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Abstract: In this study, an adaptive nonsingular terminal sliding mode control technique according
to the barrier function is designed for the performance improvement and robust stability of nonlinear
systems with outdoor disturbances. For this reason, a novel nonlinear sliding surface is presented
based on the states of the system. The nonlinear sliding surface forces the states of the system to
converge from initial conditions to zero. Subsequently, a non-singular terminal sliding control scheme
is advised for the purpose of finite-time stability of the nonlinear switching surface. Finite-time
stabilization of the non-singular terminal sliding surface is verified by the Lyapunov theory. For
improvement of the system performance against exterior perturbation, the barrier function adaptive
technique is employed to estimate the unknown upper bounds of the exterior disturbance. Finally,
the advantage and productivity of the recommended control method is investigated based on the
simulation results. In the simulation part, the plasma torch jerk chaotic system is considered as a case
study, such that the obtained results are given in different scenarios.

Keywords: chaotic systems; performance improvement; non-singular control; sliding mode control;
external disturbance

MSC: 34H10; 34C28; 62F35; 93C40; 93C10; 93D09

1. Introduction

Chaotic behavior as the actual phenomenon originating from the nonlinear dynamical
systems has been distinguished in several types of devices and mechanisms [1–3]. Under-
actuation is a technical condition that can happen when the number of the actuators of a
system are less than its number of degrees-of-freedom (DoF) [1]. Due to this definition,
some mechanical and robotic systems, including mass-spring system [4], rotary inverted
pendulum (RIP) system [5], quad-rotor unmanned aerial vehicles (UAVs) [6], robot ma-
nipulators [7], and chaotic systems [8], are under-actuated systems. These systems have
various advantages compared to fully-actuated systems, as they are light weight, use less
energy, and need simple communication apparatuses and fault-tolerant methods [9]. It
is impossible to directly control each portion of under-actuated systems; hence, the ex-
pansion of control techniques, particularly model-free approaches, is still an important

Mathematics 2022, 10, 1064. https://doi.org/10.3390/math10071064 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071064
https://doi.org/10.3390/math10071064
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-6528-3636
https://orcid.org/0000-0003-1645-0957
https://orcid.org/0000-0002-9221-4385
https://orcid.org/0000-0003-0387-921X
https://orcid.org/0000-0002-5676-1875
https://doi.org/10.3390/math10071064
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071064?type=check_update&version=2


Mathematics 2022, 10, 1064 2 of 18

challenge. Therefore, the stabilization/tracking control of these systems have fascinated
many researchers around the world during recent years [10]. Many control techniques have
been applied for stabilization and tracking control of the under-actuated systems. One
of the most significant nonlinear methods is the sliding mode control (SMC) procedure,
which has a high robustness and rapid performance under external disturbances [11–13].
Thus, the main advantage of the SMC technique is to force state trajectories to converge to
the switching surface and remain on it [14–17]. However, in practice, it is important for
a controller to force trajectories of the system to be converged in the least possible time;
so, the terminal sliding mode control (TSMC) tactic is planned, which can improve the
convergence performance of the system [18–21]. The TSMC method suffers from singu-
larity, where it is combined with a non-singular control scheme to remove the singularity
problem [22–24]. All of the controllers that are designed for mechanical and robotic under-
actuated systems have to deal with external disturbances that can occur at any moment.
Therefore, some control techniques like adaptive procedures are applied to estimate the
unknown bounded external disturbances [25–29]. However, the common adaptive control
mechanisms suffer from two issues: one is the variation in the adaptive gain, because of
changes of disturbances and the second issue is the asymptotic stability of the trajectories
of the system. For this reason, the adaptive barrier function is presented to enhance the
performance of the system [30]. The first benefit of the barrier function is to remove the
variation due to the increase in disturbance amplitude. Another advantage of the adaptive
barrier function is finite-time stability of the system states [31–33].

