)

is strictly decreasing on (ζ0, ∞)T. Therefore, for ζ ∈ (ζ0, ∞)T,

y(ζ) ≥
∫ ζ

ζ0

φ−1
γ1

(
y[1](t)

H1(t, ζ0)

)(
H1(t, ζ0)

p1(t)

) 1
γ1

∆t

≥ φ−1
γ1

(
y[1](ζ)

H1(ζ, ζ0)

) ∫ ζ

ζ0

(
H1(t, ζ0)

p1(t)

) 1
γ1

∆t

= φ−1
γ1

(
y[1](ζ)

H1(ζ, ζ0)

)
H

1
γ1
2 (ζ, ζ0).

That is,

yγ1(ζ) ≥ y[1](ζ)
H1(ζ, ζ0)

H2(ζ, ζ0) (24)
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Thus (23) holds for ζ ∈ (ζ0, ∞)T. This completes the proof.

Lemma 3. If y(ζ) ∈ N1, then y(ζ) tends to a finite limit eventually.

Proof. The proof is straightforward and hence is omitted.

Lemma 4. Let:

(A) either, ∫ ∞

ζ0

a(t) ∆t = ∞;

∫ ∞

ζ0

(
1

p2(τ)

∫ ∞

τ
a(t) ∆t

)1/γ2

∆τ = ∞;

or, ∫ ∞

ζ0

[
1

p1(ω)

∫ ∞

ω

(
1

p2(τ)

∫ ∞

τ
a(t) ∆t

)1/γ2

∆τ

]1/γ1

∆ω = ∞.

If y(ζ) ∈ N1, then y(ζ) tends to zero eventually.

Proof. The proof is similar to that of ([32], Theorem 2.1) and is therefore omitted.

Lemma 5. Let 0 < γ2 ≤ 1. If y ∈ N0, then for all large ζ,

x(ζ) ≥ γ2

∫ ∞

ζ
H0(t, ζ0)x(t)x1/γ2(σ(t))∆t +

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t, (25)

where:

x(ζ) :=
y[2](ζ)

(y[1](ζ))γ2
. (26)

Proof. Without loss of generality, assume that:

y[i](ζ) > 0, i = 0, 1, 2 and y(g(ζ)) > 0 on [ζ0, ∞)T.

By the product rule and the quotient rule, we get:

x∆(ζ) =
(y[2](ζ))∆(

y[1](σ(ζ))
)γ2

+

(
1(

y[1](ζ)
)γ2

)∆

y[2](ζ)

=
(y[2](ζ))∆(

y[1](σ(ζ))
)γ2
−

((
y[1](ζ)

)γ2
)∆

(
y[1](σ(ζ))

)γ2

y[2](ζ)(
y[1](ζ)

)γ2
.

From (1) and the definition of x(ζ), we see that for ζ ≥ ζ0,

x∆(ζ) = −
(

yγ1(g(ζ))
y[1](σ(ζ))

)γ2

a(ζ)−

((
y[1](ζ)

)γ2
)∆

(
y[1](σ(ζ))

)γ2
x(ζ). (27)

First, consider the case when g(ζ) ≤ ζ, for all large ζ. From (24) and using the fact

that y[1](ζ)
H1(ζ,ζ0)

is strictly decreasing, we obtain:

yγ1(g(ζ)) ≥ y[1](g(ζ))
H1(g(ζ), ζ0)

H2(g(ζ), ζ0) ≥
y[1](σ(ζ))

H1(σ(ζ), ζ0)
H2(g(ζ), ζ0). (28)
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Next, consider the case when g(ζ) ≥ ζ, for all large ζ. Using the fact that y(ζ) is strictly

increasing and (24), and using the fact that y[1](ζ)
H1(ζ,ζ0)

is strictly decreasing, we obtain:

yγ1(g(ζ)) ≥ yγ1(ζ) ≥ y[1](ζ)
H1(ζ, ζ0)

H2(ζ, ζ0) ≥
y[1](σ(ζ))

H1(σ(ζ), ζ0)
H2(ζ, ζ0), (29)

It follows from (28) and (29) that there exists a ζ1 ∈ (ζ0, ∞)T such that:

yγ1(g(ζ))
y[1](σ(ζ))

≥ H2(ϕ(ζ), ζ0)

H1(σ(ζ), ζ0)
for ζ ∈ [ζ1, ∞)T.

