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Abstract: This paper designed an adaptive super-twisting sliding mode control (STSMC) scheme
based on an output feedback fuzzy neural network (OFFNN) for an active power filter (APF),
aiming at tracking compensation current quickly and precisely, and solving the harmonic current
problem in the electrical grid. With the use of OFFNN approximator, the proposed controller has the
characteristic of full regulation and high approximation accuracy, where the parameters of OFFNN
can be adjusted to the optimal values adaptively, thereby increasing the versatility of the control
method. Moreover, due to an added signal feedback loop, the controller can obtain more information
to track the state variable faster and more correctly. Simulations studies are given to demonstrate the
performance of the proposed controller in the harmonic suppression, and verify its better steady-state
and dynamic performance.

Keywords: active power filter; output feedback fuzzy neural network control; adaptive control;
super-twisting sliding mode control

1. Introduction

With the rapid development and application of distributed power generation, power
electronic loads, AC and DC equipment, and electronic transformers, the electronic features
in modern power grid are remarkable [1,2]. In the traditional power grid, the small
number of harmonic sources and high concentration results in a harmonic level that can be
controlled through the point-to-point management of users [3]. Now, however, the high-
density access of a large number of electronic equipment makes the harmonic pollution
of the grid difficult to handle, where the user-side point-to-point management model
cannot meet the demand. Therefore, it is necessary to explore new methods to solve the
harmonic problem of power electronic distribution network. Active power filters (APF) are
widely used in improving power quality, where the compensation current control is a key
technology [4–8].

Since APF is widely used in power systems, in recent years, many scholars have
improved the efficiency of APF by applying advanced control methods [9–11]. As an
unconventional, approximately continuous system with discontinuous properties, the exact
physical model of APF system can be derived from the extensions and applications of
Filippov theory in [12]. Nersesov and Haddad designed hybrid finite-time stabilizing
controllers for impulsive dynamical systems, revealing the controllability and robustness
against full modeling uncertainty [13]. Abdeslam et al. introduced a neural network
method for extracting additional voltage components based on Adalines to recover a bal-
anced voltage system in [14]. Wang et al. designed a one-cycle controlled DC side APF
on the basis of analyzing its circuit topology and basic principle in [15]. Hua et al. shows
the connection between the APF system and the Lyapunov method in [16]. Lam et al.
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proposed an adaptive thyristor-controlled LC-Hybrid APF to reduce switching loss in [17].
Wang et al. designed a model predictive control scheme combined with finite switching
state characteristics in [18]. Lock et al. proposed a DSP-based one-cycle control strategy
for a shunt active power filter in [19]. D’Abbico et al. used first-order ordinary differential
equations as the approximate expression of the specific system, showing the excellent
generality of ordinary differential equations in system modeling [20]. In the control of
nonlinear systems, sliding mode control (SMC) has not only strong robust performance,
but also high control accuracy. In order to efficiently control the position of the permanent
magnet linear synchronous motor mover, an adaptive fuzzy fractional SMC strategy is pro-
posed in [21]. An adaptive time-delay control scheme for mechanical system was proposed
in [22]. Hou et al. developed a feedback sliding mode control architecture in the presence of
modelling system uncertainties [23]. Singh et al. proposed a recursive backstepping sliding
mode control which has a good effect on the control of parameter disturbance [24]. The
practical tracking control design of robot manipulators with continuous fractional-order
nonsingular terminal sliding mode based on time-delay estimation was studied in [25],
which requires no detailed information about the robot dynamics.

However, chattering is a serious problem in sliding mode control. As a high-level SMC
algorithm, a super-twisting SMC (STSMC) algorithm can effectively reduce the chattering
problem and make the control input smoother. The precise analytical expression for the
finite arriving time of the super-twisting algorithm without disturbances was derived, and
a new estimation algorithm for the upper bound of the arrival time with disturbances was
proposed in [26]. A super-twisting sliding mode control for a wind energy conversion
optimization problem was studied in [27]. A super-twisting method to build an output
feedback stabilization strategy was developed for a perturbed double-integrator system
in [28]. A direct super-twisting control power control method was investigated to control a
brushless doubly fed induction generator in [29].