In [34], a robust fuzzy SMC technique is designed for stability of uncertain nonlinear
systems. Hence, the whole system is converted to the second-order nonlinear dynamics,
such that SMC is applied for stability control of closed-loop system. Moreover, the fuzzy
control technique is employed for rejection of the uncertainty; however, the subjects of
the exterior perturbation and finite-time convergence have not been considered. In [35],
the integral TSMC method combined with model predictive control (MPC) is applied for
performance improvement of discrete-time nonlinear systems in the existence of pertur-
bation and uncertainty. Moreover, the chattering phenomenon is reduced using the MPC
method, although no control technique such as adaptive control is adopted for the rejection
of disturbance and uncertainty. In [36], a new TSMC surface is planned for stability control
of uncertain systems. Then, based on this new surface, a fractional-order TSMC surface
is designed for fast convergence of fractional-order chaotic systems and for removal of
the singularity problem; although, the impact of the outdoor perturbation is declared.
In [37], an integral fractional-order TSMC scheme is proposed for the stability control of
nonlinear second-order system in the existence of uncertainty and disturbance. Moreover,
for performance improvement of a system under uncertainties and disturbances, the radial
basis function neural-network (RBFNN) has been adopted. Nevertheless, the performance
of the system is changed by variations in the disturbance and uncertainty. In [38], the
adaptive SMC technique is recommended for nth-order nonlinear system in the existence
of perturbation. For fast convergence, the TSMC method combined differential term is
suggested and the adaptive control technique is also applied for the estimation of the upper
bounds of uncertainty and perturbation. However, a significant change in disturbance
and uncertainty can damage the performance of the system. In [39], a super-twisting
SMC method combined with interval type-2 fuzzy fractional scheme is planned for under-
actuated nonlinear systems in the appearance of parametric uncertainties. Nonetheless, no
control technique is applied for the removal of uncertainty. In [40], for the development of
the robustness of an under-actuated system against bounded disturbances, an adaptive
self-tuning technique is offered according to the linear-quadratic-regulator (LQR) technique.
Nevertheless, the fast stability control of the system is overlooked in this article. In [41], a
non-singular TSMC method is recommended for the fourth-order under-actuated uncertain
system with unknown bounded external disturbances. Furthermore, for the rejection of
disturbances, a finite-time disturbance observer is proposed. However, the problem of
the chattering phenomenon is denied in this work. In [42], an input−output feedback
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linearization control technique using online optimal control based on a multi-crossover
genetic algorithm is suggested for an underactuated system under parametric uncertainty.
However, in this work, the fast convergence and effects of the external disturbances are
ignored. In [43], an adaptive fuzzy state-feedback control approach is combined with
barrier function for tracking the control of nonlinear system with constraints on states
and uncertainties. Therefore, outputs of the system are converged to the setpoint in finite
time. Moreover, for the rejection of the constraints on states, the integral barrier function
is used. Furthermore, the fuzzy-control scheme is applied for estimation of the nonlinear
uncertainties. However, in this work, the impression of the exterior perturbation is not
examined in the control strategy. In [44], an adaptive barrier function method is used
for a nonlinear system with unmodeled dynamics. Hence, the barrier function theory
is applied to compensate the unmodeled dynamics, and the backstepping procedure is
proposed for the stability of the system. However, the disturbance rejection is not inves-
tigated in [44]. In [45], the adaptive fuzzy controller combined with the barrier function
scheme is recommended for nonlinear systems in the existence of constraints on the states.
Therefore, the backstepping technique is applied for tracking control purposes and the
barrier function is adopted for compensation of the constraints on states. Nevertheless,
the impacts of exterior disturbances are denied in the above-mentioned works. In [46], a
nonlinear differential equation in the presence or absence of the perturbation and existence
of the multiple constant delay is considered. Moreover, the boundedness and stability
analysis of the system are demonstrated using two new Lyapunov−Krasovskii functionals.
However, the impression of the exterior perturbation is not examined in the control strat-
egy. In [47], the boundedness and stability analysis based on the Lyapunov−Krasovskii
functionals are presented for linear/nonlinear differential forms of first-order systems
with time-varying delays. A barrier function adaptive higher-order SMC design approach
is proposed in [48] for the fast finite time stability control of a chain of integrators with
bounded perturbations, where the parametric uncertainties are unknown. In [49], a barrier
function variable-gain adaptive super-twisting control technique is recommended for the
first-order nonlinear systems with external disturbance and model uncertainty, where the
time-derivative of disturbance term is unknown and bounded. A barrier function adaptive
SMC methodology is suggested in [50] for the robust tracking of linear motor positioners
in the existence of payload uncertainty and time-varying disturbance. In [51], a barrier
function distributed backstepping adaptive control technique is advised for the three-order
nonlinear connected and automated vehicles in the existence of full-state constraints and
parameter uncertainties. In [52], the improved adaptive continuous barrier-function TSMC
method is employed for the robotic manipulator in the existence of exterior disturbances,
where the designed absolute function according to the fractional power of sliding surface
causes smooth continuous control input. However, the mentioned method in [52] is not a
non-singular finite time approach and the performance improvement of the closed-loop
control system has not been considered in the mentioned research. Table 1 is provided to
present the advantages and disadvantages of the proposed method in comparison with the
above-mentioned research works.