Hence, we conclude that, for ζ ∈ [ζ1, ∞)T,

x∆(ζ) ≤ −
(

H2(ϕ(ζ), ζ0)

H1(σ(ζ), ζ0)

)γ2

a(ζ)−

((
y[1](ζ)

)γ2
)∆

(
y[1](σ(ζ))

)γ2
x(ζ).

By the Pötzsche chain rule,(
(y[1](ζ))γ2

)∆
= γ2

∫ 1

0
[(1− h)y[1](ζ) + hy[1](σ(ζ))]γ2−1dh

[
y[1](ζ)

]∆

≥ γ2

[
y[1](σ(ζ))

]γ2−1 [
y[1](ζ)

]∆
.

Hence, by the fact that y[2](ζ) is strictly decreasing and (26),

x∆(ζ) ≤ −
(

H2(ϕ(ζ), ζ0)

H1(σ(ζ), ζ0)

)γ2

a(ζ)− γ2

[
y[1](ζ)

]∆

y[1](σ(ζ))
x(ζ)

≤ −
(

H2(ϕ(ζ), ζ0)

H1(σ(ζ), ζ0)

)γ2

a(ζ)− γ2H0(ζ, ζ0)

[
y[2](σ(ζ))

] 1
γ2

y[1](σ(ζ))
x(ζ)

= −
(

H2(ϕ(ζ), ζ0)

H1(σ(ζ), ζ0)

)γ2

a(ζ)

−γ2H0(ζ, ζ0)x(ζ)x1/γ2(σ(ζ)), (30)

which implies that x∆ < 0. Integrating (30) from ζ to v, we have:

x(v)− x(ζ) ≤ −
∫ v

ζ

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t− γ2

∫ v

ζ
H0(t, ζ0)x(t)x1/γ2(σ(t))∆t.

Taking into account that x > 0 and passing to the limit as v→ ∞, we get:

−x(ζ) ≤ −
∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t− γ2

∫ ∞

ζ
H0(t, ζ0)x(t)x1/γ2(σ(t))∆t.

Thus, (25) holds for all large ζ. This completes the proof.

Lemma 6. Let γ2 ≥ 1. If y ∈ N0, then for all large ζ,

x(ζ) ≥ γ2

∫ ∞

ζ
H0(t, ζ0)x1/γ2(t)x(σ(t))∆t +

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t, (31)

where ϕ(ζ) and x(ζ) are defined as in (21) and (26), respectively.
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Proof. Without loss of generality, assume that:

y[i](ζ) > 0, i = 0, 1, 2 and y(g(ζ)) > 0 on [ζ0, ∞)T.

By the product rule and the quotient rule, we get:

x∆(ζ) =

(
y[2](ζ)

)∆

(y[1](ζ))γ2
+

(
1

(y[1](ζ))γ2

)∆
y[2](σ(ζ))

=

(
y[2](ζ)

)∆

(y[1](ζ))γ2
−

(
(y[1](ζ))γ2

)∆

(y[1](ζ))γ2

y[2](σ(ζ))
(y[1](σ(ζ)))γ2

.

From (1) and the definition of x(ζ), we see that for ζ ≥ ζ0,

x∆(ζ) = −
(

yγ1(g(ζ))
y[1](ζ)

)γ2

a(ζ)−

(
(y[1](ζ))γ2

)∆

(y[1](ζ))γ2
x(σ(ζ)). (32)

First, consider the case when g(ζ) ≤ ζ, for all large ζ. From (24) and using the fact

that y[1](ζ)
H1(ζ,ζ0)

is strictly decreasing, we obtain:

yγ1(g(ζ)) ≥ y[1](g(ζ))
H1(g(ζ), ζ0)

H2(g(ζ), ζ0)

≥ y[1](ζ)
H1(ζ, ζ0)

H2(g(ζ), ζ0). (33)

Next, consider the case when g(ζ) ≥ ζ, for all large ζ. Using the fact that y is strictly
increasing and (24), we have that:

yγ1(g(ζ)) ≥ yγ1(ζ) ≥ y[1](ζ)
H1(ζ, ζ0)

H2(ζ, ζ0). (34)

It follows from (33) and (34) that there exists a ζ1 ∈ (ζ0, ∞)T such that:

yγ1(g(ζ))
y[1](ζ)

≥ H2(ϕ(ζ), ζ0)

H1(ζ, ζ0)
for ζ ∈ [ζ1, ∞)T.

