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Abstract: All science, including psychological science, is subject to what Townsend and Ashby have called
the principle of correspondent change which ensures that experimental manipulations act as informed
agents with respect to predictions and testing critical theoretical features. Mostly, this type of program goes
unspoken. Within the general field known as the information processing approach, S. Sternberg invented
the additive factors method in which the aforesaid feature plays a major and explicit role. We call this
approach a theory driven methodology because the scientist formulates a set of theories or models and
then formulates experimental variables that will permit strong tests among the hypothetical alternatives.
Our term for the general approach is systems factorial technology. Often, these tests can be accomplished
with qualitative, non-parametric, distribution free methods, but our so-called sieve method advocates, once
the initial qualitative steps are accomplished, a move to assessing more detail parametric versions of the
model classes. Over the decades, the meta-theory underpinning SFT and like approaches has evidenced
dramatic growth in both expanse and depth. Particularly, the critical assumption of selective influence,
testable to some extent, has received extensive and sophisticated treatment. The various central allied
concepts are interlinked but do not form a simple linearly-ordered chain. This study carries on exploration
of the central concepts and relationships and their implications for psychological research.

Keywords: selective influence; mental architecture; systems factorial technology; 1-directional serial
systems; parallel exhaustive systems
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1. Introduction

An essential aspect of mathematical models in psychology is that the structure and
parameters of the quantitative ingredients be related to specific aspects of nature, that is,
measurable features of stimuli and physiological or behavioral responses. Anything short
of that smacks of triviality, metaphor or, at best, curve fitting. Although almost always
unspoken, almost all hypothesis testing proceeds by attempts to provoke expected reactions
via the effects of experimental manipulations on suspected structures and mechanisms. We
have characterized this vital element as the principle of correspondent change [1].

In the early heydays following the birth of the information processing approach, one
very popular direction hypothesized that a larger processing workload, such as presenting
a longer list of n items for search in short-term memory, would produce a linear increasing
mean response time (hereafter RT) function of the load size n if the system was acting
as a serial processor [2]. Scores of experiments were run on this basis, although it was
soon pointed out that these tests were weak in the sense that reasonable models from
the other class were mathematically equivalent to the serial models, and vice versa [3–5].
Despite the demonstrated frailty of this argument, identical experimental designs, with the
exception that the probe was presented before the longer list which appeared in a visual
display, began to recur in vision science within two decades of the original S. Sternberg
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designs in short term memory (e.g., [6]). An early warning of pitfalls of that approach in
a visual context had been already voiced in Atkinson, Holmgren and Juola [7]. However,
once again, this track of faulted reasoning led to a plethora of conclusions of questionable
validity (see also the discussion in [8–10]).

A much more redoubtable use of the principle of correspondent change was proffered,
also by S. Sternberg, termed the additive factors method in the late 1960s [11]. This version of
the principle stipulated that if individual factors only influenced separate psychological
processes arranged in a series that did not overlap in their processing times, then the
mean RTs must be additive functions of the experimental factors. It stands as a ground-
breaking exemplar of the principle of correspondent change, alluded to above. Sternberg’s
conceptualization of selective influence operates at what we may refer to as a qualitative
level. That is, specific parameterized models are avoided. However, parameterized models
may and, in modern days, usually are also subjected to and tested principles of selective
influence. For instance, models of signal detection assume that bias parameters should be
influenced by experimental variables such as reward structures and frequency of stimulus
presentations, whereas parameters reflecting sensitivity should only be affected by variables
such as stimulus intensity, their similarity and so on. This concept has been generalized
and studied by R. Thomas [12]. A number of popular parameterized stochastic models
capable of predicting both accuracy and response times have been subjected to tests of
selective influence in an important study by Dutilh et al. [13].