A neural network method is an effective way to deal with the model uncertainty
in APF. An adaptive nonlinear disturbance observer with a wavelet neural network was
studied in [30]. The neural network method is widely used in the control of various
dynamic systems combined with sliding mode control. A hybrid control method based on
RBF neural network and super-twisting sliding mode control was proposed for a micro
gyroscope in [31], where a neural network is used to improve the stability and performance
of the system. Hayakawa et al. proposed a hybrid adaptive control framework based on
a neural network for nonlinear uncertain dynamical systems, which guarantees partial
asymptotic stability basing on the Lyapunov stability theory [32]. El-Sousy proposed
an adaptive dynamic sliding mode control system with an output feedback radial basis
function (RBF) network for an indirect field oriented control induction motor drive in [33].

Due to the poor dynamic characteristics of the traditional one-way neural network,
the output feedback neural network (FNN) composed of the feedback loop which can
obtain more dynamic information came into being. For example, traditional RBF network
requires high quality of parameters, which relies on trial and experience of the designer.
However, owing to the superior learning ability, FNNs have the adaptive ability of adjusting
parameters with higher efficiency, which can be supported by a novel recurrent neural
network controller in [34]. Moreover, for ordinary neural networks with a single hidden
layer, it is difficult to estimate some fairly complex functions with high accuracy. To solve
the problem, traditional way is to lengthen the sensing area or raise the number of neurons,
but they will lead to long training time or high memory consumption. Therefore, in order
to obtain fast learning speed and high learning accuracy, a deep neural network with
multi-layer is necessary. Advanced intelligent control schemes with multi-layer neural
network have been developed for dynamic systems [35–38].

Motivated by the above-mentioned works, this paper proposes an adaptive super-
twisting sliding mode (STSMC) control method for active power filter based on an output
feedback fuzzy neural network (OFFNN). The advantages of the proposed methodology
with respect to previously published results are explained in the following procedures.
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The adaptive super-twisting sliding mode controller has not been applied to the harmonic
suppression of active power filter before. It can deal with high-frequency dynamics and
reduce the chattering. An output feedback fuzzy neural network with two hidden layer
and internal and external feedbacks can fit more complex functions, and improve training
accuracy through fast convergence.

(1) As a high-order sliding mode controller, the adaptive super-twisting sliding mode
control is used to reduce the chattering. It guarantees strong robustness while possessing
better smoothness, so the high-frequency dynamics problem can be dealt with. It requires
less information and reduces the requirements of modeling accuracy, thereby simplifying
the complexity of the algorithm.

(2) An output feedback fuzzy neural network is used to estimate uncertainty, including
both unknown system characteristics and external disturbance. It has the characteristics
of two hidden layer and internal and external feedbacks, therefore it is suitable to be
used for the approximation. In order to make up for the gap between local optimization
characteristics of traditional fuzzy neural network and wide range of changes of APF
signals, internal and external feedbacks are used to increase the information of the neural
network, thereby giving the neural network a wider range of learning and making the
network more powerful to learn complex things.

(3) The OFFNN can set the initial values of the parameters such as center vectors
and the base widths arbitrarily, which can be adaptively adjusted to the optimal values,
according to the adaptive algorithm. It makes the neural network less reliant on human
experience, thereby raising the universality of the control method.

(4) Since the control methods used in this paper use generalized models, the control
method is of great universality, and can deal with more kinds of uncertainties and distur-
bance compared with traditional resonant controllers, which needs the model to be as exact
as possible. Moreover, the entire control strategy can ensure the stability of the system
while improving the total harmonic distortion performance.

The rest of this paper is organized as follows. In Section 2, the proposed OFFNN
is introduced, along with detail about its structure and working principle. In Section 3,
a dynamic mathematical model of APF is established. Section 4 introduces the whole
structure, designing process, and stability analysis of proposed STSMC-OFFNN method.
The simulation experiment is described in Section 5. Section 6 draws the paper to a
conclusion.