Hence, we conclude that, for ζ ∈ [t1, ∞)T,

x∆(ζ) ≤ −
(

H2(ϕ(ζ), ζ0)

H1(ζ, ζ0)

)γ2

a(ζ)−

(
(y[1](ζ))γ2

)∆

(y[1](ζ))γ2
x(σ(ζ)).

By the Pötzsche chain rule,(
(y[1](ζ))γ2

)∆
≥ γ2

[
y[1](ζ)

]γ2−1 [
y[1](ζ)

]∆
.

Hence, by (26),

x∆(ζ) ≤ −
(

H2(ϕ(ζ), ζ0)

H1(ζ, ζ0)

)γ2

a(ζ)− γ2

[
y[1](ζ)

]∆

y[1](ζ)
x(σ(ζ))

= −
(

H2(ϕ(ζ), ζ0)

H1(ζ, ζ0)

)γ2

a(ζ)− γ2H0(ζ, ζ0)x1/γ2(ζ)x(σ(ζ)). (35)



Mathematics 2022, 10, 1078 9 of 15

Integrating (35) from ζ to v, we have:

x(v)− x(ζ) ≤ −
∫ v

ζ

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t− γ2

∫ v

ζ
H0(t, ζ0)x1/γ2(t)x(σ(t))∆t.

Taking into account that x > 0 and passing to the limit as v→ ∞, we get:

−x(ζ) ≤ −
∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t− γ2

∫ ∞

ζ
H0(t, ζ0)x1/γ2(t)x(σ(t))∆t.

Thus, (31) holds for all large ζ. This completes the proof.

The classification of the possible nonoscillatory solutions of Equation (1) will now
be presented.

Theorem 7. Let 0 < γ2 ≤ 1. If:

∫ ∞

ζ0

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t = ∞, (36)

where ϕ(ζ) is defined as in (21), then N0 = ∅.

Proof. Assume Equation (1) has a nonoscillatory solution y(ζ) ∈ N0 such that y(ζ) > 0
and y(g(ζ)) > 0 for ζ ∈ [ζ0, ∞)T. Then:

y[i](ζ) > 0, i = 1, 2 and y[3](ζ) < 0 on [ζ0, ∞)T.

From (25), we have for ζ ∈ [ζ1, ∞)T and ζ1 ∈ (ζ0, ∞)T,

−x∆(ζ) ≥
(

H2(ϕ(ζ), ζ0)

H1(σ(ζ), ζ0)

)γ2

a(ζ).

Integrating the last inequality from ζ to v, we obtain:

x(ζ)− x(v) ≥
∫ v

ζ

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t,

and hence:

x(ζ) ≥
∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t

This is in contradiction with (36). The proof is now complete.

Theorem 8. Let 0 < γ2 ≤ 1. If:

lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t >
γ

γ2
2

lγ2(1−γ2)(1 + γ2)1+γ2
, (37)

where:

l := lim inf
ζ→∞

H1(ζ, ζ0)

H1(σ(ζ), ζ0)
(38)

and ϕ(ζ) is defined as in (21), then N0 = ∅.

Proof. Assume Equation (1) has a nonoscillatory solution y(ζ) ∈ N0 such that y(ζ) > 0
and y(g(ζ)) > 0 for ζ ∈ [ζ0, ∞)T. Then:

y[i](ζ) > 0, i = 1, 2 and y[3](ζ) < 0 on [ζ0, ∞)T.
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As a result, (25) holds on [ζ1, ∞)T, for sufficiently large ζ1 ∈ [ζ0, ∞)T. Now, for any
ε > 0, there exists a ζ2 ∈ [ζ1, ∞)T such that for ζ ∈ [ζ2, ∞)T,

H1(ζ, ζ0)

H1(σ(ζ), ζ0)
≥ l − ε and Hγ2

1 (ζ, ζ0)x(ζ) ≥ H − ε, (39)

where:
H := lim inf

ζ→∞
Hγ2

1 (ζ, ζ0)x(ζ), 0 ≤ H ≤ 1

Multiplying both sides of (25) by H1(ζ, ζ0), we obtain for ζ ∈ [ζ2, ∞)T,

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t

≤ Hγ2
1 (ζ, ζ0)x(ζ)