The notion of selective influence is perhaps the deepest and most critical aspect of
the later theory-driven methodology referred to as systems factorial technology, or simply
SFT [14]. SFT adheres to the qualitative approach first espoused explicitly by S. Sternberg
[15] as mentioned above. By now, SFT has been applied to almost all major disciplines of
psychology and cognitive science. Introductions are now widely available, for instance, in
Townsend, Houpt and Wenger [16], Algom et al. [8] and Harding, B., Goulet, M. A., Jolin,
S., Tremblay, C., Villeneuve, S.-P. and Durand, G. [17]. Up to date applications and surveys
can be found in Little et al. [18] and Houpt, Little and Eidels [19].

Two principal targets of selective influence manipulations are mental architecture and
decisional stopping rule. It has turned out that the notion of selective influence as seen in
psychology has deep connections to important concepts in other regions of science and
mathematics, including physics, for example, quantum theory (e.g., [20]). Many of these
versions do not require that the random entities be positive real numbers. For that reason,
although we use language and notation suggestive of time, we will not always require that
the observables be positive numbers. Another valuable dimension is how alterations in
required effort affect efficiency of performance, usually as indexed by response times (RT)
or accuracy and reflected in the workload capacity index [21] or the assessment function [22].
This latter dimension will not be under consideration in this study.

As noted above, Sternberg’s original primary objective was that of serial systems,
wherein one and only one process could take place at a time [15]. Each constituent process,
say the ith., starts immediately after process i− 1 completes, continues without interruption
until it is finished and then process i+ 1 begins instantaneously. Of course, some of these ax-
ioms can be relaxed. For example, in some circumstances, lag between successive processes
might be present without harm to the major predictions but the foregoing assumptions are
now standard [8,16].

The notion, selective influence, seems eminently straightforward. However, it turns
out to be a much more subtle and fascinating concept that has continuously evolved
over the years. In fact, we think it now makes sense to offer a menu of several types of
selective influence. In addition, some might be more observable than others in any given
observational context. This philosophy will help guide us in the present enterprise.

The typical approach to utilization of selective influence has been to define if and how
an external factor, usually experimental, might alter some dependent variable associated
with a psychological process. That observable variable has historically usually been RT.
We shall therefore concentrate on RT and, in particular, the way individual processes are
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affected by such factors. However, then we are immediately faced with the question of,
assuming stochasticity of the processes, what aspect of the probability distribution is so
affected? Initially, S. Sternberg [15] assumed that the means (expectations) of processing
times were manipulated through the factors with each subprocess being uniquely affected
by a single factor. This was sufficient to falsify or support the inference of serial processing.
Sternberg assumed that an external factor A could slow down or speed up a process in
such a way that the means would be affected in a detectable way. This operation could then
be employed to affirm or deny serial processing. A huge number of studies were carried
out applying the additive factors method (for limited reviews, see [1,8,23]).

Schweickert [24] subsequently applied the notion of selective influence to mean RTs
of complex systems based on forward-flow graphs known in the engineering literature
as PERT networks (literally, program evaluation and review technique). These were mostly
deterministic systems, but there were extensions that included stochastic inequalities [25].
Egeth and Dagenbach [26] put the mean RT predictions for serial and parallel systems to
effective use.

A stronger but also theoretically more powerful assumption is to simply assume that
if two values of a factor, called A, are different, then the cumulative distribution functions
(hereby designated by capital F(t)) are also different in some sufficiently potent way. In
fact, it was discovered around the same time in the 1980s that factorial influence could
occur at the distributional level in the sense that if AH > AL where H = high and L = low,
then FA(t; AH) > FA(t; AL), that is, the F(t)s would also be ordered [23,27,28]. However,
then it transpired that other systems and their stopping rule could be distinguished also
at the level of mean RTs but now including not only parallel systems but PERT networks
more generally [23,29,30].

It was not observed until the late 1980s and 1990s that the same facets that could be
employed to make predictions at the mean RT level actually propelled results at a much
more formidable echelon. Thus, an assumption on the distributional orderings, given just
above, led to predictions on the RT probability distributions themselves [14,31]. These
findings provided tests of architectures and stopping rules that were in several important
cases, invisible in mean RTs alone.