2. Output Feedback Fuzzy Neural Network Structure

The OFFNN has both an internal feedback network and an external feedback net-
work, collecting internal state information and external output information at the same
time. The main advantage of the OFFNN is that the initial values of its center vector and
base width can be set arbitrarily, and the optimal value can be achieved through online
adjustment efficiently.

The structure of the OFFNN is a four-layer neural network with two layers of feedback,
as shown in Figure 1. The function of each layer is introduced as:

(1) Input layer: its main function is to accept the network input X = [x1 x2 . . . xm]
T

and the network output exY in the previous loop, then pass it to the next layer. The input
layer and the output layers are connected by the weights of the outer feedback fuzzy
neural network wro, and the output signal of the input layer is θ = [θ1, θ2, · · · , θm]

T . θm is
expressed as:

θm = xm · wrom · exY (1)

(2) Fuzzy layer: its main function is to calculate the membership function, where the
Gaussian function is selected. This layer can adaptively adjust the membership through
the feedback information of the network output, so as to reduce the influence of initial
value. This layer’s feedback fuzzy neural network weights are calculated with the Gaussian
function, using the weights’ values of the previous round and the input signal transmitted
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from the input layer. Suppose the output of this layer is µ1i, µ2j... ( i = 1 ∼ 3, j = 1 ∼ 3),
there are:

µ1i = exp[−‖θ1 + wri · exµ1i − c1i‖2

b2
1i

] (2)

µ2j = exp[−
‖θ2 + wrj · exµ2j − c2j‖2

b2
2j

] (3)

where wri, wrj are the internal feedback gains, c = [c11 . . . c13, c21 . . . c23]
T is the center

vector, and b = [b11 . . . b13, b21 . . . b23]
T is the base width.

(3) Rule layer: this layer mainly multiplies the weights of membership with the input
and sends it to the output layer. The output of the rule layer is:

hk = µ1i · µ2j (4)

where k = 3× (i− 1) + j, i = 1 ∼ 3, j = 1 ∼ 3, k = 1 ∼ 9.
(4) Output layer: the main function is to integrate the output of the rule layer and

obtain the final network output. The output layer neuron is connected with the rule layer
through the weight w = [w1, w2, . . . , wk], and the signal node of the output layer is marked
as ∑, meaning the sum of all input signals, as follows:

Y =
9

∑
k=1

wkhk = w1h1 + w2h2 + . . . + wkhk = WTh (5)

where W =
[

w1 w2 . . . wk
]T , h =

[
h1 h2 . . . hk

]T .
In addition, the output layer neuron feeds it back to the input layer and the fuzzy layer.

It connects with the input layer neuron through the weight wro of outer layer feedback.
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Figure 1. Structure of OFFNN. Figure 1. Structure of OFFNN.

3. Modeling of Active Power Filter

A typical single-phase APF mainly includes three parts: grid voltage, non-linear load,
and main circuit. In this paper, the main circuit of the APF is regarded as an inverter
circuit which can be controlled by PWM trigger pulses. IGBTs are selected as switching
devices. To achieve stable voltage, a DC-side capacitor is used as the source. A single-phase
uncontrollable rectifier bridge with capacitive load is used as a nonlinear load. The main
structure is as shown in Figure 2.
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Setting the grid power and main circuit as a voltage loop, according to Kirchhoff’s
voltage theory, it is obtained as:

us = L
dic

dt
+ Ric + Qudc (6)

where us is a grid voltage, ic is a compensation current, udc is a DC side capacitor voltage,
and L and R are the inductance and resistance of the active filter main circuit, respectively.
Q is the switch function. Then, we define the switch function Q as follows:

Q =

{
1 VT1, VT4 on, VT2, VT3 off

−1 VT2, VT3 on , VT1, VT4 off
(7)

In the DC-side voltage, the sheer proportional control method can achieve the voltage
stability requirements easily, so the main subject is the state equation of the compensation
current, derived as:

.
ic = −

R
L

ic +
us

L
− udc

L
Q (8)

Generally, for the needs of higher-order controller design, in power electronics model-
ing, the active power filter system model is usually considered as a second-order model.
Therefore, taking the derivative of Equation (8) produces:

..
ic = − R

L

.
ic +

.
us
L −

.
udc
L Q−

.
udc
L

.
Q

= − R
L (−

R
L ic + us

L −
udc
L Q) +

.
us
L −

.
udc
L Q− udc

L

.
Q

= R2

L2 ic +
.
us
L −

R
L2 us + ( R

L2 udc −
.
udc
L )Q− udc

L

.
Q

(9)

Considering the expression of Q, it is concluded that the
.