−γ2Hγ2
1 (ζ, ζ0)

∫ ∞

ζ
H0(t, ζ0)x(t)x1/γ2(σ(t))∆t

≤ Hγ2
1 (ζ, ζ0)x(ζ)

−Hγ2
1 (ζ, ζ0)(H − ε)1+1/γ2(l − ε)1−γ2

∫ ∞

ζ

γ2 H0(t, ζ0)

H1(t, ζ0)Hγ2
1 (σ(t), ζ0)

∆t

≤ Hγ2
1 (ζ, ζ0)x(ζ)

−Hγ2
1 (ζ, ζ0)(H − ε)1+1/γ2(l − ε)1−γ2

∫ ∞

ζ

(
−1

Hγ2
1 (t, ζ0)

)∆

∆t

= Hγ2
1 (ζ, ζ0)x(ζ)− (H − ε)1+1/γ2(l − ε)1−γ2 , (40)

since:(
−1

Hγ2
1 (t, ζ0)

)∆

=
γ2
∫ 1

0 [(1− h)H1(t, ζ0) + hH1(σ(t), ζ0)]
γ2−1dh H0(t, ζ0)

Hγ2
1 (t, ζ0)Hγ2

1 (σ(t), ζ0)

≤ γ2H0(t, ζ0)

H1(t, ζ0)Hγ2
1 (σ(t), ζ0)

.

Taking the lim inf of both sides of the inequality (40) as ζ → ∞, we get:

lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t ≤ H − (l − ε)1−γ2(H − ε)1+1/γ2 .

By virtue of the fact that ε > 0 are arbitrary, we conclude that:

lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t ≤ H − l1−γ2 H1+1/γ2 .

Letting A = 1, B = l
1−γ2 , and V = H, and using inequality:

AV − BV1+1/γ2 ≤
γ

γ2
2

(1 + γ2)1+γ2

A1+γ2

Bγ2
, A ≥ 0, B > 0, (41)

we achieve the following:

lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t ≤
γ

γ2
2

lγ2(1−γ2)(1 + γ2)1+γ2
,

which is a contradiction with (37). The proof is complete.



Mathematics 2022, 10, 1078 11 of 15

The last theorem is based on the following assumption:

∫ ∞

ζ0

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t < ∞.

Otherwise, (36) holds, implying that N0 = ∅ according to Theorem 7.

Theorem 9. Let γ2 ≥ 1. If:

∫ ∞

ζ0

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t = ∞, (42)

where ϕ(ζ) is defined as in (21), then N0 = ∅.

Proof. The proof is similar to that of Theorem 7 and is therefore omitted.

Theorem 10. Let γ2 ≥ 1. If:

lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t >
γ

γ2
2

lγ2(γ2−1)(1 + γ2)1+γ2
, (43)

where ϕ(ζ) and l are defined as in (21) and (38), respectively, then N0 = ∅.

Proof. Assume Equation (1) has a nonoscillatory solution y(ζ) ∈ N0 such that y(ζ) > 0
and y(g(ζ)) > 0 for ζ ∈ [ζ0, ∞)T. Then:

y[i](ζ) > 0, i = 1, 2 and y[3](ζ) < 0 on [ζ0, ∞)T.

As a result, (31) holds on [ζ1, ∞)T, for sufficiently large ζ1 ∈ [ζ0, ∞)T. Now, for any
ε > 0, there exists a ζ2 ∈ [ζ1, ∞)T such that (39) for ζ ∈ [ζ2, ∞)T. Multiplying both sides of
(31) by Hγ2

1 (ζ, ζ0) and using (39), we obtain for ζ ∈ [t2, ∞)T,

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t

≤ Hγ2
1 (ζ, ζ0)x(ζ)− γ2Hγ2

1 (ζ, ζ0)
∫ ∞

ζ
H0(t, ζ0)x1/γ2(t)x(σ(t))∆t

≤ Hγ2
1 (ζ, ζ0)x(ζ)− Hγ2

1 (ζ, ζ0)(H − ε)1+1/γ2(l − ε)γ2−1
∫ ∞

ζ

γ2H0(t, ζ0)

Hγ2
1 (t, ζ0)H1(σ(t), ζ0)

