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Abstract

In this report, the standard deviation (Std) of the results of our experiments are
presented.

Experiments with synthetic dataset

Table S1. Comparison between the proposed models (LOBALI and LQBALII) and the random,
LLR, AOD, CB, and LHCE models using synthetic data in terms of the standard deviation of the
accuracy, sensitivity, and specificity results (in the form of Std(Acc)/Std(Sen)/Std(Spec)).

Fn. IR  Random LLR AOD CB LHCE LQBALI LQBALII
R 27/59/33 21/45/15 09/19/05 25/37/51 21/40/31 08/15/17 07/17/20

B 1  12/59/56 13/48/56 07/13/00 14/60/60 13/72/71 13/46/53 16/25/27

Fs 1.8/ 48/66 19/51/7.8 00/00/00 16/57/7.9 16/56/75 12/43/48 15/43/25

check for 3 20/ 64/24 20/74/09 07/23/08 52/47/85 22/72/23 08/24/05 0.6/15/0.7
updates F, 233 24/55/60 20/49/60 08/11/00 35/75/66 21/49/57 17/36/40 12/1.7/40
Citation: Tharwat, A.; Schenck, W. F 2.0/65/82 1.8/54/7.8 00/00/0.0 22/59/79 21/7.1/87 19/52/71 2.0/35/3.0
A Novel Low-Query-Budget Active 3 18/7.7/23 12/80/1.0 07/27/09 73/42/97 16/72/19 69/35/91 69/22/89
. ! B 4  18/29/37 31/50/59 13/15/02 52/82/72 27/47/65 63/100/90 6.1/9.2/64
Learner with Pseudo-Labels for F 29/75/84 29/58/73 00/00/0.0 3.1/56/79 30/74/84 26/46/64 2.6/35/30
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Ds.  Random LLR CB LHCE LOBALI LOBALII
with regard to jurisdictional claims in

published maps and institutionalafil. ~ LD1  1.1/41/38 02/05/04 10/46/38 13/86/85 04/24/16 04/17/13
LD2 15/59/40 04/05/05 13/68/41 0.1/0.0/0.0 1.0/28/19 09/2.7/14
LD3 1.0/47/1.0 02/07/02 11/52/0.6 2.6/4.8/48 03/19/05 03/1.6/03
LD4 09/54/15 01/03/0.1 08/47/1.0 09/67/13 04/16/08 04/19/0.8
LD5 08/52/1.0 02/1.1/02 07/7.0/09 04/42/03 0.6/39/08 0.6/34/0.7
LD6 06/65/1.1 0.1/04/01 04/67/09 0.1/14/01 02/59/06 02/40/05
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Higher datasets

Table S3. Comparison between the proposed models (LOBALI and LOBALII) and the random, LLR,
CB, and LHCE models in terms of the standard deviation of the accuracy, sensitivity, and specificity
results (in the form of Std(Acc)/Std(Sen)/Std(Spec)) with imbalanced datasets with IR> 9.

Ds.  Random LLR CB LHCE LOBALI LOBALII

HD1 0.7/65/0.7 04/42/01 05/64/06 0.6/63/05 0.2/14/03 0.1/1.0/0.2
HD2 1.0/22/13 07/09/08 09/1.7/11 05/1.0/0.7 1.6/33/21 14/39/19
HD3 05/71/04 03/40/01 04/51/05 04/68/04 0.3/49/0.1 0.1/1.8/0.1
HD4 0.3/69/03 0.0/0.0/0.0 03/57/01 03/7.6/02 0.3/22/03 0.3/1.7/0.3
HD5 04/4.8/0.6 0.0/0.0/0.0 05/37/06 04/43/05 0.1/54/02 0.1/6.7/0.2
HD6 0.1/6.1/02 0.0/0.0/0.0 0.0/33/01 0.1/54/02 0.1/6.7/0.1 0.1/75/02

Multi-class datasets

In Tables $4 and 55, the standard deviations of the LLR algorithm results are zeros.
This is because LLR selects the same points in all runs; therefore, the number of points
selected for each class is constant. While the results of the other algorithms have some
fluctuations because the results may change in each run.

Table S4. Comparison between the proposed model (LOBAL) and the random, LLR, CB, and
LHCE models with multi-class imbalanced datasets, query budget 5%, and in terms of the standard
deviation of the number of annotated points from each class.

Ds. Random LLR CB LHCE LQBAL

MD1 0.7/0.8/0.7 0.0/0.0/0.0 0.6/0.8/0.6 0.7/0.7/0.7 0.4/0.4/0.4

MD2 0.5/0.6/0.8 0.0/0.0/0.0 0.5/0.5/0.6 0.6/0.6/0.8 0.3/0.1/0.3

MD3 0.8/15/1.6 0/0/0 0.6/1.6/1.6 09/1.2/13 0.8/0.8/0.7

MD4 0.7/0.7/0.4/0.4/0.4/0.6 0.0/0.0/0.0/0.0/0.0/0.0 0.8/0.7/0.4/0.4/0.4/0.5 0.7/0.8/0.3/0.3/0.2/0.6 0.2/0.4/0.2/0.2/0.2/0.2

MD5 1.0/0.7/0.5/0.7/0.3/0.6/0.2/0.1  0.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0 1.1/0.7/0.5/0.8/0.2/0.6/0.1/0.1 1.1/0.7/0.5/1.0/0.2/0.5/0.0/0.2 0.2/0.5/0.2/0.3/0.0/0.4/0.0/0.0

Table S5. Comparison between the proposed model (LOBAL) and the random, LLR, CB, and
LHCE models with multi-class imbalanced datasets, query budget 10%, and in terms of the
standard deviation of the number of annotated points from each class.

Ds. Random LLR CB LHCE LQBAL

MD1  0.9/1.0/0.9 0.0/0.0/0.0 0.9/1.0/1.0 0.7/0.7/0.7 0.6/0.7/0.6

MD2 0.7/0.8/1.0 0.0/0.0/0.0 0.8/0.7/1.0 0.6/0.6/0.8 0.2/02/0.3

MD3 1.0/1.8/2.0 0/0/0 0.8/3.0/3.1 09/1.2/13 0.9/09/1.1

MD4 1.0/1.1/0.7/0.4/0.5/0.7 0.0/0.0/0.0/0.0/0.0/0.0 1.0/1.0/0.5/0.5/0.5/0.8 0.7/0.8/0.3/0.3/0.2/0.6 0.5/0.6/0.5/0.4/0.3/0.3

MD5 1.6/1.0/0.6/1.0/0.4/0.8/0.2/0.2 0.0/0.0/0.0/0.0/0.0/0.0/0.0/0.0 1.4/1.1/0.8/1.2/0.3/0.9/0.2/0.3 1.1/0.7/0.5/1.0/0.2/0.5/0.0/0.2 0.7/0.5/0.3/0.6/0.1/0.5/0.1/0.0




