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Abstract: The model of two species competing for a resource proposed by R. May and A.P. Shapiro
has not yet been fully explored. We study its dynamic modes. The model reveals complex dynamics:
multistable in-phase and out-of-phase cycles, and their bifurcations occur. The multistable out-
of-phase dynamic modes can bifurcate via the Neimark–Sacker scenario. A value variation of
interspecific competition coefficients changes the number of in-phase and out-of-phase modes. We
have suggested an approach to identify the bifurcation (period-doubling, pitchfork, or saddle-node
bifurcations) due to which in-phase and out-of-phase periodic points appear. With strong interspecific
competition, the population’s survival depends on its growth rate. However, with a specific initial
condition, a species with a lower birth rate can displace its competitor with a higher one. With weak
interspecific competition and sufficiently high population growth rates, the species coexist. At the
same time, the observed dynamic mode or the oscillation phase can change due to altering of the
initial condition values. The influence of external factors can be considered as an initial condition
modification, leading to dynamics shift due to the coexistence of several stable attractors.

Keywords: periodic fixed points; bifurcation; synchronization; multistability; chaos; community
development scenario; competing populations; dynamic mode change
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1. Introduction

In nature, interspecific competition occurs between individuals of different species, in
which each negatively affects the other in competition for access to limited resources [1,2].
Experts note interspecific competition among rodents [3,4], birds [5,6], plants [7], carni-
vores [8,9], insects [10,11], phytoplankton [12–14] and other species [15–19]. As a rule, there
are two types of competition suggested by A. Nicholson [20] that differ in mechanism and
effects. The first type is contest (interference) competition [21,22] that presents direct inter-
action between species over a limited resource by reducing access of one population to that
resource. Here, individuals harm one another by fighting, producing toxins, and so on. The
second type is scramble (exploitation) competition [22], which is indirect interaction and
emerges because of resource constraints when individuals of different species use the same
resource but do not interact. Sometimes forms of competition are classified using features
of interspecies interaction and social behavior. For example, there are consumptive, pre-
emptive, overgrowth, chemical, territorial, and encounter forms of competition [16]. Note
that these competition forms can be considered as modifications of contest and scramble
competition.

Mathematical models of competition play a central role in theoretical ecology. To
date, quite a few mathematical models have been proposed to describe the development
of competing populations; we will give some of them [2,23–43], including discrete-time
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models [23,25,26,30–32,34,35,37]. Despite the large number of studies dealing with the
modeling of competing population dynamics, there is not much crossover because of the
variety of considered biological aspects that determine the ecosystem’s behavior. One
of the pioneer papers devoted to interspecific competition [15] provides many examples
of competing species and considers approaches for its mathematical modeling. Another
noteworthy study [29] considers how the form of specific single-species population models
relates to different types of competition. The Ricker model was shown by [29,34] to
correspond to scramble competition.

The Ricker model reveals dynamics from order to chaos [44–49]. Based on this, it is
interesting to note what kind of dynamic modes occur with two coupled Ricker maps.
It is not uncommon to consider a system of two populations coupled by migrations, the
dynamics of each of which is described by the Ricker model [50–58]. At the same time, the
dynamic modes of a community of competing Ricker populations have not yet been fully
explored. For two species, the Ricker model with interspecific and intraspecific competition
has the following form [45–48,59,60]:{

xn+1 = Axn exp(−αxn − β · yn)
yn+1 = Byn exp(−γxn − δyn)

, (1)

where x and y are the population sizes of competing species; n is the reproductive season
number; A and B are the growth rates of species x and y, respectively. α and γ are self-
limiting coefficients; β and δ are parameters characterizing the intensity of competitive
relationships between species x and y. Note that models such as system (1) are useful
to describe and analyze the dynamics of species with coinciding food fields, examples
of which are not only fish communities but also phytoplankton ones. The reason for
applying such models to phytoplankton dynamics analysis is the day–night rhythm. Indeed,
many processes occurring in the phytoplankton community are consistent with circadian
rhythm, that is, cyclic fluctuations in the intensity of various biological processes due to the
alternation of day and night. In addition, the Ricker model quite well describes the change
in the biomass/abundance of phytoplankton that occurs due to cell division.

Despite its long history, model (1) has not been fully investigated. Recently papers
have studied either it [34,61–63] or its modifications that are often associated with popula-
tion structure [17,31,35,37,39,40,64–67]. For example, ref. [66] considers the Leslie–Gower
model with Ricker-type nonlinearity, which corresponds to competing populations with
overlapping generations and reveals multiple mixed-type attractors. One paper [65] studies
a three-component juvenile/adult Ricker competition model that can produce multiple
attractors and coexistence/exclusion scenarios; the current community structure deter-
mines which one of them will attract. The work [64] considers the dynamic behavior of a
four-component competition model for two species, each of which has a stage structure.
The authors of the paper [40] consider the evolutionary Ricker competition model, assum-
ing that A, B, and β, δ are functions of a phenotypic trait that are subject to Darwinian
dynamics. Another interesting study is [39], where a stochastic version of model (1) is used
to investigate the dynamics of two Tribolium species.

Model (1) was independently proposed by R. May and A.P. Shapiro several decades
ago. A.P. Shapiro has considered the dynamics of two fish populations that compete for a
common resource [59]. The dynamics equations corresponding to such a community are:{

xn+1 = Axn exp(−α′χn)
yn+1 = Byn exp(−β′χn)

, (2)

where xn and yn are the fish population sizes of competing species in the nth year; A
and B characterize the fish fecundity on the spawning ground, the fry survival rate, as
well as the fraction of the population going to spawn. Coefficients α′ and β′ describe the
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competitiveness of species and mortality of individuals due to lack of food. χn is the
competition intensity that is determined as follows:

χn = (xnr + ynR)/Q,

where r, R are the average annual food per individual of the first and the second populations,
respectively, Q is the total amount of food resources. A.P. Shapiro has studied model (2)
using analysis of recursive sequences [56]. With (ln A)/α′ > (ln B)/β′, the first species is
shown to eliminate the second species; that is, yn tends to zero. The sequence xn, being
limited, can be divergent; it can fluctuate with a period of 2 or 4, or be irregular. The
papers [49,60,68] study model (1) and focus on the stability area of its nontrivial solution
in the coordinate plane of the fixed point. In particular, under constant environmental
conditions, two competitors are shown to coexist if intraspecific competition is higher
than interspecific [60]. If interspecific competition is greater, then one of the species is
eliminated [60]. Based on the eigenvalues analysis of system (1) Jacobian, work [63] has
found the stability conditions for fixed points, which partially coincides with the results
of previous studies [48,60,68]. Furthermore, paper [62] demonstrates the possibility of the
existence of an in-phase 2-periodic point. An antiphase two-periodic orbit is shown by
simulation to emerge in the irregular dynamics region.