According to the investigation and analysis of the above-studied articles, it can be
stated that little consideration has been given to the stability control of perturbed nonlinear
under-actuated systems based on the barrier function adaptive non-singular TSMC ap-
proach. Moreover, no work has been reported for the performance improvement and robust
stability of the nonlinear under-actuated systems based on the barrier-function adaptive
control technique. Therefore, the substantial contributions of this study are as follows:

(i) Design of a nonlinear sliding surface for stabilization of under-actuated nonlinear
systems in the appearance of exterior perturbation with unknown bounds;

(ii) Proposition of a non-singular terminal sliding surface for the convergence of a nonlin-
ear sliding surface in the finite time;

(iii) Employment of a nonlinear function ϕ in the sliding function for performance im-
provement of the closed-loop control system;
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(iv) Design of a barrier function adaptive scheme to satisfy the system’s robust perfor-
mance against perturbation.

Table 1. Comparison of the proposed method with other research works.

Article Advantages Disadvantages

Method in [34] Rejection of uncertainty using fuzzy
control technique.

No consideration of exterior perturbation and
finite-time convergence.

Method in [35] Reduction of chattering phenomenon via
MPC method.

No control technique such as adaptive control for
rejection of disturbance and uncertainty.

Method in [36] Removal of singularity problem. Declaration of impact of the outdoor perturbation.

Method in [37]
Radial basis function neural-network (RBFNN) for
performance improvement under uncertainties
and disturbances.

Change of the system’s performance by variations
of disturbance and uncertainty.

Method in [38]
Suggestion of TSMC for fast convergence and
adaptive controller for the estimation of upper
bounds of perturbations.

Damage of the system’s performance by a
significant change in disturbance and uncertainty.

Method in [39] Fast convergence of perturbed and uncertain
nonlinear system.

No control technique for the removal
of uncertainty.

Method in [40] Adaptive self-tuning technique according to the
linear-quadratic-regulator (LQR).

No consideration of the fast stability control
of system.

Method in [41] Proposition of a finite-time disturbance observer
for disturbance rejection. The chattering problem is denied.

Method in [42]
Suggestion of input-output feedback linearization
via online optimal control based on
multi-crossover genetic algorithm.

Fast convergence and effects of the external
disturbances are ignored.

Method in [43]
Using the integral barrier function-based fuzzy
control for rejection of state constraints and
estimation of the nonlinear uncertainties.

No examination of the impression of exterior
perturbation in the control strategy.

Method in [44]
Compensation of the unmodeled dynamics by
barrier function theory and offering a
backstepping procedure for stability of the system.

No investigation of disturbance rejection.

Method in [45]
Backstepping technique for tracking control and
barrier function for compensation of the states’
constraints.

The impacts of exterior disturbances are denied.

Method in [46] Two new Lyapunov−Krasovskii functionals for
the boundedness and stability analysis of system.

No examination of the impression of the exterior
perturbation in the control strategy.

Method in [47] Non-singular finite time control approach. No consideration of the performance improvement
of the closed-loop control system.