Q is 0 most of the time. When
it comes to the switching point, although the

.
Q has an extreme large absolute value, its

duration is too short to influence the system due to the filter characteristic of L in Figure 2,
so the

.
Q is often ignored. Then, Equation (9) can be rewritten as follows:

..
q = f(x) + Bu (10)

where q represents ic, f(x) represents R2

L2 ic +
.
us
L −

R
L2 us, B represents R

L2 udc −
.
udc
L , and

u = 1
T
∫ t

t−T Q dt which is treated as a continuous function. When outputted to the IGBT,
the continuous u should be transformed into PWM wave in PWM generator. This method
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slightly reduces performance and results in inevitable chattering, but allows for greater
versatility and integration into existing physical systems.

Remark 1. udc is far from rated value before charging, so ic in this period needs to compensate
iL and to raise udc. With the finish of charging, the error greatly reduces, so the duty to raise udc
reduces its weight, and ic focuses on the compensation of iL.

Since the proposed control method focuses on harmonic compensation in a steady
state, udc is set as a constant. The influence brought by error can be integrated in f(x) as in
Equation (10), so it will not have great effect on the system. For the same reason, integral
surface used on udc to keep it perfectly stable is also unnecessary.

In practical applications, considering the system uncertainty and external disturbance,
the state equation of the compensation current is rewritten as:

..
q = f(x) + Bu+ϕ(t) (11)

where ϕ(t) represents the lumped uncertainty.

4. STSMC-OFFNN Controller and Stability Analysis

The OFFNN provides a solution to the uncertainties of actual system. It calculates
a nearly approximate model of the system through adaptive approximation, so that the
design of the controller does not need to rely on the exact model of the actual system.
Furthermore, the parameters such as center vector, base width value, network weight, and
feedback gain of the inner and outer loops of OFFNN can be fully adjusted according to
the adaptive laws. In this way, the approximation accuracy of the neural network can
be improved, and the dependence of the neural network on parameters can be reduced,
improving the availability of controller output.

The sliding surface is designed as:

s = ce +
.
e (12)

where c is the coefficient of the sliding mode surface, e,
.
e are tracking error and the derivative

of the tracking error, respectively, and can be expressed as:

e = q− qr (13)

and
.
e =

.
q− .

qr (14)

Then, the derivative of sliding mode surface is expressed as:

.
s = c

.
e +

..
q− ..

qr (15)

Substituting Equation (11) into Equation (15) yields:

.
s = c

.
e + f + Bu− ..

qr + ϕ(t) (16)

Ignoring the model uncertainty and external disturbance, setting
.
s = 0, the equivalent

control law is obtained as:
ueq =

1
B
(

..
qr − c

.
e− f ) (17)

Based on the STSMC algorithm, the switch control law is designed as:

usw = −k1

√
|s|sgn(s)−

∫
k2sgn(s)dt (18)
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where k1 > 0, k2 > 0, and k1 > ρ > |ϕ(t)|, k2 > δ >
∣∣ .
ϕ(t)

∣∣, where ρ and δ are the upper
bound of the system uncertainties and external disturbance and its derivative, respectively.

Then, the controller u is designed as:

u =
1
B
(

..
qr − c

.
e− f )− k1

√
|s|sgn(s)−

∫
k2sgn(s)dt (19)

The OFFNN is used to approximate the unknown model part f of the system, and
the approximation function of the f is expressed as f̂ , so the control law Equation (19) is
revised as:

u =
1
B
(

..
qr − c

.
e− f̂ )− k1

√
|s|sgn(s)−

∫
k2sgn(s)dt (20)

where f̂ = ŵT ĥ(x, ĉ, b̂, ŵr, ŵro) is used to ensure the consistency of the form with the
neural networks.

