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Abstract: This paper analytically derives a stability test for the probability distribution of a random
variable that follows the Edgeworth–Sargan density, also called Gram–Charlier. The distribution of
the test is a weighted sum of Chi-squared densities of increasing degrees of freedom, starting with
the standard equivalent Chi-squared under the same conditions. The weights turn out to be linear
combinations of the parameters of the distribution and the moments of a Gaussian density, and can
be computed exactly. This is a convenient result, since then the probability intervals can be easily
calculated from existing Chi-squared distribution tables. The test is applied to assess the weekly solar
irradiance data stability for a twelve-year period. It shows that the density is acceptably stable overall,
except for some eventual and localised dates. It is also shown that the usual probability intervals
implemented in stability testing are larger than those of the equivalent Chi-squared distribution
under comparable conditions. This implies that the common upper tail interval values for rejecting
the null stability hypothesis are larger.

Keywords: Edgeworth–Sargan distribution; stability test; solar irradiance; PV_GIS database; photo-
voltaic energy; forecasting risk probabilities

MSC: 62P12; 62P20

1. Introduction

This paper presents and derives an analytical expression for the stability distribution
of a random variable that follows the general Edgeworth–Sargan (ES) type of probability
distribution. The distribution possesses several interesting properties and is able to capture
departures from Gaussianity of various kinds, notably asymmetry and thick tails, i.e.,
skewness and kurtosis. The paper shows that the final expression is a weighted sum of
Chi-squared distributions with increasing degrees of freedom, starting with the standard
Chi-squared if the variables followed a Gaussian distribution. Thus, it departs from
the standard stability test, and the usual upper tail probability intervals implemented
in stability testing will be less restrictive. This exact analytic result is convenient, since
then probability intervals can be easily calculated from the probabilities for Chi-squared
distribution tables, which are readily available.

The test is applied to the analysis of solar irradiance data provided by the PV-GIS
European database [1]. First, a distribution of this type is fitted to the data. Second, the
stability test is implemented to check eventual disruptions over the period considered—
weekly data spanning the period 2005–2016.

The distribution was formally introduced by Edgeworth more than a century ago [2],
but it was Sargan who introduced it into the wide econometrics and statistical theoretical
and applied fields [3,4]. A further significant contribution was provided by the work of
Gallant [5,6], who suggested a transformation to avoid some potential negativity problems.
This transformation, nevertheless, although theoretically better and sufficiently general, is
challenging to implement and has not shown a clear advantage over the first and simpler
version.
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An early empirical application of this distribution is [7]. Since then, it has slowly
made its way into the applied financial field, with significant contributions being made
by [8–10]. In particular, ref. [11] provides a generalisation to a multivariate setting, ac-
counting for crossed moments beyond covariances, like co-skewness and co-kurtosis [12].
The distribution has been compared to alternatives [13,14], notably the Student’s t [15]
and its asymmetric generalisation [16]. In general, and although from a theoretical point
of view this distribution can also capture some non-normal anomalies, in practice it has
failed to show its superiority, and it is far more challenging to obtain generalisations and
derive convenient results given its high nonlinearity. Other popular alternatives include
the multivariate skew-normal [17], although this distribution cannot account for any other
non-standard feature beyond asymmetry. However, beyond the field of applied finance, the
ES distribution is largely unknown. A secondary purpose of this research is, therefore, to
show its applicability in the burgeoning field of solar irradiance statistical characterisation.

The following section presents the formal derivation in a simplified case. Use is made
of a significant number of supporting and related results, discussed in several appendices in
order to clarify the derivation. Section 3 presents the results of estimating the ES distribution
for the data analysed and implements the test for several configurations. A discussion on
possible alternative distributions and their empirical feasibility is conducted in Section 4,
and Section 4 summarises the main contributions of the paper, suggesting immediate
avenues for future research. Several appendices present and derive results required in
the main derivation. In particular, a generalisation of the primary result of Section 2 is
presented in Appendix C.1, and Appendix C.2 summarises a list of results required in
several steps of the derivation for easy reference. Finally, Appendix D reports additional
empirical results and provides a detailed description and reference for the data analysed.

2. A Simplified Case

This section is devoted to deriving the proposed test in a simplified case that, never-
theless, involves the main steps and helps clarify the derivation. A general case will be
dealt with in Appendix C. Let us start by considering the distribution of a random variable,
εi, with probability density function (p.d.f.) given by:

fεi (εi) = α(εi)× [1 + d2 H2(εi) + d3 H3(εi)] (1)

where, α(εi) is the p.d.f. of a N(0, 1), the ds are some constants, and the Hs are Hermite
polynomials of orders 2 and 3, respectively—see Appendix B.3. This can be conveniently
rewritten as follows:

fεi (εi) = α(εi)×
(

θ0 + θ1 εi + θ2 ε2
i + θ3 ε3

i

)
(2)

These transformed coefficients must fulfil the following properties: (1) (θ0 + θ2 = 1),
so that the probability integral is one, and (2) θ1 + θ3 = 0, for the mean to be zero. It is
straightforward to check that the p.d.f. in (1) meets both conditions—see Appendix B.3.
Note, also, that σ2

u = 1 + 2θ2 6= 1, in general, although transforming to unitary variance
is immediate. It will be assumed from now on that this correction has been implemented
and denotes the new variable, ui. It may be helpful before proceeding to gather the
assumptions implied in what follows: (a) (p0 + p2 = 1) so that the probability integral is
one; (b) (p0 + 3p2 = 1) so that the variance is one; (c) (p1 + 3p3 = 0) so that the mean is
zero; (d) α(ui) is the p.d.f. of a standard N(0, 1); (e) the ui′s are i.i.d., i.e., independently
and identically distributed. These assumptions are implied in the specification of (1), (2).