This article is prepared and prearranged as follows: the explanation of the considered
system and preliminaries are given in Section 2. The proposition of a nonlinear sliding
surface, design of non-singular terminal sliding surface, and usage of the barrier function
adaptive approach are given in Section 3. Simulation outcomes are provided in Section 4,
which shows the applicability and success of the planned scheme. Lastly, conclusions are
reported in Section 5.

2. Problem Definition and Preliminaries

In this part, at first, a nonlinear under-actuated system under exterior perturbation
is presented. Then, for the stability control of the considered system, a nonlinear sliding
surface is defined. Afterward, for fast convergence of states of systems, a non-singular
TSMC surface is proposed. Finally, for the disturbance rejection, the barrier function
adaptive technique is combined with non-singular terminal sliding mode control.
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An under-actuated nonlinear system in the appearance of bounded external distur-
bance is considered

.
x1(t) = A11x1(t) + A12x2(t) (1)

.
x2(t) = A21x1(t) + A22x2(t) + f (x) + Bu(t) + w(t). (2)

where x1(t) ∈ Rn−m and x2(t) ∈ Rm are the states of the system. The expres-

sion A =

[
A11 A12
A21 A22

]
is the matrix of system with components of A11 ∈ Rn−m×n−m,

A12 ∈ Rn−m×m, A21 ∈ Rm×n−m and A22 ∈ Rm×m. The function f (x) is the nonlinear
function. The matric B ∈ Rm×m is non-singular and the term w(t) ∈ Rm is the external
disturbance with an unknown bound v ∈ R, i.e., ‖w(t)‖ ≤ v.

The main aim of this study is the stability control of the above-considered under-
actuated system in the presence of bounded exterior perturbation.

Assumption 1. The pair (A11, A12) is assumed completely controllable; hence, for any specified
symmetric Positive-Definite (PD) matrix Q, there exists a unique symmetric PD matrix P with

(A11 − A12F)T P + P(A11 − A12F) = −Q (3)

3. Main Results
3.1. Nonlinear SMC Surface

For convergence of a nonlinear under-actuated system (1)–(2), a nonlinear sliding
function is defined by

s(t) = C1x1(t) + x2(t), (4)

with C1 =
(

F− ϕ(x1(t))AT
12P
)
∈ Rm×(n−m), where P denotes an (n−m) × (n−m)

positive-definite matrix, F specifies an m × (n−m) constant matrix, and ϕ(x1(t)) rep-
resents an m × m diagonal matrix with non-positive nonlinear functions of x1(t). The
function ϕ(x1(t)) is given as a diagonal matrix with exponential terms as

ϕ(x1(t)) = diag(ϕ1(x1(t)), . . . , ϕm(x1(t))) (5)

ϕi(x1(t)) = −γie
−( x1(t)

x10
)

2

(6)

where x10 is the initial state of x1 and γi denotes a positive coefficient. The value of ϕi(x1(t))
is changed from zero to the negative value −γi as x1 goes from the initial value to the
origin. When the nonlinear sliding function s(t) = 0 is attained, Equation (4) yields

x2(t) =
(

ϕ(x1(t))AT
12P− F

)
x1(t). (7)

From (1) and (7), the sliding dynamics is obtained as

.
x1(t) =

{
A11 + A12

(
ϕ(x1(t))AT

12P− F
)}

x1(t). (8)

Theorem 1. Consider the under-actuated nonlinear system (1)–(2), the Lyapunov equality (3), and
nonlinear sliding function (4). The sliding dynamics (8) converges to the origin exponentially.