∆t

≤ Hγ2
1 (ζ, ζ0)x(ζ)− Hγ2

1 (ζ, ζ0)(H − ε)1+1/γ2(l − ε)γ2−1
∫ ∞

ζ

(
−1

Hγ2
1 (t, ζ0)

)∆

∆t

= Hγ2
1 (ζ, ζ0)x(ζ)− (H − ε)1+1/γ2(l − ε)γ2−1, (44)

since: (
−1

Hγ2
1 (t, ζ0)

)∆

=
γ2
∫ 1

0 [(1− h)H1(t, ζ0) + hH1(σ(t), ζ0)]
γ2−1dh H0(t, ζ0)

Hγ2
1 (t, ζ0)Hγ2

1 (σ(t), ζ0)

≤ γ2H0(t, ζ0)

Hγ2
1 (t, ζ0)H1(σ(t), ζ0)

.

Taking the lim inf of both sides of the inequality (44) as ζ → ∞, we conclude that:

lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t ≤ H − (l − ε)γ2−1(H − ε)1+1/γ2 .
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Since ε is arbitrary, we arrive at:

lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t ≤ H − lγ2−1 H1+1/γ2 .

Let:
A = 1, B = lγ2−1, and V = H.

Using inequality (41) we have:

lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t ≤
γ

γ2
2

lγ2(γ2−1)(1 + γ2)1+γ2
,

which is a contradiction with (43). This completes the proof.

Furthermore, Theorem 10 is based on the following assumption:

∫ ∞

ζ0

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t < ∞.

Otherwise, (42) holds, implying that N0 = ∅ according to Theorem 9.
By combining the conclusions of Theorems 7–10 with Lemma 3, we may set conver-

gence of nonoscillatory solutions of the investigated Equation (1).

Theorem 11. Let 0 < γ2 ≤ 1. If (36) or (37) holds, then every solution of Equation (1) is either
oscillatory or tends to a finite limit eventually.

Theorem 12. Let γ2 ≥ 1. If (42) or (43) holds, then every solution of Equation (1) is either
oscillatory or tends to a finite limit eventually.

Moreover, by combining the conclusions of Theorems 7–10 with Lemma 4, we may set
convergence (of zero) of nonoscillatory solutions of the investigated Equation (1).

Theorem 13. Let 0 < γ2 ≤ 1. If (A) and either (36) or (37) hold, then every solution of
Equation (1) is either oscillatory or tends to zero eventually.

Theorem 14. Let γ2 ≥ 1. If (A) and either (42) or (43) holds, then every solution of Equation (1)
is either oscillatory or tends to zero eventually.

Example 1. Consider the third order dynamic equation:{
ζγ2 φγ2

([
ζ1−γ1 φγ1

(
y∆(ζ)

)]∆
)}∆

+
β

ζα(ζ, ζ0)
φγ(y(g(ζ))) = 0, (45)

where β > 0, 0 < γ2 ≤ 1, and α(ζ, ζ0) = H1(ζ, ζ0)Hγ2
2 (ϕ(ζ), ζ0). It is easy to see that (2) is

satisfied since: ∫ ∞

ζ0

∆t

p1/γ1
1 (t)

=
∫ ∞

ζ0

∆t

t1− 1
γ1

= ∞

and: ∫ ∞

ζ0

∆t

p1/γ2
2 (t)

=
∫ ∞

ζ0

∆t
t

= ∞,
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by ([5], Example 5.60). Additionally:

lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(σ(t), ζ0)

)γ2

a(t)∆t

= β lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

1/t
H1(t, ζ0)Hγ2

1 (σ(t), ζ0)
∆t

≥ β

γ2
lim inf

ζ→∞
Hγ2

1 (ζ, ζ0)
∫ ∞

ζ

(
−1

Hγ2
1 (t, ζ0)

)∆

∆t =
β

γ2
.

As a result of Theorem 13, every solution of (45) is either oscillatory or tends to zero eventually if:

0 < γ2 ≤ 1 and β >
1

lγ2(1−γ2)

(
γ2

1 + γ2

)1+γ2

.