Consider now the joint distribution of the vector of independent variates u′ = (u1, u2)
given by:

fu(u) =
2

∏
i=1

[
α(ui)×

(
p0 + p1 ui + p2 u2

i + p3 u3
i

)]
(3)
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It is now convenient to implement the polar coordinate transform, i.e., z = u′u =
u2

1 + u2
2 and η = u/z1/2. The joint p.d.f. of the transformed variables will be trivially

given by:
fz,η2(z, η2) = fu

(
z1/2 η

)
‖J‖ (4)

where ‖J‖ is the absolute value of the relevant Jacobian—see Appendix A.2 for a complete
derivation. Note that η1 in this context is just a shorthand for η1 =

(
1− η2

2
)1/2 so that it is

not an independent variate. An explicit form for this p.d.f. is given by:

fz,η2(z, η2) = χ2
2(z)× fη2(η2)×

[
2

∏
i=1

(
p0 + p1 z1/2 ηi + p2 z η2

i + p3 z3/2 η3
i

)]
(5)

where χ2
2(z) is the p.d.f. of a Chi-squared distribution with two degrees of freedom and

fη2(η2) is the marginal density of η2; see Appendix C for a detailed derivation of the general
case. Let us suppose now that this p.d.f., i.e., the parameters {pi, i = 0, . . . , 3}, have been
estimated over a given sample {ut, t = −T, . . . , 0}. For forecasting purposes, a stability
test is in order. Consider, then, the simple case where two additional observations are
available to conduct the test, {ut, t = 1, 2}. Note that when {p0 = 1, pi = 0, i = 1, 2, 3} in
(3), ui is distributed as a standardised normal, i.e., ui ∼ N(0, 1) and therefore, the standard
forecasting stability test follows a Chi-squared distribution with two degrees of freedom,
i.e.,

(
u2

1 + u2
2
)
∼ χ2

2. By analogy to the standard normal case, a convenient statistic to
conduct the test would also be z = u′u. The p.d.f. of z can be obtained immediately now as
the marginal of the joint distribution of (z, η2), i.e.:

fz(z) =
∫

fz,η2(z, η2)∂η2

= χ2
2(z)×

∫ {
fη2(η2)×

[
2

∏
i=1

(
p0 + p1 z1/2 ηi + p2 z η2

i + p3 z3/2 η3
i

)]}
∂η2

(6)

= χ2
2(z)

(
p2

0 + p2
2 z2 E

(
η2

1 η2
2

)
p0 p2 z E

(
η2

1 + η2
2

) )
(7)

where use is made of (A14)–(A16) whereby terms involving odd powers of ηi are zero, and
cross-products moments are equal to the product of the individual moments. Solving now
for the moments of ηi as given in (A16), yields:

fz(z) = χ2
2(z)×

(
p2

0 + p2
2 z2µ2

2

[
E
(

δ4
2

)]−1
+ p0 p2 z 2 µ2

[
E
(

δ2
2

)]−1
)

(8)

Finally, applying the result in (A19) yields the explicit p.d.f. sought after as:

fz(z) = q2
0 χ2

2(z) + 2 q0 q2 χ2
4(z) + q2

2 χ2
6(z) (9)

where q2 = p2 µ2 = p2, because µ2 = 1, and q0 = p0.
Using the operator defined in Appendix B.4, this last expression (9) can be written

more compactly as:
fz(z) = χ2

2(z)× (q0 + q2 z I)2δ2
2

= χ2
2(z)× [Q(z I)]2δ2

2
(10)

With:

Q(z I) =
1

∑
s=0

[
q2s (z I)s] (11)

which can also be written as
[

Q
(
(z I)1/2

)]2
, with q1 = 0. This is a slightly more general,

but entirely equivalent notation, since odd terms in (10) vanish, given that all odd moments
of ηi are zero. It is of interest to note, as well, that the distribution can be written as:
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fz(z) =
2

∑
r=0

{
ω2r χ2

2+2r(z)
}

(12)

i.e., a weighted sum of Chi-squared distributions of degree 2 and above, where:

2

∑
r=0

ω2r = (q0 + q2)
2 = 12 = 1 (13)

as it should, for (12) to integrate to one and therefore be a proper p.d.f. The cumulative
probability function required to establish probability confidence intervals is immediately
given finally as:

Fz(z) = Prob(z ≤ z) =
∫ z

0 fz(z) ∂z

=
2
∑

s=0

{
ω2s ×

[∫ z
0 χ2

2s(z)∂z
]} (14)

A generalisation of this result to more complex and realistic cases, along with some
computational considerations and additional results, is left to Appendix C.