Proof. Construct the positive-definite Lyapunov function V1(t) = x1
T(t)Px1(t), where

differentiating it along the sliding dynamics (8), we have

.
V1(t) =

.
x1

T(t)Px1(t) + x1
T(t)P

.
x1(t)

= x1
T(t)

({
A11

T +
(

ϕ(x1(t))PA12 − FT)A12
T}+ P{A11

+ A12
(

ϕ(x1(t))AT
12P− F

)}
)x1(t)

(9)
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From (3) and (9), we obtain

.
V1(t) = x1

T(t)
(

2PA12 ϕ(x1(t))AT
12P−Q

)
x1(t) (10)

where, because Q > 0 and ϕ(x1) < 0, Equation (10) gives

.
V1(t) ≤ −x1

T(t)Qx1(t) < −ρV1(t) < 0 (11)

with ρ = λmin(Q)
λmax(P) > 0, where λmin(Q) and λmax(P) are the lowest eigenvalue of Q and

largest eigenvalue of P, respectively. �

3.2. Non-Singular TSMC

In this part, for convergence of the sliding function s(t) to zero in the finite time, the
nonsingular TSMC manifold is designed as

σ(t) = s(t) + v
∫ t

0
s(t)a/bdτ, (12)

where a and b are the odd integers with 1 < a/b < 2 and v is a positive coefficient.

Theorem 2. Consider the nonlinear system with external disturbance as (1)–(2) and the nonsingular
TSMC manifold (12). If the control input is designed as

u = −B−1
((

C1 A11 + A21 −
.
ϕ(x1(t))AT

12P
)

x1(t) + (C1 A12 + A22)x2(t) + f (x) + vs
a
b + (v + µ)sgn(σ(t))

)
, (13)

with ‖w(t)‖ ≤ v, where v and µ are the positive constants, then the state trajectories of (1)–(2) are
moved from any initial condition to the nonsingular manifold (12) and remain on it later.

Proof. Differentiating the nonsingular TSMC manifold (12) along the trajectories of (1)–(2),
we have

.
σ(t) =

.
s(t) + vs(t)a/b =

( .
C1 + C1 A11 + A21

)
x1(t) + (C1 A12 + A22)x2(t) + Bu + f (x) + vs(t)a/b + w(t). (14)

Construct the positive-definite Lyapunov function V2(t) = 0.5σT(t)σ(t), where its
time-derivative is obtained as

.
V2(t) = σT(t)

.
σ(t)

= σT(t)
{(
− .

ϕ(x1(t))AT
12P + C1 A11 + A21

)
x1(t) + (C1 A12

+A22) x2(t) + Bu + f (x) + vs(t)
p
q + w(t)

}
.

(15)

Replacing the controller signal (13) into (15), one has

.
V2(t) = −σT(t)((v + µ)sgn(σ(t))− w(t))
≤ −(v− ‖w(t)‖)‖σ(t)‖ − µ‖σ(t)‖ ≤ −µ‖σ(t)‖ ≤ −

√
2µV2(t)

0.5.
(16)

Finally, the trajectories of states of dynamics (1)–(2) converge to the nonsingular
manifold (12) from any initial condition and remain on it afterward. �

Using Theorem 2, the nonsingular TSMC manifold (12) converges to origin in the finite
time. Hence, from σ(t) = 0, one can obtain

s(t) = −v
∫ t

0
s(τ)a/bdτ, (17)
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where, assuming h =
∫ t

0 s(τ)dτ and
.
h = s, one can find from (17):

.
h

ha/b = −v. (18)

By integration of both sides of Equation (18) from t0 to ts, it yields

∫ h(ts)

h(t0)
h−a/b

.
hdh = −

∫ ts

t0

vdt = −v(ts − t0), (19)

where

ts = t0 +
h(t0)

1−a/b

v(1− a/b)
= t0 +

s(t0)
1−a/b

v(1− a/b)
. (20)

3.3. Barrier-Function Adaptive Non-Singular TSMC

In practice, the adaptive controller is presented to overcome the unknown external
perturbations, where the adaptive-tuning gains are varied with the changes of the exterior
disturbances. Now, a barrier function adaptive-tuning control input is designed. By
employing the barrier-function adaptive TSMC approach, the external perturbation is
estimated more successfully, the control performance of the system is improved, and the
closed-loop system becomes more stable. The new adaptive control input is updated as

u = −B−1
((

C1 A11 + A21 −
.
ϕ(x1(t))AT

12P
)

x1(t) + (C1 A12 + A22)x2(t) + f (x) + vs
a
b + (v̂ + µ)sgn(σ(t))