Use * as the symbol for the optimal value. Assuming there are best weight w∗, base
width b∗, center vector c∗, inner feedback gain w∗r , and outer feedback gain w∗ro, use w∗Th∗

to estimate f . Taking the errors caused by different data structures into consideration,
there is:

f = w∗Th∗ + ξ (21)

where h∗ = h∗(x, c∗, b∗, w∗r , w∗ro), and ξ is mapping errors.
Define the superscript ~ as the symbol of error between ideal value and actual value.

Define the error of each parameter in the approximation model as:

h̃ = h∗ − ĥ
w̃ = w∗ − ŵ
b̃ = b∗ − b̂
c̃ = c∗ − ĉ
w̃r = w∗r − ŵr
w̃ro = w∗ro − ŵro

(22)

Therefore, the error between the unknown model and the approximation model can
be expressed as:

f − f̂ = w∗Th∗ + ξ − ŵT ĥ

= w∗T(ĥ + h̃) + ξ − ŵT ĥ

= w∗T ĥ + w∗T h̃− ŵT ĥ + ξ

w̃T ĥ + w̃T h̃ + ŵT h̃ + ξ

(23)

Define the total approximation error as:

ξ0 = w̃T h̃ + ξ (24)

Thus, Equation (23) can be derived as:

f − f̂ = w̃T ĥ + ŵT h̃ + ξ0 (25)

In order to realize the online adaptive adjustment of the parameters of OFFNN ap-
proximator, the Taylor expansion is performed on h̃, obtaining the following expression:

h̃ = ∂h̃
∂c

∣∣∣|c=ĉ (c∗ − ĉ) + ∂h̃
∂b

∣∣∣|b=b̂ (b
∗ − b̂) + ∂h̃

∂wr

∣∣∣|wr=ŵr (w
∗
r − ŵr)

+ ∂h̃
∂wro

∣∣∣|wro=ŵro (w
∗
ro − ŵro) + Oh

= dhc · c̃ + dhb · b̃ + dhwr · w̃r + dhwro · w̃ro + Oh

(26)
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where Oh is high-order terms. The coefficient matrices dhc, dhb, dhwr , dhwro are denoted as

dhc =

[
∂h̃1
∂c

T
, ∂h̃2

∂c

T
· · · ∂h̃k

∂c

T]T

|c=ĉ

dhb =

[
∂h̃1
∂b

T
, ∂h̃2

∂b

T
· · · ∂h̃k

∂b

T]T∣∣
b=b̂

dhwr =

[
∂h̃1
∂wr

T
, ∂h̃2

∂wr

T
· · · ∂h̃k

∂wr

T]T

|wr=ŵr

dhwro =

[
∂h̃1

∂wro

T
, ∂h̃2

∂wro

T
· · · ∂h̃k

∂wro

T]T

|wro=ŵro

(27)

Substituting Equation (26) into Equation (25) yields:

f − f̂ = ŵT(dhc · c̃ + dhb · b̃ + dhwr · w̃r + dhwro · w̃ro + Oh)

+ξ0 + w̃T ĥ

= ŵT(dhc · c̃ + dhb · b̃ + dhwr · w̃r + dhwro · w̃ro) + ŵTOh

+ξ0 + w̃T ĥ

(28)

Define the sum of approximation errors as: Om = ŵTOh + ξ0. Assume that it and its
detective are bounded, and satisfy the condition

∣∣∣ .
Om

∣∣∣ ≤ Od, where Od is a positive constant.
To achieve good tracking effect of f , adaptive laws are designed as:

.
w̃ = −

.
ŵ = −η1sT ĥ

.
c̃

T
= −

.
ĉ

T
= −η2sTŵTdhc

.

b̃
T
= −

.
b̂

T
= −η3sTŵTdhb

.
w̃r

T = −
.