R. May has considered the following equations [46,47]:{
xn+1 = xn exp A′(K1−αxn−β·yn)

K1

yn+1 = yn exp B′(K2−γxn−δyn)
K2

, (3)

where the parameters of population growth rates are included in the exponent and are inter-
preted as the carrying capacity [17,46,47,61]. R. May has analytically found the conditions
for the coexistence of both biological species and has numerically shown the occurrence
of periodic and chaotic oscillations [46]. Model (3) is the so-called discrete counterpart
of the well-known Lotka–Volterra ordinary differential equation model of two-species
competition [46,61]. Note that system (3) describing cooperation with A′ = B′, β = γ = –s,
α = δ = A′, K1 = K2 = 1 was investigated in paper [26]. A special case of model (3) with
A′ = B′, β = γ, α = δ = A′, K1 = K2 = 1 is studied in [69] that analyzes bifurcations of fixed
and periodic points. H. Smith has researched the asymptotic behavior of planar order-
preserving difference equations with particular attention to those arising from models of
two-species competition [70].

The paper of R. Luis et al. [34] studies the stability of the exclusion fixed points and the
coexistence fixed point, and the properties of the stable and unstable manifolds of the fixed
points of model (3) [34]. In addition, period-doubling bifurcation, transcritical bifurcation,
bubbles, subcritical bifurcation and no Neimark–Sacker bifurcation are shown to occur.
Further, the theoretical results of work [34] were expanded in the study [64]. Under certain
analytic and geometric assumptions, local stability of the coexistence (positive) fixed point
of the planar Ricker competition model is shown to imply global stability with respect to
the interior of the positive quadrant. Note that model (3) study via Jury condition and the
center manifold theorem are presented in [37], where special attention is paid to the fixed
points of the Ricker competition model of three species.

In general, the key point of the studies considering models (1)–(3) is stability analysis
of fixed points and bifurcation analysis [34,37,63,71,72]. This paper studies the dynamics
modes of the two species competition model with the Ricker nonlinearity. A detailed
parametric analysis of this model, which allows us to conclude the population parameters’
influence on the stability and dynamics of the system in terms of biology, has not yet been
carried out. To the best of our knowledge, no study has addressed problems of multistability
and phase multistability regarding this model. We set out to fill these apparent gaps.
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2. Model (1) Study for Local Stability

This section briefly presents the study model (1) for local stability. Most of the results
obtained are easily correlated with [34] that considers model (3). Here, we also present a
parametric analysis of model (1), which allows us to draw conclusions about the influence
of population coefficients on the stability and dynamics of the system from the point of
view of biology.

Substitution of the variables αx→x, δy→y and coefficients ρ = β/δ, ϕ = γ/α transforms
model (1) to the simplified form with four parameters:{

xn+1 = Axn exp(−xn − ρ · yn)
yn+1 = Byn exp(−ϕ · xn − yn)

. (4)

The coefficients ρ and ϕ can be considered as coupling coefficients. Their equality
to zero reduces model (4) to a system of two non-interacting populations, i.e., there is no
competition for resources.

Model (4) has four fixed points.

1. A trivial fixed point that corresponds to the extinction of both populations:

x = y = 0. (5)

2. Two semitrivial solutions that correspond to the extinction of one of two species:

x = 0, y = ln B, (6)

x = ln A, y = 0. (7)

3. A nontrivial fixed point corresponding to the sustainable existence of both species in
the community

x =
ln A− ρ ln B

1− ϕρ
, y =

ln B− ϕ ln A
1− ϕρ

. (8)

Depending on the number of fixed points for the system (4), we can identify the
following intervals for the values of parameters ρ and ϕ:

1. ϕρ < 1 (Model (4) has four fixed points);
2. ϕρ = 1 (The system degenerates and has a non-simple nontrivial solution [73]);
3. ϕρ > 1 (The nontrivial fixed point is negative, i.e., species coexistence is not possible).

It corresponds to a situation where interspecific competition between species is greater
than their self-limitation, i.e., ϕρ > 1 (αδ–βγ < 0). In [34,48,62,68], stable coexistence
of two competing populations is shown to be impossible with ϕρ > 1.

The stability of solutions (6)–(8) is defined by their eigenvalues, which in turn are
solutions of the characteristic equation

F(λ) = λ2 − (2− x− y) · λ + x · y · (1− ρϕ)− x− y + 1. (9)

The standard method of finding the stability domain of the fixed point is based on the
following theorem. The solutions of the characteristic equation λ2 + pλ + q = 0 belong to
the circle |λ| < 1 if and only if

|p| − 1 < q < 1 (10)

Note that inequality (10) is an analog of three Jury conditions based on the Jacobi
matrix invariants for two-component systems [74]. Inequalities (10) define in the plane (p,
q) a “triangle of stability” [48]. Its boundaries are given by the lines:

q = –1–p, on this line, one of the eigenvalues λ is equal to 1;
q = p–1, on this line, one of the eigenvalues λ is equal to −1;
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q = 1, on this line, eigenvalues are complex numbers λ1λ2 = 1, and on the seg-
ment (−2 < p < 2), limiting the “stability triangle”; they are also conjugated as follows:
λ1,2 = exp(±iϕ).

2.1. The Stability Area of Trivial Solution (5)

The zero fixed point x = y = 0 exists for any values of the parameters ρ and ϕ. The
boundaries of its stability area are given by the lines of transcritical bifurcations (λ = 1):
A = 1 and B = 1. Therefore, the solution (5) stability domain is a unit square in the parameter
plane (A, B). In other words, if the growth rates of competing populations are less than 1,
then they eventually become extinct.

2.2. The Stability Areas of Semitrivial Solutions

Semitrivial solutions (6) and (7) correspond to the existence of one of the populations
without its competitor, which describes the principle of competitive exclusion formulated
by Gause based on his laboratory experiment results with ciliates Paramecium caudatum,
P. aurelia, P. Bursaria [75]. The principle, stating that complete competitors cannot co-
exist if they have the same ecological niche, is one of the key ideas of theoretical ecology.
Thus, if two species coexist, then there must be some ecological difference between them,
which means that each of them occupies its niche. A weak competitor, interacting with
a stronger one, loses its niche. Thus, we observe no competition if the species have
different requirements for the environment or different social and territorial behavior, that
is, different ecological niches. In other words, species must have at least slightly different
niches to coexist.