)
(21)

with

v̂ =

 va, 0 < t ≤
−
t

vpsb, t >
−
t

(22)

where
−
t denotes the time that the states are moved from initial conditions to the neighbor-

hood ε of a non-singular TSMC manifold σ. The adaptive gain and positive semi-definite
(PSD) barrier function are specified as

.
va = Γ‖σ(t)‖ (23)

vpsb =
‖σ(t)‖

ε− ‖σ(t)‖ , (24)

where ε and Γ are two positive coefficients. Using (23), the adaptive controller coefficient is
adjusted to be enlarged until the states reach the neighborhood ε of the non-singular TSMC

manifold at the time
−
t . Then, for times bigger than

−
t , the adaptive coefficient switches to

barrier function (24), which can decrease the convergence region and keep the states in the
region ε. The system’s stability is divided into the following two parts:

Condition (I): 0 < t ≤
−
t

Theorem 3. Consider the nonlinear disturbed system (1)–(2), nonlinear sliding function (4), and
nonsingular TSMC manifold (12). Using the adaptive controller (21) and considering v̂ = va, then
the states reach the neighborhood ε of the nonsingular TSMC manifold.

Proof. Consider the Lyapunov function V3(t) = 0.5(σ(t)Tσ(t) + κ−1(va − v)2), where
κ and v are the positive constants. The time-derivative of this Lyapunov function is
obtained as .

V3(t) = σT(t)
.
σ(t) + κ−1(va − v)

.
va, (25)
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where, when replacing (14) and (23) into the above equation, one attains

.
V3(t) = σT(t){

(
C1 A11 + A21 −

.
ϕ(x1(t))AT

12P
)
x1(t) + (C1 A12 + A22)x2(t) + Bu

+ f (x) + vs(t)
a
b + w(t)}+ κ−1Γ(va − v)‖σ(t)‖

(26)

Substituting the adaptive controller signal (21) into (26) gives

.
V3(t) = σT(t){w(t)− (v̂ + µ)sgn(σ(t))}+ κ−1Γ(va − v)‖σ(t)‖

≤ −µ‖σ(t)‖+ ‖σ(t)‖‖w(t)‖ − σ(t)Tvasgn(σ(t)) + κ−1Γ(va − v)‖σ(t)‖
≤ ‖w(t)‖‖σ(t)‖ − va‖σ(t)‖+ κ−1Γ(va − v)‖σ(t)‖+ v‖σ(t)‖ − v‖σ(t)‖

≤ −(v− ‖w(t)‖)‖σ(t)‖ −
(
1− κ−1Γ

)
(va − v)‖σ(t)‖

(27)

where, since v− ‖w(t)‖ > 0 and κ−1Γ < 1, the above equation can be expressed as

.
V3(t) ≤ −

√
2(v− ‖w(t)‖) ‖σ(t)‖√

2
−
√

2κ
(
1− κ−1Γ

)
‖σ(t)‖ va−v√

2κ

≤ −min
{√

2(v− ‖w(t)‖),
√

2κ
(
1− κ−1Γ

)
‖σ(t)‖

}(
‖σ(t)‖√

2
+ ‖va−v‖√

2κ

)
≤ −ΩV3(t)

0.5

(28)

where Ω = min
{√

2(v− ‖w(t)‖),
√

2κ
(
1− κ−1Γ

)
‖σ(t)‖

}
. �

Condition (II): t >
−
t

Theorem 4. Consider the nonlinear system (1)–(2) with external disturbance, the nonlinear sliding
function (4), and the nonsingular TSMC manifold (12). If the adaptive control signal is designed as
(21) with v̂ = vpsb (Equation (24)), that is,

u = −B−1(
(
C1 A11 + A21 −

.
ϕ(x1(t))AT

12P
)
x1(t) + (C1 A12 + A22)x2(t) + f (x)

+vs
a
b +

(
‖σ(t)‖

ε−‖σ(t)‖ + µ
)

sgn(σ(t)))
(29)

then the system states reach the region ‖σ(t)‖ ≤ ε.