3. Empirical Results

The ES p.d.f. and related proposed distributions addressing an assorted array of
issues have been implemented almost exclusively in applied financial analysis; see the
introduction for a summary survey. However, it can also be applied in many other settings,
including the study of meteorological and, in particular, solar radiation data. This is
a promising field of research, given the urgency to tackle the climate change threat by
deploying a whole array of renewable energy technologies, particularly solar photovoltaic
(PV), given its impressive and sustained cost decreases since it was commercially introduced
at the beginning of the 1980s. It is convenient to clarify at the outset that stability, or its lack
thereof, is a property of a model. In order to check empirically whether a model is stable,
appropriate statistical tests are required. In the present case, the focus is on the p.d.f. of
the errors of a series, once the annual cycle has been removed. The test proposed here is
completely general, but nevertheless can be applied to the residuals of any given model,
e.g., a standard linear dynamic model, possibly estimated by an ordinary least-squares
procedure. Note, also, that what is being tested is the stability of the underlying model.

The primary data set analysed has been the radiation database PVGIS-SARAH pro-
vided by the EU [1]. For technical details and other discussions related to its applicability,
see [18,19]. The starting point was hourly data for the period 2005–2016 (both end-years
inclusive), and PV power generation in central Spain; see Appendix D for details. Weekly
observations were calculated from the hourly data, yielding a series with 624 data points—
again, see Appendix D for details.

The main series considered, the weekly generation of PV power, zt, exhibits a substan-
tial cycle over the year. The first step is removing it and obtaining a ‘de-cycled’ series, as
explained next. The weekly average over the years is denoted as:

zt =
2016

∑
i=2005

( zit
12

)
it

(15)

where the subindices, i, t, refer respectively to a given year, i = 1, . . . 12, and the week
within that year, t = 1, . . . , 52. One straightforward and accurate way to define the cycle is
given by:

zc
t =

n=5

∑
n=−5

(ωi zt+n) (16)

ωi > 0,
n=5

∑
n=−5

ωn = 1 (17)
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i.e., a weighted sum given by the moving average using appropriately selected weights;
see, e.g., [20] for a related discussion on alternative patterns and their optimality. Note
that this weighted sum can be understood in the framework of a ‘circular’ time series, and
hence, there are no gaps at both extremes: i.e., z53 = z1, z0 = z52, and similarly for other
periods. The ‘de-cycled’ observation, z̃it, is now straightforwardly given as:

z̃it = zit − zc
t (18)

The cycle as it has been calculated and its fitting accuracy are analysed graphically
in Figure 1—kWh is kilowatt hour, i.e., one thousand watts per hour of energy generated,
electric power in this case; the specific details and references for the series analysed are
further considered in Appendix D; appropriate literature references are [1,18,19].
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Figure 1. Average weekly data (kWh). Notes: (1) w. avg.: average weekly data over the years
2005–2016; (2) w. m.avg: moving average (kernel); (3) avg –m.avg: average weekly data minus its
moving average.

Eventual remaining structures in the series have been considered by means of regres-
sion analysis, and no significant dynamic relationship has been detected. The residuals do
not show clear signs of heteroskedasticity of any kind, although the normality hypothesis
is strongly rejected: a relevant test yields a value of 34 ∼ χ2

2, strongly rejecting the null,
and thereby suggesting that a more general p.d.f. is warranted. Therefore, an ES p.d.f. of
the type considered in this research has been estimated, yielding the following results for
the coefficients associated with the Hermite polynomials of order 3 and 4, respectively:

d3 = −0.039646 (3.164)

d4 = 0.017698 (2.236) (19)

where the t-ratios are the figures in brackets, and no other polynomial is statistically
significant. For these estimates, specific values for the confident intervals of the test
presented in (14) in Section 2 can be derived: accordingly, stability tests for the following
periods have been calculated, (2, 5, 10, 20), and for the standard confidence intervals
(90%, 95%, 99%). The values, jointly with the corresponding values of the relevant Chi-
squared distribution, are reported in Table 1.
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Table 1. Chi-Squared and ES stability Probability intervals.

Probability Intervals for the Stability Test
(2, 5, 10 and 20 Weeks Ahead)
ES and Chi-Squared Intervals

(10%, 5%, 1% Upper Tail Probabilities)

Deg. freedom 2 5 10 20
(A) 10%

Chi-squared 4.605 9.236 15.987 28.412
ES 4.650 9.627 16.758 29.175

(B) 5%
Chi-squared 5.991 11.070 18.307 31.410

ES 6.341 11.793 19.203 32.678
(C) 1%

Chi-squared 9.210 15.086 23.209 37.566
ES 10.448 16.559 25.034 39.683

Notes. Values for the ES test are derived with the estimates reported in (19).