The solution (6) stability area (x = 0, y = ln B) is formed by the following bifurcation
lines in the parameter plane (A, B):

(1) λ = 1, B = 1 and A = Bρ; (2) λ = –1, B = e2; (3) q = 1, A = Bρ/(1 − ln B).
For fixed point (5) (x = ln A, y = 0), the stability domain boundaries are as follows:
(1) λ = 1, A = 1 and B = Aϕ; (2) λ = –1, A = e2; (3) q = 1, B = Aϕ/(1 − ln A).
Thus, in the plane of parameters describing the population growth rates, the form of

the stability regions of semitrivial solutions depends only on the values of the coefficients
characterizing the competitive relationships between populations. In the parameter plane
(A, B) the bifurcation boundaries of solutions (6) and (7) corresponding to λ = 1 and λ = –1
intersect at the points (e2ρ, e2) and (e2, e2 ϕ), respectively. Figure 1 shows the stability areas of
semitrivial solutions. The semitrivial fixed points lose their stability due to period-doubling
bifurcation or transcritical bifurcation. The Neimark–Sacker bifurcation lines do not bound
the stability domains of semitrivial fixed points.
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As can be seen, the higher the values of parameters ρ and ϕ, the wider the stability
areas (Figure 1). Note that semitrivial solutions (6) and (7) with their stability domains
exist for any values of the parameters ρ and ϕ. Higher values of the parameters ρ and ϕ
significantly expand the stability regions of solutions (6) and (7), respectively (Figure 1a,b).
Based on ρ = β/δ and ϕ = γ/α, the growth of ρ and ϕ values may be caused by higher



Mathematics 2022, 10, 1076 6 of 23

values of the parameters β and γ, characterizing competitive influence on the species x and
y, respectively, or lower values of the parameters δ and α describing the self-regulation.
Therefore, the lower the self-limitation in population y relative to its competitive impact
on species x, the wider the range of demographic parameter values under which species y
displaces x. The converse is also true; a growth of ϕ values increases the survival chances
of species x. If ρ = ϕ, then the stability domains of both semitrivial fixed points are equal
in area and symmetric with respect to the quadrant bisector (Figure 1b). For ϕρ < 1, the
stability areas of semitrivial fixed points do not intersect (Figure 1a,b); for ϕρ = 1, they
have the common boundary A = Bρ (Figure 1c); for ϕρ > 1, their stability regions overlap.
Figure 2 shows the overlapping of stability areas of solutions (6) and (7) with ϕρ > 1 when
ϕ = 2.5 and ρ > 0.4.
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with ρϕ > 1.

In parametric area 1 of Figure 2, there is a unique stable solution (6) corresponding to
the displacement of the species x by its competitor y. In region 2, on the contrary, species x
displaces species y; fixed point (7) is stable. Parametric domain 3 reveals the bistability of
both semitrivial solutions, i.e., initial condition values determine which of the competitors
will be replaced. Zone 4 corresponds to multistability: fixed point (6) coexists with dynamic
modes arising due to solution (7) stability loss via period-doubling bifurcation. As in area
3, here the initial condition values determine which of the coexisting dynamic modes will
be attractive. In region 5, fixed point (7) coexists together with unstable solution (6). As can
be seen, an increase in the parameters ρ and ϕ values expands parameters’ value domains
with bistability and multistability. When passing through the bifurcation parameter value
ϕ = 1 (ρ = 1) at ρ > 1 (ϕ > 1), multistability occurs in the region A > e2 (B > e2). If ϕρ = 1,
then bistability as the coexistence of stable solutions (6) and (7) becomes impossible. The
structure of the attraction basins of coexisting dynamic modes in the areas with Figures 3–5
is depicted in Figure 3.
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As can be seen, the space of the initial conditions is separated by a curvilinear boundary.
The initial conditions lying above the curve lead to a particular dynamic mode, and those
below give another one. Note that the increase in parameter A expands the region of
initial condition values with the extinction of species y; and vice versa, the parameter B
growth results in a wider domain of initial conditions under which species y suppresses
x. Therefore, in two populations competing for resources, the survival probability of a
competitor depends on its growth rate, i.e., the higher the population growth rate, the
higher the probability of displacing its competitor. However, even in the case when the
growth rate of one competing population is higher than another one, we can find an initial
condition at which a population with a lower birth rate displaces a population with a larger
one. Note that higher parameter ρ values expand the initial conditions’ area under which
species y displaces its resource competitor.
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Depending on the model parameter values, the following development scenarios for a
community consisting of two competing populations can be distinguished (Table 1).

Table 1. Development scenarios of competing populations depending on the parameter values.

Intervals for the Parameter Values Development Scenario

ρϕ < 1

A < Bρ, B > 1 species y displaces species x

B < Aϕ, A > 1 species x displaces species y

AB > AϕBρ, A > 1, B > 1 species x and y coexist

ρϕ > 1

B > Aϕ, B > 1 species y displaces species x

A > Bρ, A > 1 species x displaces species y

AB < AϕBρ, A > 1, B > 1
the displacement of a species
by another one depends on
the values of initial conditions

2.3. The Stability Area of Nontrivial Solution with ϕρ < 1

Note that in nature, the complete displacement of one species by another is extremely
rare. Moreover, as a rule, the ecological niches of different species overlap, which reduces
interspecific competition for a resource or limiting factor. A striking example of the co-
existence of competing populations growing in the same ecological niche is planktonic
communities that develop in a rather limited space and consume the same resources, such
as solar energy and mineral compounds [76,77]. With ϕρ < 1, when competition between
species is weaker than their self-limitation, the nontrivial solution of model (4) exists and
remains stable under certain conditions. As already noted, at ϕρ < 1, model (4) has 4 fixed
points. The existence and stability conditions for trivial fixed point (5) and semitrivial
solutions (6) and (7) are the same as those presented above.

The lines of codimension-one bifurcation bounding the stability area of fixed point (6)
are represented as follows.

Transcritical bifurcation, λ = 1:

B = Aϕ and A = Bρ (11)

Conditions (11) coincide with the semitrivial solutions’ boundaries that intersect at
the point (1; 1). The transition through the curves B = Aϕ and A = Bρ is accompanied by
a transcritical bifurcation when semitrivial and nontrivial fixed points exchange stability.
In this case, the stability area of nontrivial solution (8) is located between two stability
domains of semitrivial solutions.

Period-doubling bifurcation, λ = –1:

(1− ρ)(1− ϕ) ln A2 −
(
(2ρ− ϕρ− 1) ln

(
A
B

)
− 4 + 2ϕ + 2ρ

)
ln A+

+ρ ln
(

A
B

)2
+ (2ρ− 2) ln

(
A
B

)
+ 4ϕρ− 4 = 0

(12)

In the parameter (A, B) plane, solution (8) bifurcation boundaries λ = 1 and λ = –1
always intersect in two points with coordinates (A = e2ρ, B = e2) and (A = e2, B = e2ϕ) that
are also the intersection points of the lines λ = 1 and λ = –1 for semitrivial fixed points of
system (4). Therefore, codimension 2 bifurcations arise at these points. The stability area of
nontrivial solution (8) has no Neimark-Sacker bifurcation boundary, which coincides with
the findings of R. Luis et al. [34]. Then, system (4) reveals no transition from stationary
dynamics to quasi-periodic oscillations.

Figure 4 shows the stability regions of solutions (5)–(8), given by the above bifurcation
boundaries with ϕρ < 1. At ρ = ϕ, the stability domain is symmetric with respect to the
quadrant bisector. The stability loss can occur only through a cascade of period-doubling
bifurcations, which coincides with the results obtained in [34,48,62,68]. On the whole,
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higher values of parameters ϕ and ρ are seen to narrow the stability region of nontrivial
fixed points and to expand those of semitrivial solutions.