Proof. Consider the positive-definite Lyapunov function V4(t) = 0.5(σT(t)σ(t) + (vpsb

−vpsb(0))2). The time-derivative of the above Lyapunov function is obtained as

.
V4(t) = σT(t)

.
σ(t) +

(
vpsb − vpsb(0)

) .
vpsb, (30)

where substituting
.
σ and vpsb(0) = 0 into (30) yields

.
V4(t) = σT(t){

(
C1 A11 + A21 −

.
ϕ(x1(t))AT

12P
)
x1(t) + (C1 A12 + A22)x2(t)+

Bu + f (x) + vs
a
b + w(t)}+ vpsb

.
vpsb.

(31)
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Substituting the control signal (31) into the above equation results in the following

.
V4(t) = σT(t)

{
w(t)−

(
vpsb + µ

)
sgn(σ(t))

}
+vpsbε(ε− ‖σ(t)‖)−2sgn(σ)

.
σ(t)

≤ −µ‖σ‖+ ‖w(t)‖‖σ‖ − vpsb‖σ‖

+ vpsbε(ε− ‖σ(t)‖)−2sgn(σ(t))
{

w(t)−
(

vpsb + µ
)

sgn(σ)
}

≤ −µ
(
‖σ‖+ vpsbε(ε− ‖σ‖)−2

)
−
(

vpsb − ‖w(t)‖
)
‖σ(t)‖

− ε(ε− ‖σ(t)‖)−2
{

vpsb − ‖w(t)‖
}

vpsb

(32)

where, since vpsb > ‖w‖ and ε(ε− ‖σ(t)‖)−2 > 0, we have

.
V4(t) ≤ −

√
2
(

vpsb − ‖w(t)‖
)
‖σ(t)‖√

2
−
√

2ε(ε− ‖σ(t)‖)−2
{

vpsb − ‖w(t)‖
} vpsb√

2

≤ −
√

2
(

vpsb − ‖w(t)‖
)

min
{

1, ε(ε− ‖σ(t)‖)−2
}(
‖σ(t)‖√

2
+

vpsb√
2

)
≤ −ΞV4(t)

0.5
(33)

where Ξ =
√

2
(

vpsb − ‖w(t)‖
)

min
{

1, ε(ε− ‖σ(t)‖)−2
}

. �

The flow-chart of the proposed control strategy according to the barrier function
adaptive non-singular TSMC scheme is shown in Figure 1.
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Remark 1. The following steps are presented to clarify the control strategy:

(a) Firstly, the nonlinear system under external disturbance is defined;
(b) Afterward, the nonlinear sliding surface based on the system states is defined for convergence

of the system states to the origin;
(c) Then, the nonsingular terminal sliding surface based on the nonlinear sliding surface is defined

for fast convergence of the nonlinear sliding surface;
(d) For rejection of the external disturbances, a barrier function is defined;
(e) At last, the control input is achieved to enter to the nonlinear system for stability control of

the system states;
(f) This closed-loop control procedure is repeated at any moment.
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4. Simulation Results

This section is presented in three parts to prove the success and advantages of the
suggested method for the stability control of a nonlinear under-actuated system in the
existence of unknown bounded disturbances. In the first part, a third-order nonlinear
underactuated chaotic system is introduced as a case study. Simulation results based on
the barrier function adaptive non-singular TSMC are prepared in comparison with the
results of the method of [1] in the second part. In the third part, simulation is repeated in
the appearance of the abrupt change in external disturbance to prove the robustness of the
proposed method.

4.1. Introduction of Chaotic System

The third-order nonlinear under-actuated plasma torch jerk chaotic system with two
nonlinearities is considered as [53]

.
x = y
.
y = z

.
z = ax− by− z− cxy− x3 + u + w(t)

(34)

where x, y, and z signify the system states, and a, b, and c are constant parameters of the
system. In order to use of the control strategy, the above system equation is rewritten as

.
x1 = A11x1 + A12x2 (35)

.
x2 = A21x1 + A22x2 + f (x) + u + w(t). (36)

where x1 = [x, y]T , x2 = z are the states of the system; A11 =

[
0
0

1
0

]
, A12 =

[
0
1

]
,

A21 = [a− b], A22 = −1; f (x) =

[
−cxy
−x3

]
is the nonlinear vector function. The initial

states are assumed as x1(0) = [0.4, 0.2]T , x2(0) = 0.2, va(0) = 0.2, and the external
disturbance is considered as w(t) = 0.2 sin(1.5πt).