Example 2. Consider the third-order delay dynamic equation: 1
4ζ2

([
1

9ζ2

(
y∆(ζ)

)2
]∆
)2


∆

+
δ

ζ13 φγ

(
y( 4

√
2
3

ζ)

)
= 0, ζ ∈ [1, ∞), (46)

in which δ > 0 are constants. It is obvious that condition (2) is fulfilled. Now:

lim inf
ζ→∞

Hγ2
1 (ζ, ζ0)

∫ ∞

ζ

(
H2(ϕ(t), ζ0)

H1(t, ζ0)

)γ2

a(t)∆t

= δ lim inf
ζ→∞

(
ζ2 − 1

)2 ∫ ∞

ζ


(√

2
3 t2 − 1

)3

t2 − 1


2

1
t13 dt =

2
27

δ

and:

∫ ∞

ζ0

[
1

p1(ω)

∫ ∞

ω

(
1

p2(τ)

∫ ∞

τ
a(t) ∆t

)1/γ2

∆τ

]1/γ1

∆ω

=
4
√

27δ
∫ ∞

ζ0

[
ω2
∫ ∞

ω

1
τ5 ∆τ

]1/2
∆ω = ∞.

Therefore, the conditions (A) and (43) are satisfied if δ > 2. Then, when δ > 2, every solution
of Equation (46) is either oscillatory or tends to zero eventually, according to Theorem 14.

4. Discussions and Conclusions

(1) If p1(ζ) = p2(ζ) = γ1 = γ2 = 1 and g(ζ) = ζ, it is clear that condition (43) becomes:

lim inf
ζ→∞

ζ
∫ ∞

ζ

h2(t, ζ0)

t
a(t)∆t >

1
4

Due to: ∫ ∞

ζ

h2(t, ζ0)

t
a(t)∆t ≥

∫ ∞

ζ

h2(t, ζ0)

σ(t)
a(t)∆t

Theorem 14 improves Theorem 1 for Equation (4).
(2) If p1(ζ) = γ1 = 1, g(ζ) ≤ ζ, and p2 is a nondecreasing functions on T, it is clear that
conditions (37) and (43) become:

lim inf
ζ→∞

ζγ2

p2(ζ)

∫ ∞

ζ

(
h2(g(t), ζ0)

σ(t)

)γ2

a(t)∆t >
γ

γ2
2

lγ2(1−γ2)(1 + γ2)1+γ2
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and:

lim inf
ζ→∞

ζγ2

p2(ζ)

∫ ∞

ζ

(
h2(g(t), ζ0)

t

)γ2

a(t)∆t >
γ

γ2
2

lγ2(γ2−1)(1 + γ2)1+γ2
,

respectively. Due to:

∫ ∞

ζ

(
h2(g(t), ζ0)

t

)γ2

a(t)∆t ≥
∫ ∞

ζ

(
h2(g(t), ζ0)

σ(t)

)γ2

a(t)∆t ≥
∫ ∞

σ(ζ)

(
h2(g(t), ζ0)

σ(t)

)γ2

a(t)∆t,

γ
γ2
2

lγ2(1−γ2)(1 + γ2)1+γ2
≤

γ
γ2
2

lγ2
2 (1 + γ2)1+γ2

for
1
2
≤ γ2 ≤ 1,

and
γ

γ2
2

lγ2(γ2−1)(1 + γ2)1+γ2
≤

γ
γ2
2

lγ2
2 (1 + γ2)1+γ2

for γ2 ≥ 1.

Theorem 13 improves Theorem 2 for Equation (10) when 1
2 ≤ γ2 ≤ 1 and Theorem 14

improves Theorem 2 for Equation (10) when γ2 ≥ 1.
(3) If γ1 = γ2 = 1 and g(ζ) ≤ ζ, then condition (43) becomes:

lim inf
ζ→∞

H1(ζ, ζ0)
∫ ∞

ζ

H2(g(t), ζ0)

H1(t, ζ0)
a(t)∆t >

1
4

Due to: ∫ ∞

ζ

H2(g(t), ζ0)

H1(t, ζ0)
a(t)∆t ≥

∫ ∞

ζ

H2(g(t), ζ0)

H1(σ(t), ζ0)
a(t)∆t

Theorem 14 improves Theorem 4 for the Equation (14).
(4) If γ1 = γ2 = 1, Theorem 14 will be reduced to Theorem 6 for the Equation (14).
(5) Following the preceding discussion, the results in this paper improve the results of [7,8,10–12].
(6) It would be interesting to establish Hille oscillation criteria to third-order dynamic
Equation (1) supposing ∫ ∞

ζ0

∆t

p1/γi
i (t)

< ∞, i = 1, 2.
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