3. Model (4) Dynamics Modes

Dynamic mode maps allow us to study model (4) stability domains of fixed points
and emerging bifurcations due to changing values of parameters. Maps are generated
as follows: 10,000 iterations of map (4) are calculated at each point (corresponding to a
pixel) in the plane of parameters and the last 500 iterations are used to determine the cycle
period of system (4), then this point is painted in a specific color according to the found
period. Using the dynamic mode maps is the well-known approach in the study of dynamic
systems, e.g., [78].

Let us consider changes in the community dynamics of two competing populations
using dynamic mode maps (Figure 5). The dynamic mode map cannot be used as a tool
to separate quasiperiodic modes from chaotic ones. In the maps, the dynamics type is
determined based on the scenario of the stability loss by a fixed point. Transition to chaos
mode is established through a cascade of period-doubling bifurcations. The transition to
quasiperiodic dynamics is achieved through Neimark–Sacker bifurcation when we observe
a shift from a cycle to irregular dynamics. Both modes are denoted by the same color
on the dynamic mode maps. However, these two dynamic modes are mixed up in the
quasiperiodic area by changing the parameter values. From a biological view, quasiperiodic
and chaotic modes can be referred to as irregular dynamics. In summary, these modes
can be distinguished using Lyapunov’s exponents [79,80]. This numerical method is quite
sufficient for proving the existence of quasi-periodicity and chaoticity in the dynamics of
dynamical systems [79,80].

The picture of dynamic behavior presented in Figure 5 corresponds to the analytical
study. Namely, with ϕρ < 1, the system has four fixed points separated by transcritical
bifurcation lines, the transition through which results in stability exchange between neigh-
boring solutions [34]. The stability loss of semitrivial and nontrivial fixed points occurs
according to the period-doubling scenario when a cascade of period-doubling bifurcations
complicates the dynamics from the emerging 2-cycle to chaos. At the same time, with
increasing the populations’ growth rates, a transition from stationary dynamics to two-year
oscillations and vice versa is seen to be possible (Figure 5), which corresponds to the
so-called bubbles scenario. R. Luis et al. [34] have shown the emergence of bubbles in 1D
bifurcation diagrams (bifurcation tree) of model (4).

Lower values of ϕρ expand the stability area of the nontrivial solution. However, at
small values of ϕρ, in the irregular dynamics region, there is a stable 2-cycle domain that
wedges into the area of the 2-cycle domain, arising due to the stability loss of nontrivial
fixed points via the period-doubling bifurcation. This new 2-cycle is antiphase oscillations
of the population numbers of competing species (variables x and y) and N.P. Gromova [62]
has shown the possibility of its occurrence using a simulation. The appearance of the
aforementioned 2-cycle changes the expected dynamic behavior and leads to multistability.
The dynamic mode maps show that this 2-cycle loses its stability according to both the
period-doubling and the Neimark–Sacker scenarios with close values of A and B. With the
Neimark–Sacker scenario, the 2-cycle bifurcates and provides two closed invariant curves.
Note that the occurrence of an antiphase 2-cycle in model (4) has not yet been studied.

The key point here is that different 2-cycles can simultaneously exist in a community
with low interspecific competition. At A 6= B or ρ 6= ϕ, the in-phase 2-cycle arises
as a result of period-doubling bifurcation of the non-trivial fixed point, and the system
demonstrates completely synchronous dynamics of both species. The second 2-cycle is
antiphase oscillations in the population abundances of competing species. Finally, an out-
of-phase four-periodic orbit can simultaneously emerge with those 2-cycles. In some cases,
this 4-cycle occurs earlier than the antiphase two-periodic orbit (Figure 5b) and coexists
with the in-phase 4-cycle being the result of period-doubling bifurcation of the in-phase
2-cycle. In fact, in Figure 5b, the intersection of the multistability domain and the 4-cycle
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region corresponds to the existing area of the out-of-phase 4-cycle and cycles born due
to its bifurcation. The existence of a multistability domain can be indicated by breaking
of the dynamic modes and non-smooth changes in values of the Lyapunov exponents
or synchronization errors between phase variables. We have used all these indicators to
build the multistability areas on the dynamic mode maps in Figure 5. Even varying the
model parameter values, these indicators do not change smoothly at the multistability
domain boundary, while their changes are quite smooth in other parts of the dynamic
mode maps, excluding the bifurcation points. Moreover, the boundaries of multistability
domains in Figure 5 are not exact, especially in the irregular dynamics area, and their
shape depends on the values of initial conditions x0 and y0. Let us consider features and
emergence mechanisms of multistable dynamic modes from the shaded areas in Figure 5.

4. Periodic Fixed Points of Model (4): Phase Multistability

Let us rewrite system (4) in matrix form:

Xn+1 =

(
xn+1
yn+1

)
=

(
Axn exp(−xn − ρyn)
Byn exp(−ϕxn − yn)

)
=

(
f1(xn, yn)
f2(xn, yn)

)
= F(Xn). (13)

Any periodic points with period N or N-cycle of system (4) can be found as a fixed
point of the following map:

Xn+N = F(F(F(. . . F︸ ︷︷ ︸
N

(Xn) . . .)) = FN(Xn), (14)

where the image of Xn under the mapping F iterated N times. The operator FN is cum-
bersome because of the transcendence of the right-hand side of system (4). Therefore, the
periodic points can only be found numerically solving the following system of equations:

X = F(F(F(. . . F︸ ︷︷ ︸
N

(X) . . .)) = FN(X). (15)

Founding solutions can be presented as two graphs called nullclines that correspond to
zeros of the first equation and the second one for system (13), respectively. The intersection
of these nullclines is system (15) roots, i.e., the periodic point of systems (13) and (4).
We draw conclusions about the nature of the stability of these fixed points based on
analysis of the behavior of the model trajectories with initial conditions from the vicinity of
these points.

4.1. Symmetric Case with A = B and ρ = ϕ, When Both Species Have the Same Growth Rates and
Competition Parameters

Figure 6 shows system (14) nullclines with different N. At specific parameter values, we
chose the value of N so as to see the periodic points. The stable periodic points are denoted
as Tτ , where T is its period, and the subscript 0 ≤ τ < T is the phase shift of variable xn

relative to yn. τ is determined by the formula: τ = argmin
0≤τ<T

|xn − yn+τ |, n = 1, 2, 3 . . . .