The influence of factors on a distribution function is certainly key, but in the great pre-
ponderance of experiments meant to identify architecture, the experimenter cannot espy the
underlying joint distributions on the multiple processes directly (but see [32,33] for experimental
designs that can). Thus, what is visible in data usually is an RT distribution on an architecture
with a decision rule that yields overall completion time (plus a random variable, usually stochas-
tically independent of the other sequentially arranged subprocesses, representing a sum of early
sensory and later motor intervals) as a function of the underlying, individual processing times.
We shall later visit those statistics in the required detail.

The raison d’être, at least originally, that motivated the development of the concept of
selective influence was to identify mental architecture and stopping rule. Our treatment
and implied taxonomy here envision a taxonomy that differs somewhat from the field’s
previous way of thinking about selective influence, including our own. The prior philoso-
phy, whether conscious or not, seems to have focused pretty much on finding “the best”
definition of selective influence. While Sternberg noted that stochastic independence along
with manipulation of mean RTs could assess serial processing, he mentioned that, in some
cases, distributions might be mutually dependent. Examples, though not really suited
for processing times, are joint Gaussian distributions with non-zero covariance. There,
the means might be affected by experimental factors, but not the covariances, therefore
rendering nice observable predictions as long as the covariances are not influenced by the
experimental factors. We shall have cause to explore multivariate Gaussian distributions a
bit further in our discourse.

Our survey of current and past theoretical studies and surveys, in conjunction with
the present venture, convince us that there are several meaningful definitions of, perhaps,
types of selective influence. Each variety might have its own strengths and weaknesses and
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serve somewhat distinct purposes. We will see how this plays out. As theoretical efforts on
selective influence have blossomed into regions rather remote from response times, this
proposition becomes more and more tenable (see, e.g., [32,33]).

The purview of systems considered herein will be circumscribed in certain respects to lay
bare the essence in readily communicable fashion, with the expectation of subsequent expansion.
This has proven to be a useful tactic in previous research such as the assumption of stochastic
independence with an arbitrary number of subsystems, channels, etc. (e.g., [34]).

Suppose then that there are two processes with names Sa and Sb. We note that these
S’s are distinct from the later symbols we will use for the survivor functions, the plain
“S”. In addition, within the current investigation, we assume that the systems will not
terminate until the completion of both processes. That is, the systems employ an exhaustive
stopping rule.

The names for processes Sa and Sb will not distinguish their architecture. We will
assume that readers are familiar with the basic concepts of serial and parallel processing so
that we need not use distinct notation for a serial processing time vs. a parallel processing
duration (for a more formal tutorial on these concepts, please see Chapters 2, 3 of [1] or,
more recently, [8]; those seeking an axiomatic treatment of fundamental concepts, which
evinces the foundational principals at the level of measure theory, are referred to [35]).

Ta and Tb will be employed to exhibit processing time random variables for the corre-
sponding processes, regardless of whether they are in serial or parallel conformation. To
render this important distinction, “ f (t)” and “F(t)” will denote the density and cumulative
distribution functions for serial architectures, whereas “g(t)” and “G(t)” will denote those
for parallel architectures. When needed, PPAR(Ta ≤ ta ∩ Tb ≤ tb) = P(Ta ≤ ta, Tb ≤ tb)
can be used to indicate the joint distribution for a 2-channel parallel system and also
PSER(Ta ≤ ta ∩ Tb ≤ tb) = P(Ta ≤ ta, Tb ≤ tb) for a serial system. Note that these look
the same but are not, since in the parallel case, the “t”s refer to processing that is ongoing
simultaneously, but in the serial case, they refer to sequential and non-overlapping times.

Moreover, if a system is serial, we further assume that Sa always goes first. That is, its
operation always precedes that of Sb. This assumption, that of a single processing order,
specifies a special case of the more general situation where Sa precedes Sb with probability
p, but Sb precedes Sa with probability 1− p. In general, it may be that p 6= 1 or 0 (see [1],
Definition 4.1, p. 50). Yet, in the current investigation, we introduce the key serial concepts
confined to single order systems. That is, in formal language, p = 1. We shall call this
notion “1-Directionality”. In fact, this class of two-stage serial systems will serve to erect
the foundational scaffolding that generates several of our theoretical inferences.