It is immediately remarkable that the intervals for the ES case are higher in all cases,
as the expression for the ES c.d.f. in (12–14) suggests. In the present case, however, the
differences are not too large because the original variable does not depart strongly from the
normality assumptions, as shown in the estimated coefficients for (d3, d4) that imply skew-
ness and excess kurtosis values of (6d3 = −0.238, 18d4 = 0.319), respectively—statistically
significant, but not large in absolute value. Note that skewness and excess kurtosis, com-
pared to the standard Gaussian, are respectively measured by

{
E
(
u3), (E(u4)− 3

)}
. They

are also the two most immediate departures from the Gaussianity assumption and what
every p.d.f. should purport to capture adequately in empirical distributions. Note, also,
that the Bera–Jarque test against non-normality is based precisely on the joint departure
from zero of these two values—recent empirical applications of the Bera–Jarque test can be
seen in, e.g., [21,22].

For the estimated distribution and the values in Table 1, the results for the five weeks’
stability test over the whole sample are displayed in Figure 2—note that 624/5 = 124 period
tests, plus a remainder of 4 weeks. In this case, the general conclusion would be that
the distribution is acceptably stable over the whole period analysed, save a few localised
exceptions. Nevertheless, this does not imply that data at other frequencies, e.g., daily and
even hourly, exhibit the same stability over time, in the same or different historical dates.
The results for the remaining stability periods considered, 2, 10, and 20 weeks ahead, are
reported in Appendix D.

In this context, it is also worth considering that equivalent results could be produced
from computer-generated pseudo-random numbers for the ES distribution. A random
number from the ES p.d.f., similarly to any other p.d.f. for that matter, can be derived from
the following expression:

U(y) = y =
x∫
−∞
{α(ε)× [1 + d3 H3(ε) + d4 H4(ε)]}∂ε

= Φ(x)− [d3 H2(x) + d4 H3(x)]
(20)

where α(ε), Φ(x), are respectively the p.d.f. and c.d.f. of a Gaussian (0,1) p.d.f., U(.) is the
c.d.f. of a uniform p.d.f. over the (0,1) interval, and ‘y’ a pseudo-random number generated
with a suitable algorithm, like, e.g., [23]. Solving this expression for ‘x’ yields a random
number that follows precisely that distribution, i.e., the ES with Hermite polynomials
(H3, H4) and their associated coefficients (d3, d4); see, e.g., [24]. Solving this highly non-
linear equation for a large number of random values is computationally demanding since
it involves the inverse of Φ(x). There are available computational approximations [25],
although there may be workarounds, e.g., generating and storing in a first step values for
the ES c.d.f. Nevertheless, although generally, it is much easier and exact to derive the exact
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values of the test as given in (13) in Section 2, the random numbers derived using (20) may
be helpful in specific cases, and even to provide an independent check for the analytical
results.
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4. Conclusions and Discussion
4.1. Results

This paper has derived an analytical expression for a stability test applicable when
the underlying distribution is of the general ES type, capable of accounting for departures
from the Gaussianity hypothesis of several kinds. Several related and relevant results have
also been presented.

These non-standard anomalies have been studied in other fields with considerable
length, notably in the applied financial literature; see, e.g., [21,22]. Here, the distribution
has been implemented in a new area: the analysis of solar irradiance. This is all the more
relevant, given the urgency to implement the energy transition to a low or zero-carbon
system based on renewable energy sources, especially solar.

The solar irradiance data analysed show significant skewness and kurtosis, adequately
accounted for by the ES distribution. The stability test has been applied to the solar
data provided by the PV-GIS database, which shows some eventual localised instability.
Otherwise, it displays a fairly stable behaviour over the period analysed. The theoretical
probability intervals have been compared to the standard Chi-squared distribution for the
equivalent cases. It is shown that even for cases where the departures from Gaussianity
are moderate, the differences can be substantial. The general result is that the Chi-squared
suggests a more stringent interval, i.e., lower, that will result in incorrect rejections of the
null stability hypothesis in some cases. This can lead to multiple independent estimations
in restricted samples, and is therefore less reliable.

4.2. Discussion and Implications

Besides the ES, other p.d.f. discussed and implemented in the empirical literature,
mainly financial, have been considered. All can handle departures from Gaussianity to
some extent. One that has been widely considered is the Student’s t and its asymmetric
generalisation [16]. A multivariate generalisation is also possible, but limiting the co-
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moments of univariate distributions to the variance–covariance matrix. This p.d.f. has
been implemented in the univariate case with some success, although the multivariate
generalisation is somewhat limited. Besides, beyond fitting the observational data, it is
difficult to work with it in other applications, like risk analysis or the stability test presented
and discussed here.

Alternative ES specifications have been suggested in the literature, notably [5,6], that
solve the problem of eventual negative values, but introduce new ones since they require
complex non-linear corrections to produce a p.d.f. with zero mean and unitary variance,
ready for empirical applications. Besides, beyond theoretical properties, the practical
suitability of any p.d.f. has to be proven in practice, and this p.d.f. is challenging to
implement computationally.

Non-standard Gaussian p.d.f.s have been estimated in several fields, notably finance.
However, the issue of stability testing beyond the Gaussian framework has hardly ever
been discussed in the literature, and the only available test statistics up to now assume that
the underlying error distribution follows precisely a N(0, 1); see, e.g., [26]. The test derived
in this research is a further motive to favour the ES distribution for empirical applications
instead of eventual alternatives like [16], or [5,6]. Finally, it must be pointed out that testing
the stability of sufficiently long periods may also be conducted in the framework of the
likelihood analysis, i.e., implementing standard likelihood ratio tests.