When the difference is zero, the oscillations of variables x and y are in phase. For example,
Figure 6a shows in-phase 2-cycle with τ = 0. For the 4-cycle, its trajectories with τ = 0 is
depicted in Figure 7a, where one can see the in-phase dynamics of variables x and y. With
τ = 2, variable x oscillations will almost coincide with those of y, if y trajectory is shifted
by two iterations (Figure 7c). The trajectories in Figure 7a–d correspond to periodic points
in Figure 6 which are marked by circles in the phase plane. Unstable points are designated
as Tτ , and their location is shown by white circles.
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Figure 6. (1, 3 rows) System (14) nullclines show the mechanism of periodic point emergence for
system (4); (2, 4 rows) Attraction basins of stable points are the black circles above. (a–c) Symmetric
case with A = B and ϕ = 0.1; (d–f) Asymmetric case at A 6=B and ϕ =0.03 demonstrates the emergence
of an out-of-phase 2-cycle through a saddle-node bifurcation (SN). Stable/unstable fixed points are
designated as Tτ/Tτ and are marked by black/white circles. T is period, subscript τ is the phase shift
of variable xn relative to yn. Attraction basins of different colors, marked in the same way, correspond
to oscillations with the different initial phases.
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Figure 7. Examples of regular (a–d) and irregular (e–h) dynamics of system (4). 20 and 40 is in-
phase oscillations xn and yn with period 2 and 4, 21 and 42 is out-of-phase oscillations. Q and C are
quasiperiodic and chaotic out-phase dynamics.

The change in the curves’ shape corresponding to the graphical solution of system
(15) with their intersection points allows us to describe the bifurcations leading to the
appearance of cycles as well as complex dynamic modes (chaos) in system (4). After the
first period-doubling bifurcation of nontrivial fixed point, an eigenvalue of system (4) passes
through –1, and the other one lies in the unit circle, which gives the emergence of a stable
2-cycle. In this case with N = 2, the graphical solution of system (15) shows the following
intersection points being system (4) fixed points: 0 (trivial solution (5)), 1 0 (semi-trivial
solutions (6) and (7)), 1 (non-trivial solution (8)), two periodic points 20 corresponding
to the in-phase 2-cycle, and periodic points 20 corresponding to 2-cycles emerging due
to the stability loss of semi-trivial solutions (6) and (7) (Figure 6). For parameter values
in Figure 6, the periodic points 20 are always unstable (saddles), and any perturbation
leads to nontrivial solutions in the asymptotic case. The arising in-phase 2-cycle (20) is
represented by two types of 2-cycles that differ from each other in the initial phase, which
corresponds to phase multistability. Both cycles have their areas of attraction shown in
black and white in Figure 6a. Cycles with a period T > 2 have a maximum of T types of
such dynamics with their attraction basins. More strictly, any two cycles or two system (4)
solutions, being sequences with elements

(
x(1)n , y(1)n

)
and

(
x(2)n , y(2)n

)
,n = 1, 2, . . ., differ in

phase if there exists a natural number k (phase shift) which does not exceed the oscillation
period T (1 ≤ k < T), such that conditions

∣∣∣x(1)n − x(2)n+k

∣∣∣ = 0 and
∣∣∣y(1)n − y(2)n+k

∣∣∣ = 0 are true
at n→ ∞ .

With a further change in the values of parameters A and B, the second eigenvalue of
system (4) passes through –1, and an unstable out-of-phase 2-cycle occurs in the vicinity
of the fixed point (Figure 6a). This transition corresponds to a subcritical period-doubling
bifurcation of the unstable nontrivial point, which results in the appearance of two symmet-
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rically located saddle points 21. Note that they are not located symmetrically with A 6= B
or ρ 6= ϕ (Figure 6d–f), but the mechanism of their occurrence does not change significantly.
Before the out-of-phase 2-cycle in system (4) becomes stable, a series of bifurcations occurs,
which leads to the appearance of other periodic points and dynamics complications; let’s
look at them in more detail.

Contrary to expectations, the period-doubling bifurcation of the in-phase 2-cycle does
not immediately lead to an in-phase 4-cycle appearance, as happens for example in coupled
logistic maps or the Ricker stock-recruitment model coupled by migration [81,82]. First, a
supercritical period-doubling bifurcation of point 20 occurs when the first eigenvalue of
system (14) with N = 2 passes through –1, and the second one lies in the unit circle. The
new four stable points 42 corresponding to the out-of-phase 4-cycle are located at some
distance from x = y. After that, as for fixed point (8), the periodic point 20 bifurcates into
40-cycle (4 saddle points) since the second eigenvalue passes through –1 (Figure 6b). These
bifurcations give out-of-phase 4-cycles that differ in the initial phase, but do not change the
dynamics and the attraction basins fundamentally. Figure 6b shows the results of these two
bifurcations.

Further growth of the parameter values leads to supercritical pitchfork bifurcation of
saddle points 40, which then become stable. As a result, in addition to the out-of-phase
4-cycle, in-phase 4-cycle appears in system (4) since point 40 becomes stable. Here the
synchronous mode ‘captures’ a part of the attraction basin of out-of-phase 4-cycle along the
quadrant bisector, as well as the areas located in a checkerboard pattern. These attraction
basins are shown in black in Figure 6c. Initial conditions from the black areas can give four
different 40-cycles with different initial phases, but they are not shown in Figure 6c, so as
not to overload it. For more information, Figure 7a–d shows some model (4) trajectories of
regular dynamics with different phase shifts and amplitude of oscillations.

Afterwards, the described types of dynamics are complicated due to the “pure” se-
quence of period-doubling bifurcations of in-phase modes and the Neimark–Sacker bi-
furcation (the birth of a torus) of the out-of-phase 4-cycle. Here we observe scenarios
that are in good agreement with those described, for example, in [55,57,81,83,84]. With
the Neimark–Sacker bifurcation of the out-of-phase 4-cycle, four closed invariant curves
denoted as Q4 appear around points 42; and they coexist with the in-phase cycles emerging
due to the cascade of period-doubling bifurcations of point 40 (Figure 8a).

These two dynamics modes bizarrely divide the basins of attraction. Point 42 loses its
stability, and the invariant curve Q4 takes its attraction basins. The attraction basins of the
in-phase chaotic attractor are those of point 40 (Figure 8b).

In the area of parameter values with the discrete Shilnikov-shape attractor, the “long-
awaited” supercritical period-doubling bifurcation of saddle point 21 occurs, which results
in the appearance of two saddles around each element of 21-cycle; and 21 becomes stable.
There are no other stable periodic fixed points. As a result, the periodic point 21 coexists
with the in-phase chaotic attractor C0 and the Shilnikov-shape attractor C4 having two-
dimensional basins of attraction (Figure 8b). Further two components of C4 merge with each
other and their stable manifolds are tangent to each other along line y = x at A = B ≈ 15.36.
Therefore, the four-component attractor C4 becomes a two-component attractor coexisting
with the out-of-phase 2-cycle (21). At the same time, the basin of attraction of in-phase
chaotic attractor C0 collapses to segments lying on the one-dimensional manifold y = x.
In this case, in-phase dynamics is stable only with small perturbations along the bisector,
but it is transversally unstable under perturbations in the perpendicular direction to the
bisector [85].
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Lorentz-shape one, (d). Stable fixed points are designated as τT  and are marked by black circles. 

Unstable points are designated as τT  and shown by white circles or crosses. T is the period and 
subscript τ is the phase shift of variable xn relative to yn. Attraction basins of different colors, marked 
in the same way, correspond to oscillations with the different initial phases. 