4.2. Simulation Results without Abrupt Change

The control strategy parameters, which are obtained based on the trial and error
method, are given as a = 5, b = 3, γ = 0.1, v = 0.1, ε = 0.3, µ = 150, and = = 0.3. If the

gain F is considered as F = [5 5], so, from Equation (3), the matrix P =

[
0.6 −0.5
−0.5 0.6

]
is obtained.

In this part, at first, simulation results are obtained and compared with the existing
method [1]. In Figure 2, the stability of the states of the considered chaotic system is
shown. One can observe that the system states are converged to zero and the proposed
method offers a fast and accurate response compared with the method of [1]. Time his-
tories of the nonlinear sliding and non-singular terminal sliding surfaces are displayed
in Figures 3 and 4, correspondingly. As one can apperceive in these plots, the nonlinear
sliding surface is converged to zero in the finite time and the proposed non-singular termi-
nal sliding surface has a fast convergence rate with respect to the non-singular terminal
sliding surface of [1]. The adaptive law obtained from [1] and the time trajectory of the
above-designed barrier function are depicted in Figure 5. From this figure, it can be inferred
that the barrier function is not sensitive to the external disturbance, and has more and
accurate performance compared with the adaptive control law of [1]. The time trajectories
of the control input obtained by the recommended method and the method of [1] are
illustrated in Figure 6. It can be proven that the above-designed controller based on the
barrier function adaptive non-singular TSMC technique has a better transient and steady-
state performance compared to the method of [1]. Moreover, there is no chattering in the
proposed control input.
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4.3. Simulation Result in the Existence of Abrupt Change

In the second part, the simulation results according to the barrier function adaptive
nonsingular TSMC technique and the method of [1] are obtained and compared in the
existence of measurement noise and abrupt changes of disturbances. For this reason,
measurement noise is considered as a bound-limited noise (power 0.0001, sample time
0.01). Moreover, the external disturbance is presumed as w(t) = 7.5 sin(1.5πt) in the time
interval (5, 10), which confirms the abrupt change of disturbance. The time trajectories of
the system states are exhibited in Figure 7 under measurement noise and abrupt change
of disturbances. It is evidenced that the states are stabilized faster and better using the
recommended scheme with respect to the technique of [1]. From Figure 8, the nonlinear
sliding surface is converged to origin in the finite time in the appearance of measurement
noise and the abrupt change of disturbance. According to Figure 9, the proposed non-
singular terminal sliding surface compared with the non-singular terminal sliding surface
of [1] can converge to origin in the finite time in the existence of measurement noise and the
abrupt change of disturbance. Figure 10 shows the control inputs achieved by the planned
methodology and the technique of [1] under measurement noise and abrupt change of
disturbance. Thus, the validity and proficiency of the suggested controller with respect to
another technique are proven.
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5. Conclusions

In this paper, the robust performance improvement of a nonlinear under-actuated sys-
tem under external perturbation has been investigated using the barrier function adaptive
non-singular terminal sliding mode control method. A nonlinear under-actuated system in
the presence of unknown bounded exterior perturbation has been considered. In the target
of the stabilization control of system states, a novel nonlinear sliding surface with respect
to the states of the system has been defined. Thus, the states of the system can reach origin
using this nonlinear sliding surface. Moreover, a non-singular terminal sliding surface has
been proposed to force the nonlinear sliding surface to be converged to origin in the finite
time and to remain on it. The finite-time convergence of the non-singular terminal siding
surface has been proven using the Lyapunov theory. For the robustness enhancement of the
system against the exterior disturbances, the barrier function adaptive procedure has been
adopted to estimate the unknown upper bounds of perturbations. Thus, the controlled
system is robust against variations of external disturbances. At last, validity verification of
the suggested method has been done using the simulation results on the plasma torch jerk
chaotic system.
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