The ES distribution and the test have been applied to weekly data. An immediate
extension of the research would be to apply it to daily and even hourly frequencies, since
the data are available. Extending the study to the multivariate framework is also a clear
field for future research, as is solar radiation analysis at additional geographical locations.
Finally, it must be stressed that a correct distribution is a requirement to establish proper
forecasting intervals and conduct an accurate risk analysis.
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Appendix A. Polar Coordinates and the Chi-Squared Distribution

Appendix A.1. Introduction

Consider a set of independently and equally distributed Gaussian random variates
{ xi ∼ N(0, 1), i = 1, . . . n}. The variables

(
δ2, z

)
can be defined now by x′x = δ2

n = z, so
that δ2

n ∼ χ2
n , i.e., a Chi-squared with n degrees of freedom, with p.d.f. and moments

given respectively by:

χ2
n(z) = Γ

(n
2

)−1
(

1
2

) n
2

zn/2−1 e−z/2 (A1)

E
(

δ2
n

)r
= Γ

(n
2

)−1
2r Γ

(n
2
+ r
)

(A2)
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see, e.g., [27]. The polar coordinates are defined accordingly by the vector η′ = (η1, . . . , ηn)
as follows:

x = η δn = z1/2 η (A3)

whereby η′η = 1.

Appendix A.2. The Joint and Marginal Densities of (z, η)

Let us define now the vector η′(1) = (η2, . . . , ηn), so that:

η2
1 = 1−

(
η2

2 + . . . + η2
n

)
(A4)

Note that, from now on, η1 is used as a shorthand for
[
1−

(
η2

2 + . . . + η2
n
)]1/2, i.e., a

function of the remaining, ηi = i = (2, . . . , n). This is because we have n variates initially,
so that the transformation can only yield n independent variates, accordingly. In order to
obtain the distribution of z, it is necessary to derive first the joint p.d.f. of

(
z, η(1)

)
, given

immediately by:

fz,η(1)

(
z, η(1)

)
=

[
n

∏
i=1

α
(

z1/2 ηi

)]
‖J‖ (A5)

where α(.) is the p.d.f. of a univariate gaussian N(0, 1), and ‖J‖ is the absolute value of the
determinant of the Jacobian matrix, defined by:

J =
∂x

∂
(

z, η(1)

) (A6)

where:
∂xi
∂z = ηi

(
1
2

)
z−1/2

∂xi
∂ηj

= z1/2 ∂ηi
∂ηj

(A7)

and:

∂ηi
∂ηj

=


−ηj/η1 , i = 1

1 , i = j
0, otherwise

(A8)

Gathering and organising terms, the explicit expression for the Jacobian is:

J =


ηi

(
1
2

)
z−1/2, ηi

(
1
2

)
z−1/2, . . . , . . . , ηi

(
1
2

)
z−1/2

− η2
η1

z1/2, z1/2, 0, . . . , 0
− η2

η1
z1/2, 0, z1/2, . . . , 0

. . . , . . . , . . . , . . . , . . .
− η2

η1
z1/2, 0, . . . , . . . , z1/2

 (A9)

Developing its determinant by co-factors with the first row yields:

|J| = η1

(
1
2

)
zn/2−1 +

η2
2

η1

(
1
2

)
zn/2−1 + . . . + η2

n
η1

(
1
2

)
zn/2−1

=
(

1
2

)
zn/2−1 η−1

1
(
η2

1 + η2
2 + . . . + η2

n
)

=
(

1
2

)
zn/2−1 η−1

1

(A10)

which is a conveniently simplified expression. Finally, and plugging this last expression in
the joint p.d.f. of (4) leads to:
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fz,η(1)

(
z, η(1)

)
=
(

1√
2π

)n
e−z/2

(
1
2

)
zn/2−1

∣∣∣η−1
1

∣∣∣
=

[
Γ
( n

2
)−1

(
1
2

)n/2
zn/2−1 e−z/2

]
×
[
Γ
( n

2
)

π−n/2
(

1
2

) ∣∣∣η−1
1

∣∣∣]
= χ2

n(z)× fη(1)

(
η(1)

) (A11)

which shows the statistical independence of z and η(1), a result required to solve the relevant
expectations in the derivation of the stability test.

Appendix A.3. The Moments of η

It is convenient to start by noting that, from (A3), it is possible to write the following:

xr
i xs

j = δs+r
n ηr

i ηs
j (A12)

Considering now the independence of the x′is and that of
(

z, η(1)

)
, it follows that:

E
(

xr
i xs

j

)
= E

(
xr

i
)

E
(

xs
j

)
E
(

xr
i xs

j

)
= E(δs+r

n ) E
(

ηr
i ηs

j

) (A13)

leading to:
E
(

ηr
i ηs

j

)
=
(

E(xr
i ) E

(
xs

j

))
/E
(
δs+r

n
)

(A14)

Now, the moments of a xi are given by—see, e.g., [27]—:

E(xr
i ) = µr =

{ r!
( r

2 )! 2r/2 r even

0 r odd
(A15)

and specifically, (µ2, µ4, µ6, µ8) = (1, 3, 15, 105). The moments of δs+r
n can be obtained

noting that E(δs+r
n ) = E

(
z(s+r)/2

)
, and since when E

(
ηr

i ηs
j

)
6= 0→ (s + r)/2 will be

an integer from the previous developments, this is the (s + r)/2 moment of a χ2
n. More

generally, it is immediate that:

E
(
ηr1

1 ηr2
2 . . . ηrn

n
)

= E
(
xr1

1 xr2
2 . . . xrn

n
)
/E(δr

n)

=
(
µr1

1 µr2
2 . . . µrn

n
)
/E
(
χ2

n
)r/2 (A16)

where r = (r1 + . . . + rn) is even, and E(δr
n) is the (r/2)th moment of a χ2

n.

Appendix A.4. A Recursive Property of the Chi-Squared p.d.f.

Consider the following ratio of two Chi-squared p.d.f.:

χ2
n+2m(z)
χ2

n(z)
=

[
Γ
( n+2m

2
)−1

(
1
2

) n+2m
2 z(

n+2m
2 −1) e−z/2

]
×
[

Γ
( n

2
)−1

(
1
2

) n
2 z(

n
2−1) e−z/2

]−1 (A17)

which, simplifying, becomes equal to:

=
Γ( n

2 )
Γ( n+2m

2 )

(
1
2

)m
zm

= zm
[

E
(
χ2

n
)m
]−1 (A18)

leading finally to:

χ2
n(z) zm

[
E
(

χ2
n

)m]−1
= χ2

n+2m(z) (A19)
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This result is required to solve the marginal p.d.f. of the stability test proposed.

Appendix B. Computational Aspects

Appendix B.1. Distribution Function of a Chi-Squared p.d.f.

In what follows, the following properties of the gamma function will be used:

Γ(n + 1) = n Γ(n) , n > 0
Γ(1) = 1 , Γ(1/2) = √π

(A20)

see, e.g., [27].
Consider now integrating by parts the following expression:∫ (

e−z/2 zn/2−1
)

∂z =

(
2
n

)
zn/2 e−z/2 −

∫ [(
2
n

)
zn/2 e−z/2

(
−1

2

)]
∂z (A21)

which, after a trivial rearrangement, yields:∫ (
zn/2 e−z/2

)
∂z = n

∫ (
zn/2−1 e−z/2

)
∂z− 2 zn/2 e−z/2 (A22)

Multiplying this expression through by
[
Γ(n/2 + 1)−1 (1/2)n/2+1

]
, and after some

slightly lengthy but otherwise straightforward algebra, yields:

Qn+2(z) = Qn(z) + Γ
(n

2
+ 1
)−1

(
1
2

)n/2
zn/2 e−z/2 (A23)

where Q is defined as given by:

Qn(z) = Γ
(n

2

)−1
(

1
2

) n
2 ∫ +∞

z
zn/2−1 e−z/2 ∂z (A24)

i.e., the upper tail probability of a χ2
n(z) c.d.f.; see, e.g., [28]. Note that with Q1, Q2, it is

possible to obtain the solution for Qn recursively. Thus:

Q1(z) = 1√
(2π)

∫ +∞
z z−1/2 e−z/2∂z

= 2
∫ +∞√

z
1√
(2π)

e−u2/2∂u

= 2
[
1−Φ

(√z
)] (A25)

where the second equality is obtained implementing the change of variable z = u2, and
Φ(.) is the c.d.f. of a Gaussian N(0, 1). The explicit solution for Q2 is given in turn by:

Q2(z) =
∫ +∞

z e−z/2
(

1
2

)
Γ(1)−1∂z

= e−z/2
(A26)

obtained easily after integration and solving the integral bounds. Finally, (A23), (A25) and
(A26) provide jointly the algorithm for the c.d.f. of a variable distributed as χ2

n(z), for all
possible degrees of freedom, n, and probability intervals, (x,+∞).

For large n, the distribution can be approximated with a negligible error by the
standard Gaussian N(0, 1), after the appropriate corrections for the mean and standard
deviations are applied [2].
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Appendix B.2. Computing the Multinomial Theorem

The multinomial theorem is the generalisation of the corresponding binomial theorem,
and is given as: (

k

∑
i=1

qi

)n

= ∑
P

[
cn1,...,nk ×

(
k

∏
i=1

qni
i

)]
(A27)

cn1,...,nk = n!/
k

∏
i=1

ni! (A28)

where P is the set of all non-negative integers, (n1, n2, . . . , nk) which sum to n ; see, e.g., [27].
In practical applications in the context of this research, the polynomials to be considered
will be of the following general type:

Q(z) =
4

∑
i=0

[
q2i (zI)i

]
(A29)

i.e., a maximum of five terms corresponding to a sum up to the 8th order Hermitian
polynomial—note that odd polynomials will not be included, since they are linear combina-
tions of odd powers of the η′i s, and their odd powers are zero. Their nth order powers will
be required, and can be calculated explicitly using the multinomial theorem, as given next:

Q(z)n =
n

∑
i=0

n1

∑
j=0

n2

∑
k=0

n3

∑
l=0

[
ϕi,...,n∗ × (zI)m] (A30)

ϕi,...,n∗ = ci,...,n∗ ×
(

qi
0 qj

2 qk
4 ql

6 qn∗
8

)
ci,...,n∗ =

n!
(i!j!k!l!n∗!)