ŵr
T = −η4sTŵTdhwr

.
w̃ro

T = −
.

ŵro
T = −η5sTŵTdhwro

(29)

where η1, η2, η3, η4, η5 are positive constants.
The control structure diagram of the system is shown in Figure 3.
The Lyapunov function candidate is selected as follows:

V = 1
2 s2 + 1

2η1
w̃Tw̃ + 1

2η2
c̃T c̃ + 1

2η3
b̃T b̃

+ 1
2η4

w̃T
r w̃r +

1
2η5

w̃T
row̃ro

(30)

Define:
T = 1

2η1
w̃Tw̃ + 1

2η2
c̃T c̃ + 1

2η3
b̃T b̃

+ 1
2η4

w̃T
r w̃r +

1
2η5

w̃T
row̃ro

(31)

Then, the derivative of Equation (32) can be obtained as:

.
V = s

.
s +

.
T (32)

Substituting Equations (16) and (20) into Equation (32) yields:

.
V = s( f − f̂ − Bk1

√
|s|sgn(s)− Bk2

∫
sgn(s)dt + ϕ(t)) +

.
T (33)
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Substituting Equation (28) into Equation (33) yields:

.
V = s(w̃T ĥ + ŵTdhc · c̃ + ŵTdhb · b̃ + ŵTdhwr · w̃r + ŵTdhwro · w̃ro

+Om − Bk1
√
|s|sgn(s)− Bk2

∫
sgn(s)dt + ϕ(t)) + 1

η1
w̃T

.
w̃

+ 1
η2

.
c̃

T
c̃ + 1

η3

.

b̃
T

b̃ + 1
η4

.
w̃

T
r w̃r +

1
η5

.
w̃

T
row̃ro

(34)

Substituting Equation (29) into Equation (34) yields:

.
V = s(Om − Bk1

√
|s|sgn(s)− Bk2

∫
sgn(s)dt + ϕ(t))

= −Bk1|s|
√
|s| − B|s|

∫
k2dt + sϕ(t) + sOm

≤ −Bk1|s|
√
|s| − B|s|

∫
k2dt + |s||ϕ(t)|+ |s||Om|

= −Bk1|s|
√
|s| − |s|

∫
(Bk2 −

∣∣ .
ϕ(t)

∣∣− ∣∣∣ .
Om

∣∣∣)dt

(35)

Since
∣∣ .
ϕ(t)

∣∣ ≤ δ,
∣∣∣ .
Om

∣∣∣ ≤ Od, Equation (35) can be simplified as:

.
V ≤ −Bk1|s|

√
|s| − |s|

∫
(Bk2 − δ−Od)dt (36)

Therefore, if k2 ≥ 1
B (δ + Od) inequality below can be proved:

.
V ≤ −Bk1|s|

√
|s| ≤ 0 (37)

Thus: ∫ t

0
|s|

3
2
dt ≤ − 1

Bk1
(V(t)−V(0)) (38)
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Figure 3. Block diagram of STSMC-OFFNN controller. 

The Lyapunov function candidate is selected as follows: 

Figure 3. Block diagram of STSMC-OFFNN controller.
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Since V(0) is bounded and V(t) is also bounded because V(t) > 0 and
.

V(t) ≤ 0,

it is obtained that lim
t→∞

∫ t
0 |s|

3
2 dt is bounded. With the condition that

.
s

3
2 is bounded and

Barbalat’s lemma, s(t) will asymptotically converge to zero. Thus, the designed controller
can guarantee the asymptotic stability of the closed-loop control system.

5. Simulation Study

In order to prove the feasibility and effectiveness of the above-mentioned adaptive
super-twist sliding mode control based on OFFNN, a simulation experiment is carried on
the MATLAB/SIMULINK. The system’s main parameters are selected as in Table 1. To
show the adaptive ability of OFFNN, the initial values of b, c, w, and wr, are all set as 1, wro
is set as 0. The values η1, η2, η3, η4, and η5 are set as 5 × 108, 1 × 108, 1 × 108, 1 × 108, and
1 × 109. The values k1, k2 are set as 2 and 3.