With a further increase in parameter BA =  value, all components of the attractor 
C4 merge at A = B≈17.06, and a hyperchaotic attractor filling a large part of the phase space 
occurs. However, it quickly breaks down, and system (4) reveals only the out-of-phase 2-

Figure 8. The first column is attraction basins of stable dynamics modes. The second one (except
for (d)) is system (14) nullclines. The third one presents coexisting attractors with their enlarged
fragments. (a,c) are the closed invariant curves. The discrete Shilnikov-shape attractor is (b) and
the Lorentz-shape one, (d). Stable fixed points are designated as Tτ and are marked by black circles.
Unstable points are designated as Tτ and shown by white circles or crosses. T is the period and
subscript τ is the phase shift of variable xn relative to yn. Attraction basins of different colors, marked
in the same way, correspond to oscillations with the different initial phases.

With a further increase in parameter A = B value, all components of the attractor
C4 merge at A = B ≈ 17.06, and a hyperchaotic attractor filling a large part of the phase
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space occurs. However, it quickly breaks down, and system (4) reveals only the out-of-
phase 2-cycle (periodic point 21) in a certain range of parameters. The attraction basins
of each phase of this 2-cycle are quite fragmented, especially in the attraction basin of
the breaking chaotic attractor. With starting points from these areas, for example, about
the bisector plane, the transitional dynamics to the out-of-phase 2-cycle can be quite long
and complicated.

Model (4), as well as the Ricker model, reveals a large periodicity window, where
synchronous or partially synchronous oscillations again appear. Here are the out-of-phase
2-cycle and stable in-phase 3-cycle with two-dimensional basins of attraction. Next, we
observe a kind of resonance, which leads to an out-of-phase 6-cycle (64) appearance in
the vicinity of the out-of-phase 2-cycle (21) elements. In the phase space, the out-of-phase
6-cycle (64) takes a part of the 2-cycle basin of attraction; they, along with dynamic modes
emerging due to their bifurcations, coexist. In addition, with changes to the values of
parameters A and B, the in-phase 3-cycle quickly bifurcates, which gives a new 6-cycle that
is partially synchronous (Figure 8c). The 6-cycle elements lie quite close to the line y = x,
and the phase shift of variable xn relative to yn is 3 (63 in Figure 8c). As a result, there are
three different dynamic modes.

These three dynamics modes bifurcate via the Neimark–Sacker scenario, which leads
to the emergence of a closed invariant curve around each element of the periodic point.
We initially observe it for the out-of-phase 2-cycle and 64-cycle, and only then the partially
synchronous 6-cycle (63) bifurcates. Therefore, at a sufficiently wide area of parameter
values, system (4) demonstrates two different types of quasi-periodic dynamics that are
simultaneously possible and are periodic as synchronous or partially synchronous.

The stability loss of periodic point 63 leads to the fact that emerging closed invariant
curves tangent each other along the stable manifold of saddle point 30, which gives two
connected homoclinic orbits around the right (y < x) and left (y > x)points of cycle 63. As a
result, a three-component discrete Lorentz-shape attractor C3 arises; one of its components
is shown in the third column of Figure 8d.

In general, the presence of three components indicates a strict order with traversal of
every third element of a sequence for mapping (4) or (14) at N = 3. Every third value of the
variable xn is depicted in the second graph of Figure 7h. The trajectory is seen to turn many
times around the right point 63. When the trajectory is close to saddle 30, it is attracted to
the left point vicinity, where the trajectory also continues to turn for an indefinite time. In
this case, there are only two closed invariant curves Q2 corresponding to the out-of-phase
dynamic modes, and periodic point 64 does not exist.

Next, the chaotic attractor C3 breaks up with A = B ≈ 23.57, and system (4) reveals
only two closed invariant curves Q2. They merge at A = B ≈ 24.6473, which gives a
hyperchaotic attractor that densely fills the phase plane. Here, the dynamics of phase
variables become non-synchronous.

4.2. Non-Symmetric Case with A 6= B or ρ 6= ϕ, When Both Species Have Different Growth Rates
or Competition Parameters

Some features of the dynamic modes at A 6= B can be seen using the maps of dynamic
modes shown in Figure 5a–c. Their analysis allows us to conclude that the complete capture
of the oscillation period occurs with a large difference in the growth rates of A and B at
high values of the competition parameters. As a result, both species fluctuate with a period
of oscillations of the population with the maximum growth rate. For example, without
competitive interaction ρ = ϕ = 0, the first species has no oscillations with A = 5, and
the second one demonstrates 2-year fluctuations with B = 10. Due to the interaction of
the species at ρ > 0, ϕ > 0, the first population dynamics completely follows the second
one with the capture of the period and phase, i.e., their dynamics are fully synchronous.
Moreover, the stronger the competitive interaction, or with a higher ρϕ value, the wider the
areas with oscillation period capture. Growth of the ρϕ value also leads to the fact that the
stability areas of synchronous cycles are larger than those of two uncoupled Ricker models
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with ρ = ϕ = 0, which can be seen in Figure 5a–c. Lower interspecific competition results
in a partial loss of synchronization in the multistability domains.

Note that with A 6= B or ρ 6= ϕ, in the multistability domains the emergence scenarios
of in-phase and out-of-phase modes are slightly different from those in the symmetric case.
At A 6= B, Figure 6d–f shows a stable out-of-phase 2-cycle (21) is a result of saddle-node
bifurcation (SN) instead of supercritical period-doubling bifurcation of cycle 21 emerging
with A = B and ρ = ϕ. The periodic points are not symmetrical with respect to each other,
as well as to line x = y (Figure 6f). With A 6= B or ρ 6= ϕ, the periodic point 21 is away
from the saddle-node points and not strictly between them, as in the case with A = B and
ρ = ϕ. Scenarios of stability loss of this periodic point are also different. For example, if
ρ = ϕ and the difference A− B is small, then periodic point 21 loses its stability according
to the Neimark–Sacker scenario. If the difference A− B is large enough, then we observe
the period-doubling scenario (Figure 5c). If interspecific competition coefficients differ
significantly, then the multistability domain with these two scenarios shifts depending on
the values of parameters ρ and ϕ (Figure 5e,f).

Let us study the change in multistable dynamics modes due to a change in values of
the competition coefficients ρ and ϕ at A = B, which corresponds to two species with the
same growth rates. The coefficients ρ and ϕ can be considered as parameters of a nonlinear
relationship between species. If 0 ≤ ρ < ϕ < 1, then the first population strongly affects
and weakly depends on the second one, and vice versa with 0 ≤ ϕ < ρ < 1. At ρ = ϕ, the
species’ influence on each other is the same. To carry out numerical experiments, we take
the following values of parameters ϕ = 0.03, ρ ∈ [0, 0.5], A = B, B ∈ [8, 20]. With values
from these ranges, we can observe all dynamic modes from the multistability domain
which is described above. To study system (4) dynamics modes, we use dynamic mode
maps, maps of Lyapunov exponents, and the synchronization index as follows [57,83]:

σ =
1
N

N

∑
n=1

|xn − yn|
xn + yn

,

where xn and yn are values of system (2) phase variables after transients. We use the last
500 steps from the sequence representing 10,000 model (4) iterations calculated to build the
dynamic mode maps. If the value σ = 0 then dynamic modes are fully synchronous; if σ→1
then non-synchronous modes are observed. We use the last values of xn and yn (n = 10,000)
as the starting point to calculate the following 10,000 system (4) iterations in order to find
the Lyapunov exponents.