We shall also almost always focus our attention on systems with only two processors,
n = 2, and, without exception, assume that all our stochastic processes possess continuous
densities defined on the positive real line, usually including the origin, 0, so T ≥ 0. The
exception will be a few examples where the random variable’s support is the entire real
line. These postulates will avert a lot of pedantic notation. We shall hereafter assume that
experimental factors, A and B, are effective in the sense that the probability distributions for
the random variables Ta and Tb are actually changed with any change in A, B, respectively,
in the sense that, for example, on some measurable interval of time, f (ta; A1) 6= f (ta; A2),
and the same goes for the parallel densities. More consequential assumptions about how
experimental factors affect our distributions will be made forthwith. Finally, in conditional
probability elements, for example, in fb(tb; B, A|ta), to be visited below, it will always be
assumed that this term is a non-trivial function of ta.

2. Definitions of Primary Concepts and Taxonomy
2.1. Selective Influence

We express canonical notions of serial vs. parallel processing in slightly different ways
to emphasize the “forward motion” in seriality as opposed to simultaneity in parallelism.
Of course, no harm could come from writing the terms in mathematically equivalent forms.
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Let the experimental factor that the researcher hopes will affect system Sa be designated A
and that for system Sb be B.

Definition 1. Canonical Serial Expressions for 1-Direction Systems. We say that the formula
for the joint probability density function in a 1-direction serial system is in canonical form if it is
written as:

P(Ta = ta, Tb = tb; A, B)

= fa,b(ta, tb; A, B)

= fa(ta; A, B) fb(tb; B, A|ta), ta, tb ≥ 0.

Rigorous measurement axioms are given in Houpt et al. [35] to ensure there is no
measure that allows overlap in the serial processing durations.

Definition 2. Canonical Parallel Expressions. We say that the formula for the joint probability
density function in a parallel system is in canonical form if it is written as:

P(Ta = ta, Tb = tb; A, B) = ga,b(ta, tb; A, B), ta, tb ≥ 0.

Deeper postulates that ensure Ta and Tb possess non-zero probability of occurrence,
until one finishes, over a shared time interval are given in Houpt et al. [35].

This notation is explicitly compatible with that of Townsend and Ashby [1] and
Townsend [23]. Observe that, so far, fa might be a direct function of both factors A and
B and similarly for fb. Our treatment of the concept of selective influence continues the
evolution of our thinking as expressed in Townsend, Y. Liu and R. Zhang [36]. We start our
forward march by putting down the Sternbergian definition of selective influence [15].

Definition 3. The Sternbergian Definition of Selective Influence.
Consider two processes Sa and Sb with processing time random variables Ta and Tb. Sternber-

gian selective influence holds if and only if there exist two experimental variables, A and B, such
that the mean of Ta is affected only by A and the mean of Tb is affected only by B.

It has long been tacitly acknowledged that the most quintessential form of selective
influence occurs in the context of stochastic independence of the separate subprocesses.
Our current thinking emphasizes that there may exist a spectrum of types of selective
influence and therefore that selective influence cum independence should occupy a special
place in this taxonomy.

Definition 4. Pure Selective Influence
Pure selective influence is in force in the serial 1-direction systems if we can write

fa,b(ta, tb, A, B) = fa(ta; A, ) fb(tb; B)

That is, the joint probability density function for Ta and Tb is independent in these variables
and each term is a function of its respective factor.

Pure selective influence is in force in the parallel systems if we can write

ga,b(ta, tb; A, B) = ga(ta; A)gb(tb; B).

That is, the joint density function for Ta and Tb is independent in these variables and each is a
function only of its respective factor.

2.2. Nonselective Influence

We now move to present the major types of nonselective influence.
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Definition 5. Direct and Indirect Nonselective Influence.
In the 1-direction serial systems,
(1). If both direct and indirect nonselective influence are in force, the joint probability density

function will be expressed in canonical form as

fa,b(ta, tb; A, B) = fa(ta; A, B) fb(tb; B, A|ta).