Table 1. Simulation parameters of APF.

Name Parameter Value

Single-phase voltage RMS 24 V/50 Hz
Steady-state load R1 = 5 Ω, R2 = 15 Ω, C = 10−3 F

Dynamic load R1 = 15 Ω, R2 = 15 Ω, C = 10−3 F
Main circuit parameters L = 10−3 H, R = 1 Ω, Vref = 50 V

Sample time 10−5 s
Switching frequency 10 kHz

Figures 4 and 5 give the simulation results without any controller. The load is turned
on in 0.3 s. It can be seen that, due to the distortion of load current, the power supply
current has some distortion at both peaks, preventing it from performing as a perfect sine
wave. In APF, total harmonic distortion (THD) is often used to evaluate the performance
of the system. Its THD is shown in Figure 6, which is up to 13.04% further from the
satisfactory value. Figures 7 and 8 are the performance of the proposed STSMC-OFFNN
and its comparison with two other control systems, including STSMC and STSMC-RBF-F. In
STSMC-RBF-F, the last F stands for the additional filter, since RBF itself is hard to deal with
when implemented in such a fast-changing object. From Figure 7, it is clear that STSMC
does not have the ability to complete the control requirement, showing the necessity of
incorporating additional parts to the control method. It can be seen in Figure 8 that the
STSMC-OFFNN is superior to the comparison method in terms of system performance to
STSMC-RBF-F, proving that the compensation current can track the command current well,
as well as verifying the excellent stability and robustness of STSMC-OFFNN. Moreover, the
fact that the output is smoother, namely the chattering is smaller, indicates the internal soft
changes of the system. The THD data in Table 2 indicate that STSMC-OFFNN has a good
effect in eliminating harmonics and can effectively purify harmonic pollution.

Table 2. Comparison of THD in simulation.

City

Performance
THD

STSMC-OFFNN 2.83%
STSMC 14.05%

STSMC-RBF-F 3.87%
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Remark 2. In Figure 7, the reference signal of the STSMC method differs from others because the
reference signal is affected by system status. Thus, with the inadequate control of STSMC method,
the reference signal is influenced.

Figure 9 is the comparison of ueq and usw, showing that ueq has higher magnitude of
output, and also demonstrating that OFFNN dominates the control process and STSMC
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has an accessorial compensation in the control method. Due to the structural characteristics
of APF Systems, the chattering problem is hard to completely resolve, but compared with
the traditional switching control law, STSMC has the effect of reducing jitter amplitude.
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Figure 10 is the adaptive curve of the OFFNN, showing that the output of the OFFNN
does not require manual adjustment, and can quickly self-converge through an adaptive
method, so that the system can obtain the optimal neural network performance to reach the
optimal output. This shows that this neural network has good stability and self-regulation
ability. The high initial value results from a high study rate of OFFNN. Considering its
proportion in the whole process, the influence is limited.



Mathematics 2022, 10, 1063 16 of 18

Mathematics 2022, 10, x FOR PEER REVIEW 17 of 19 
 

 

Figure 10 is the adaptive curve of the OFFNN, showing that the output of the 

OFFNN does not require manual adjustment, and can quickly self-converge through an 

adaptive method, so that the system can obtain the optimal neural network performance 

to reach the optimal output. This shows that this neural network has good stability and 

self-regulation ability. The high initial value results from a high study rate of OFFNN. 

Considering its proportion in the whole process, the influence is limited. 

 

Figure 10. OFFNN adaptation curve. 

Table 3 shows the further performance comparisons of the STSMC-OFFNN and 

STSMC-RBF-F. It can be seen that the variation of the load has little effect on the perfor-

mance of the system, and the proposed STSMC-OFFNN method can achieve a better 

control effect than the traditional method in all cases shown. It is also shown that capaci-

tive load will not have bad influence on the performance. All of these prove the superi-

ority of the proposed method. 

Table 3. Performance comparisons of STSMC-OFFNN and STSMC-RBF-F. 