Figure 9 shows two dynamic mode maps with the out-of-phase cycles’ stability do-
mains that differ in location and area. Here, depending on the parameter ρ value, the
selected starting point is located in the attraction basins of different dynamics modes. As a
result, there are breaking on the dynamic mode maps, the Lyapunov exponent maps, and
the synchronization index ones. In Figure 9, the highlighted boundaries of the stability
domains of different cycles are not very accurate, especially in the irregular dynamics
area. The use of the proposed indicators does not allow the unambiguous separation of
the region with chaotic synchronization of dynamics from the domain, where this mode
coexists with cycles or chaotic attractors as the discrete Shilnikov-shape or Lorentz-shape
attractors. The maps in Figure 9 like those in Figure 5 show only one dynamics mode
and do not show coexisting ones. Note that at A = B, the in-phase dynamics modes of
system (4) correspond to those of the Ricker model. As a result, on dynamic mode maps in
Figure 9, their stability areas are horizontal stripes corresponding to the first, second, third,
etc. period-doubling bifurcations in the Ricker model. At the same time, the out-of-phase
mode domains cover some parts of these stripes, which leads to multistability.
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of system (4), where domains Ⅰ–Ⅵ differ in multistable dynamics modes. Figures correspond to the 
number of system (16) fixed points (right). A numerator is fixed points’ amount between PD(20) and 
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bifurcations are shown by the dashed lines or designated as PD( τT ), where τT  is a periodic point 
that doubles its period. 

To find multistable periodic modes, we solve system (12) with 4=N  using 
nullclines. Any change in the number of nullcline intersection points indicates qualitative 
changes in system (4). In particular, it indicates subcritical and supercritical period-
doubling bifurcations or saddle-node one for fixed and periodic points. The intersection 
points can be calculated by scanning the first nullcline defined by the first equation of 
system (15), and then we find the second equation zeros on it. After that, the fixed point 
coordinates are analyzed using the Newton–Raphson method, which allows us to exclude 

Figure 9. (a,b) Dynamic mode maps (left), maps of sums of Lyapunov exponents (center) and
synchronization index maps (right) for asymptotic dynamic modes of system (4) at ϕ = 0.03 and
starting point (a) x0 = 1.7, y0 = 5 and (b) x0 = 0.8, y0 = 4.3 with changing A = B and ρ. The line highlights
the approximate boundary between dynamics modes with different values of the synchronization
index. Figures correspond to the period of observed cycles. Q stands for quasiperiodic dynamics. C
is chaotic dynamics. Subscript is the phase shift of variable xn relative to yn. (c) Bifurcation diagram
of system (4), where domains I–IV differ in multistable dynamics modes. Figures correspond to the
number of system (16) fixed points (right). A numerator is fixed points’ amount between PD(20) and
PD+(20) lines, the denominator corresponds to those between PR and PD(20) lines. Period-doubling
bifurcations are shown by the dashed lines or designated as PD(Tτ), where Tτ is a periodic point that
doubles its period.

To find multistable periodic modes, we solve system (12) with N = 4 using nullclines.
Any change in the number of nullcline intersection points indicates qualitative changes
in system (4). In particular, it indicates subcritical and supercritical period-doubling
bifurcations or saddle-node one for fixed and periodic points. The intersection points can
be calculated by scanning the first nullcline defined by the first equation of system (15),
and then we find the second equation zeros on it. After that, the fixed point coordinates are
analyzed using the Newton–Raphson method, which allows us to exclude repeats, trivial
and semi-trivial fixed points. The accuracy and complexity of this method depend on the
nullcline length, that is the number of points in the numerical implementation, its shape,
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and the number of its branches. If the nullcline curve has many inflections, especially in
the fixed point vicinities, then this algorithm can lose one of the closely located points. As a
rule, this happens during bifurcations, after which the fixed points move away from each
other and are easily identified.

With varying values of the parameters A = B and ρ, Figure 9c shows system (4) “bifur-
cation” lines on which the number of system (16) fixed points estimated by the proposed
approach changes. Lines of the period-doubling bifurcations of in-phase dynamics modes
that coincide with those of the Ricker model are shown by the dashed lines or designated
as PD(Tτ), where Tτ is a periodic point that doubles its period. As can be seen from the
bifurcation diagram in Figure 9c, at high values of ρ, only in-phase dynamics modes occur,
and an increase in the growth rate leads to the cascade of period-doubling bifurcations.

At lower values of ρ, the most interesting dynamic behavior is observed. With an
increase in the parameter A = B value, crossing the line PR leads to the occurrence of
parametric resonance, as a result of which the 2-cycles of each phase variable build up each
other’s oscillations, which gives an out-of-phase 4-cycle (42) due to the period-doubling
bifurcation of the 2-cycle. This occurs before the “simple” period-doubling of 2-cycle (20)
that brings about the appearance of stable in-phase 4-cycle (40). With crossing PR and
then PD as the dashed line, only a subcritical period-doubling bifurcation occurs and an
unstable cycle 40 appears. It becomes stable crossing the solid line PD+(20), when the period
doubles again. Figure 6b,c shows these bifurcations. It can be assumed that the occurrence
of out-of-phase cycles precedes in-phase cycles’ appearance. Thus, between PD(20) and PR
lines, there are other stable dynamics modes to the left of line SN and no in-phase ones.

Figure 9c shows two branches, PR− and PR+, which start at the right intersection
point of PD(20) and PR lines. Periodic points of PR− correspond to the appearance of
an unstable out-of-phase 4-cycle (42) that becomes stable when passing through the line
PR+. In the area above the line PR+, the in-phase dynamic modes (20, 40, 80, etc.) coexist
with the out-of-phase ones (42, 82, etc.). A decrease in the parameter ρ values leads to
a transition through the boundary PD− at which an unstable out-of-phase 2-cycle (21)
appears due to the occurrence of a subcritical period-doubling bifurcation of the nontrivial
fixed point. Further, when the competitive impact of species x and y on each other becomes
comparable, a saddle-node bifurcation occurs passing through the line SN, which gives the
emergence of a stable periodic point 21 with lower values of A = B. The curve SN has two
branches starting at the point ρ = ϕ, where codimension-two pitchfork bifurcation occurs.
The following stable cycles of system (4) are simultaneously possible between the lines
SN and ρ = 0: in-phase 20, 40, 80- periodic points, etc., out-of-phase 21, 41-periodic points,
etc. (Figure 9a), as well as 42, 82 ones, etc. If the value of ρ is close to the value of ϕ, then
Neimark–Sacker bifurcation occurs (Figure 9a,b), and two invariant curves appear around
elements of point 21. Between the lines PD(20) and PR, to the left of SN, there are only 21
and 42 cycles.