(A31)

where the indices must fulfil:
n = i + j + k + l + n∗ (A32)

0 ≤ (i, j, k, l, n∗) ≤ n (A33)

so that, n1 = n − i, n2 = n − i − j, n3 = n − i − j − k, n∗ = n − i − j − k − l , and m =
j + 2k + 3l + 4n∗. Defining now the coefficients ωm as follows:

ωm = ∑n
i=0 ∑n1

j=0 ∑n2
k=0 ∑n3

l=0 ϕi,...,n∗ (A34)

the final expression for the p.d.f. is:

fz(z) =
4n

∑
m=0

[
ω2m χ2

n+2m(z)
]

(A35)

where ωm = 0 for odd values of m. Although it is feasible to compute the coefficients ωm ,
they are not required to calculate the p.d.f., since it can also be written as:

fz(z) = χ2
n(z)×

{
n

∑
i=0

n1

∑
j=0

n2

∑
k=0

n3

∑
l=0

[
ϕi,...,n∗ × χ2

n+2m(z)
]}

(A36)

and the coefficients ϕi,...,n∗ have already been worked out explicitly in (A31).

Appendix B.3. Univariate Hermite Polynomials

The univariate Hermite polynomials, along with several interesting properties, are
presented, e.g., in [2]. However, in practical applications of the ES p.d.f., only polynomials
up to the 8th order are likely to be required. Since at several steps in this research explicit
expressions are used, they are given next:
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H1(u) = u
H2(u) = u2 − 1
H3(u) = u3 − 3 u
H4(u) = u4 − 6 u2 + 3
H5(u) = u5 − 10 u3 + 15 u
H6(u) = u6 − 15 u4 + 45 u2 − 15
H7(u) = u7 − 21 u5 + 105 u3 − 105 u
H8(u) = u8 − 28 u6 + 210 u4 − 420u2 + 105

(A37)

The multivariate extension, jointly with the application in financial markets, can be
found in [11,12]. A useful property that is used in the derivation in Section 2 is:∫ +∞

−∞
[α(u)× Hs(u)]∂u = 0 (A38)

where α(u) is p.d.f. of a standard normal Gaussian N(0, 1). This can be proven by direct
substitution of the relevant moments of the N(0, 1), or by directly solving the integral from
the definition of the Hermite polynomials.

The coefficients ps multiplying the powers of ui in the polynomial (3) in Section 2 are
given by:

p8 = d8
p6 = −28 d8 + d6
p4 = 210 d8 − 15 d6 + d4
p2 = −420 d8 + 45 d6 − 6 d4 + d2
p0 = 105 d8 − 15 d6 + 3 d4 − d2 + 1

(A39)

and the qs coefficients of (9) by:

q8 = 105p8, q6 = 15p6, q4 = 3p4, q2 = p2, q0 = p0 (A40)

Appendix B.4. The Operator Isδ2

The operator defined next is useful in the derivation of the expansion. The operator is
defined by:

Isδ2
n = E

(
δ2s

n

)−1
(A41)

I0δ2
n = 1 (A42)

where δ2
n ∼ χ2

n(ν): in words, it amounts to taking the sth order moment of a χ2
n(ν). Note

that, strictly speaking, the moment of order zero of any random variate is equal to the
probability integral, therefore equal to 1, so that (A42) simply states that result explicitly.
The operator is also applicable to the positive root of δ2

n, δn, i.e., Isδn = E(δn)
−1, although

this is not strictly required in the derivations because all odd terms vanish in virtue of the
properties discussed in Appendix A.3. It is also immediate that the operator fulfils the next
two properties:

Ir × Is = Is+r (A43)

(Is)r = Isr (A44)

Appendix B.5. Computer Programs

Preliminary calculations and regression analysis have been conducted with the free
open-source software gretl [29], and its associated hansl programming language [30]; all
figures are drawn with the gnuplot program [31], as well as free available software. The
initial data handling and the more involved calculations, including the estimation of the
ES p.d.f., the calculation of the theoretical stability test, and the generation of ES pseudo-
random numbers, have been implemented in specifically written programs for this research
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with the Fortran F90/95 language [32], by the author. Since the raw data and all programs
are freely and publicly available, this allows the replicability of all of the reported results.