 
STSMC-OFFNN STSMC-RBF-F 

A1 A2 A3 A1 A2 A3 

steady state 2.84% 2.85% 2.84% 3.87% 3.85% 3.85% 

add dynamic load 2.44% 2.66% 2.64% 3.57% 3.34% 3.67% 

remove dynamic load 2.95% 2.89% 2.90% 3.95% 3.87% 3.70% 

with capacitive load 1.57% 1.57% 1.58% 2.20% 2.21% 2.21% 

where: A1: Steady-state load: R1 = 5 Ω, R2 = 15 Ω, C = 10−3 F, Dynamic load: R1 = 15 Ω, R2 = 15 Ω, C = 

10−3 F. A2: Steady-state load: R1 = 5 Ω, R2 = 15 Ω, C = 10−3 F, Dynamic load: R1 = 20 Ω, R2 = 30 Ω, C = 

10−3 F. A3: Steady-state load: R1 = 5 Ω, R2 = 15 Ω, C = 10−3 F, Dynamic load: R1 = 35 Ω, R2 = 45 Ω, C = 

10−3 F. with capacitive load: Steady-state load: R1 = 5 Ω, R2 = 15 Ω, C = 1 F. 

Figure 10. OFFNN adaptation curve.

Table 3 shows the further performance comparisons of the STSMC-OFFNN and
STSMC-RBF-F. It can be seen that the variation of the load has little effect on the per-
formance of the system, and the proposed STSMC-OFFNN method can achieve a better
control effect than the traditional method in all cases shown. It is also shown that capacitive
load will not have bad influence on the performance. All of these prove the superiority of
the proposed method.

Table 3. Performance comparisons of STSMC-OFFNN and STSMC-RBF-F.

STSMC-OFFNN STSMC-RBF-F

A1 A2 A3 A1 A2 A3

steady state 2.84% 2.85% 2.84% 3.87% 3.85% 3.85%
add dynamic load 2.44% 2.66% 2.64% 3.57% 3.34% 3.67%

remove dynamic load 2.95% 2.89% 2.90% 3.95% 3.87% 3.70%
with capacitive load 1.57% 1.57% 1.58% 2.20% 2.21% 2.21%

where: A1: Steady-state load: R1 = 5 Ω, R2 = 15 Ω, C = 10−3 F, Dynamic load: R1 = 15 Ω, R2 = 15 Ω, C = 10−3 F.
A2: Steady-state load: R1 = 5 Ω, R2 = 15 Ω, C = 10−3 F, Dynamic load: R1 = 20 Ω, R2 = 30 Ω, C = 10−3 F. A3:
Steady-state load: R1 = 5 Ω, R2 = 15 Ω, C = 10−3 F, Dynamic load: R1 = 35 Ω, R2 = 45 Ω, C = 10−3 F. with capacitive
load: Steady-state load: R1 = 5 Ω, R2 = 15 Ω, C = 1 F.

6. Conclusions

In this paper, an adaptive super-twisted sliding mode control method based on a
novel fuzzy neural network is proposed to solve the problem of harmonic pollution in APF
systems. An output feedback fuzzy neural network is designed to increase the accuracy
and performance of the neural network. Its characteristic of two hidden layer helps to
maintain good balance on approximation speed and accuracy. Furthermore, feedbacks
are used to broaden the learning scope of neural networks, therefore better handling of
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wide-amplitude, fast-changing signals. Compared with traditional proportional-integral
or proportional-resonant methods, the proposed control method has the advantage of
low model and parameter dependencies owing to its adaptive learning ability. Thanks to
this, when dealing with complex and changeable systems or systems with immeasurable
parameters, the proposed method has stable and reliable control performance. Compared
with the traditional neural network method, the improved structure of OFFNN is superior
for its higher approximating speed and accuracy and its better compatibility with IGBTs.
Simulation experiments verified that the proposed STSMC-OFFNN method can achieve
satisfactory harmonic compensation performance in harmonic compensation, regardless
of the system uncertainties and load variations. The comparison with traditional LCL
and LLCL methods shows that the proposed general method has control performance
comparable to that of the specialized method.
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