The following domains in the parameter plane can be identified based on existing and
coexisting dynamic modes (Figure 9c).

In Domain I, stable non-trivial fixed point 10 and its bifurcations lead to the appearance
of in-phase cycles 20, 40, etc.

Domain II corresponds to the existence of stable in-phase 40, 80, etc. cycles and
unstable out-of-phase four-periodic point 42.

Domain III, stable in-phase cycles 40, 80, etc. coexist with out-of-phase ones 42, 82, etc.
In Domain IV, there are stable in-phase cycles 40, 80, etc., stable out-of-phase periodic

points 42, 82, etc., and an unstable out-of-phase 21 cycle. Domain IV′ corresponds to stable
20 -cycle and unstable 21 cycle.

Domain V, there is out-of-phase 42 cycle. Domain V′ corresponds to the coexistence of
42 with 21; domain V′′ stands for existence 42 and stable out-of-phase cycle 21. There is an
unstable 40 cycle above PD(20) but below PD+(20) in domains V, V′, and V′′.

Domain VI corresponds to the existence of the in-phase 20, 40, etc. cycles, the out-
of-phase 42, 82, etc. periodic points, and the out-of-phase 21 cycle that bifurcates via
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period-doubling or Neimark–Sacker scenario. Domain VI′ shows the existence of the
in-phase 20 and the out-phase 21 cycles.

We believe that identifying unstable cycles is important as they affect the transients
and the attraction basins of stable dynamic modes. Moreover, the appearance of unstable
dynamic modes is shown to not infrequently precede the occurrence of stable fixed points.

Upon closer examination, the domain is not homogeneous for the number of peri-
odic points. In the right Figure 9c, the solid and dashed lines bound subareas with an
equal number of system (16) fixed points; namely periodic points of system (4) iterated
4 times, their number varies from 3 to 49. Some of these lines coincide with bifurcation
boundaries corresponding to period-doubling or saddle-node bifurcation. Note that the
period-doubling bifurcation of the out-of-phase 2-cycle corresponds to the solid part of
two branches of line PD(21) with the passing of which cycle 41 occurs. The upper part of
the PD(21) line separates the domain Q with two closed invariant curves emerging around
the cycle 21 elements from the area with out-of-phase high period cycles and chaos. The
remaining subareas differ in the number of additional periodic saddle points that occur
due to the large number of inflections and branches of system (14) nullclines. In Figure 9c,
the figures indicate the total number of intersection points of nullclines, excluding semi-
trivial points. One can see, higher values of parameter A = B and lower ones of ρ increase
this number.

Thus, with A 6=B and/or ρ 6= ϕ, system (2) reveals several coexisting dynamic modes
that differ in the period and the phase of oscillations, as well as phase shift of variable xn
relative to yn. The scenario of appearance of these dynamic modes significantly depends
on the intensity of competitive interaction of both species in the community.

5. Discussion and Conclusions

This paper has studied in detail the emerging dynamic modes in the two-species
community model with interspecific and intraspecific competition. This model proposed
by R. May and A.P. Shapiro is shown to reveal diverse and complex dynamics, as well as
multistability. Using numerical experiments, we have demonstrated that the out-of-phase
2-cycle, the possibility of occurrence of which was shown in [62], bifurcates both according
to the Neimark–Sacker scenario and the period-doubling one. This out-of-phase 2-periodic
point and the dynamic modes resulting from its stability loss coexist with other dynamic
modes emerging due to stability loss of the nontrivial fixed point. There are several
attractors, and, as a result, the initial conditions determine which of them will be attracted.
In this context, the influence of external factors can be considered as a modification of
the initial conditions, leading to a switch between different types of dynamics due to the
coexistence of several stable attractors and the transition to a new dynamic mode [86–88].
A change in dynamics can occur not only with the coexistence of several attractors for the
same parameter values, but also with phase multistability when the model trajectory shifts
between the attraction basins of a dynamic mode with different phases due to perturbations
of phase variables. Moreover, the longer the period of observed oscillations, the more
phases of such a cycle with their attraction basins exist. It can significantly complicate the
community dynamics in a non-stationary environment.

The paper presents a detailed analysis of the emerging multistable in-phase and out-
of-phase cycles with their bifurcations due to changing population parameter values in the
Ricker competition model. The variation of coefficients characterizing interspecific compe-
tition is shown to change the ratio of the number of in-phase and out-of-phase dynamic
modes. To identify bifurcations resulting in the birth of new in-phase and out-of-phase
periodic points, we have proposed an approach allowing us to find all periodic points of the
model for specific parameter values. This approach counts the number of periodic points at
each point of the parametric space, which allows us to determine the type of bifurcation that
has occurred, namely, the period-doubling bifurcation, the pitchfork, or the saddle-node
one. In the non-symmetric case with A 6=B and ρ 6=ϕ, several dynamic modes are shown to
occur; they coexist and differ in the period, the oscillations phase, and the phase shift of
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variable xn relative to yn. The appearance scenario of these dynamic modes significantly
depends on the intensity of competitive interaction of both species in the community. In
other words, the value variation in parameters characterizing the competitive interaction
of species can result in a change in the community development scenario.

Based on the study, we can conclude that small fluctuations in the current numbers of
competing populations can change the observed community dynamics. Unpredictability
in multispecies competition is discussed in [27], which considers a competition model
widely applied in phytoplankton ecology. The paper [27] shows that the system may have
several alternative outcomes, the dynamics leading to these alternative outcomes may
exhibit transient chaos, and that the basins of attraction of these alternative outcomes may
have an intermingled fractal geometry. As a consequence of this fractal geometry, it is
impossible to predict the winners of the multispecies competition in advance [27]. Indeed,
the results obtained in this paper show that even for a two-species community with strong
interspecific competition and seasonal reproduction, it is difficult to predict which of them
will become extinct due to emerging bistability. In two populations competing for resources,
the population survival depends on its birth rate; the higher the population birth rate, the
higher the probability of elimination of its competitor. However, even if the growth rate
of the population is higher than that of the other one in the competing community, it is
possible to find an initial condition at which the species with a lower birth rate displaces
its competitor with a larger one. With weak interspecific competition for sufficiently high
population growth rates, it is also difficult to predict the community development scenario
despite the species’ coexistence. Depending on the initial condition values, the system
reveals different dynamic modes, a change in the observed dynamics mode or the oscillation
phase is possible. As a result, the problem of predicting the ecosystem dynamics is complex
due to the presence of several attractors and disturbing factors that shift the trajectory from
one attraction basin to another one. From this point of view, considering the existence
possibility of several attractors for populations and ecosystems seems to be very promising
to bring us closer to understanding the functioning of ecological systems.
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