Appendix C. Generalisation of the Test

Appendix C.1. General Derivation

Consider the following p.d.f. of variable, where α(εi) is the p.d.f. of a Gaussian N(0, 1),
and the Hs(εi) are Hermite polynomials:

fεi (εi) = α(εi)×
[

1 +
h

∑
s=2

dsHs(εi)

]
(A45)

This is a proper p.d.f., since its probability integral is one. The mean of this p.d.f. is
zero, although its variance, (1 + 2d2), will generally differ from one. It is straightforward to
redefine it so that the variance of the transformed variable, ui, and that of its p.d.f., is one.
It is convenient, now, to consider rewriting the polynomial in (A45) as a sum of powers on
ui, so that:

fui (ui) = α(ui)× P(ui) (A46)

P(ui) =
h

∑
s=0

(ps us
i ) (A47)

Next, implementing the polar-coordinate transformation of (A3), the joint p.d.f. of the
transformed variables

(
z, η(1)

)
is given as:

fz,η(1)

(
z, η(1)

)
= χ2

n(z)× fη(1)

(
η(1)

)
×
[

n

∏
i=1

P
(

z1/2 ηi

)]
(A48)

It is immediately seen that z and η(1) are not statistically independent anymore, as
compared to the case when the ui are N(0, 1). Consider the following integral over the
whole space for the η′i s, i.e., (−1,+1):

∫ {
fη(1)

(
η(1)

)
×
[

n

∏
i=1

P
(

z1/2 ηi

)]}
∂η(1) = [Q(z I)]nδ2

n (A49)

where:

Q(z I) =
[h/2]

∑
s=0

[
q2s (z I)s] (A50)

and [h/2] is the integer part of the fraction if h is odd—i.e., integer division—and q2s =

p2sµ2s, µ2s being the (2s)th order moment of a N(0, 1). The coefficients (p2s, q2s) up to order
2s = 8 are given in (A39) and (A40) in Appendix B.3. This result is key, and derives from
two properties, namely, (1) all odd moments of ηi vanish, and (2) the crossed moments
of the η′i s can be obtained in fact as if they were independent in virtue of (A14), i.e., as
the product of the respective independent moments. Finally, the operator Is is defined in
Appendix B.4.

Gathering terms in (A48), (A49), and (A50), the marginal p.d.f. of z is given by:

fz(z) =
∫

fz,η(1)

(
z, η(1)

)
∂η(1)

= χ2
n(z)× [Q(z I)]nδ2

n
(A51)

Finally, from this last expression (A51) and using (A19), the p.d.f. sought after can be
written as follows:

fz(z) =
n[h/2]

∑
r=0

[
ω2r χ2

n+2r(z)
]

(A52)
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It remains to solve explicitly the coefficients ω2r. This is a computational problem that
can be solved for realistic practical cases with the multinomial theorem and complementary
results—see Appendix B.2.

Finally, the cumulative probability function required to establish probability confi-
dence intervals is immediately given by:

Fz(z) = Prob(z ≤ z) =
∫ z

0 fz(z) ∂z

=
n[h/2]

∑
r=0

{
ω2r ×

[∫ z
0 χ2

n+2r(z)∂z
]} (A53)

The sum of all ω2r in (A52) must be equal to one by derivation, i.e., fz(z) is a proper
p.d.f. function that integrates to one. It is also possible to give an independent proof. First,
note that:

n[h/2]

∑
r=0

ω2r =

[
[h/2]

∑
s=0

q2s

]n

(A54)

Noting now that q2s = p2sµ2s, and from the Hermite polynomials property (A38) in
Appendix B.3, it follows that:

[h/2]

∑
s=0

q2s = 1 (A55)

proving the stated result immediately.

Appendix C.2. List of Key Intermediate Results

This section collects a few results and definitions scattered among the several appen-
dices, key to solving the crucial steps in the solution, aiming to ease the understanding
of the derivation. The reference numbers are those assigned initially in their respective
sections except the last.

z = δ2
n ∼ χ2

n (A56)

x = η δn = z1/2 η (A57)

fz,η(1)

(
z, η(1)

)
= χ2

n(z)× fη(1)

(
η(1)

)
(A58)

E
(

ηr
i ηs

j

)
=
(

E(xr
i ) E

(
xs

j

))
/E
(
δs+r

n
)

(A59)

χ2
n zm

[
E
(

χ2
n

)m]−1
= χ2

n+2m (A60)

Isδ2
n = E

(
δ2s

n

)−1
(A61)

and from the last two:
χ2

n ×
(

zm Imδ2
n

)
= χ2

n+2m (A62)

Appendix D. Additional Empirical Results

The specific geographical location for the data collection is (latitude 39.992, longitude
−4.456), both in decimal degrees, with a nominal system power of 1.0 kWp (c-Si). The
radiation database is PVGIS-SARAH, and the code for the specific series is:

“Timeseries_39.992_-4.456_SA_1kWp_crystSi_14_36deg_0deg_2005_2016”
The data are publicly available and free to download, at the web address:
https://re.jrc.ec.europa.eu/pvg_tools/es/#MR
For further details and discussion, see [18,19].
The data have been converted to weekly observations by straight summation. In order

to obtain homogeneous and comparable weekly data across years, the extra 29th of February
days for the years 2008, 2012, and 2016 have been omitted. This leaves homogeneous 365-

https://re.jrc.ec.europa.eu/pvg_tools/es/#MR
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day years, with 52 full seven-day weeks and one extra final day remaining. In total, that
makes ( 52× 12 = 624) data-point observations.

The visual results for the stability test for 2, 10, and 20 weeks ahead are displayed in
the following Figures A1–A3.
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Figure A1. Two weeks ahead stability test for the ES p.d.f.
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