(2). If only direct nonselective influence is afoot in process Sa, then we have f a(ta; A, B) for
that stage. That is, fa(ta; A, B) is a function of the “other” factor B. If only direct nonselectivity in
Sb, we have

fb(tb; B, A|ta) = fb(tb; B, A).

That is, fb(tb; B, A|ta) is a function of the factor but is stochastically independent of processing-time
variable of the other process Sa.

(3). If only indirect nonselective influence occurs in a 1-direction serial system, it can only
happen in stage Sb to yield fb(tb; B|ta) by definition.

In the parallel systems, (1). If both direct and indirect nonselective influence are in force, we
have

ga,b(ta, tb; A, B) = ga(ta; A, B)gb(tb; B, A|ta) = gb(tb; B, A)ga(ta; A, B|tb).

Unlike in serial systems, similar remarks occur for the opposite order.
(2). If only direct nonselective influence is afoot in process Sa, then we have ga(ta; A, B) as a

function of B with no dependencies on tb. If only direct nonselective influence is afoot in process Sb,
then gb(tb; B, A) is a function of A with no dependencies on ta.

(3). If only indirect nonselective influence is present in Channel Sa, then we can write

ga(ta; A, B|tb) = ga(ta; A|tb)

which is a function of tb but not B, and similarly for Channel Sb.

The reader may have noticed that due to our empirical distinction between seri-
ality and parallelism, when only one order is possible in the former, we always write
fa(ta; A, B) fb(tb; B, A|ta) rather than fa(ta; A, B|tb) fb(tb; B, A). This is a convention and has
no impact on further developments.

Earlier work established how stochastic dependence of Tb on Ta (that is, indirect
nonselective influence) could perpetrate a visible failure of selective influence in the sense
that mean response times would be seriously affected. Thus, Townsend and R. Thomas [37]
showed how such indirect influences could devastate the expected response time signatures
of serial vs. parallel processing through failure of selective influence. In fact, the latter
investigation demonstrated that, at the mean processing time level, one could obtain over-
additivity or under-additivity by either negative or positive interactions and in either
parallel or serial systems. Even if it turned out that a failure of indirect selective influence
somehow failed to affect architecture identification, we now take the position that someday
and in some experimental designs, perhaps with the aid of neuroscientific procedures,
it may be possible to detect such probabilistic perturbations (i.e., Tb is influenced by the
current-trial value of Ta).

Dzhafarov [38] has chosen to use the term conditional selectivity for what we have
always labeled indirect nonselective influence. He also proves a number of theorems on
that topic including conditions for its satisfaction. As far as names go of course, neither
is either right or wrong. Logically, any restriction on the influences of the factors could
be styled either as a type of selectivity or, in contrast, as a version of nonselectivity, as
long as pure selective influence is not obeyed in our lexicon. We prefer to adhere to our
original terminology while noting the chimerical essence of the concept. It is important to
not conflate this concept with his much later new definition of selective influence, though
both include the term “conditional”. We introduce the latter momentarily.
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At this juncture, we call up the definition of selective influence proffered by Dzha-
farov [39]. To date, this definition is the most potent in terms of still perpetrating useful
consequences, such as identification of architecture and stopping rule in a number of
valuable architectures, while affording a type of stochastic dependence. It is particularly
germane in the present context because it implies, but is not implied by, a primary target of
our investigation—a type of marginal selective influence which will be dealt with in detail
in what follows.

Definition 6 ([39]). The Conditional Independence Definition of Selective Influence. In serial
systems, two factors selectively influence Sa and Sb if and only if the joint density of the two asso-
ciated times can be expressed as P(Ta = ta, Tb = tb; A, B, C = c) = fa(ta; A|c) fb(tb; B|c) fc(c),
where C is a random variable stochastically independent of Ta and Tb and functionally independent
of A, B.

In parallel systems, two factors selectively influence Sa and Sb if and only if the joint
density of the two associated times can be expressed as P(Ta = ta, Tb = tb; A, B, C = c) =
ga(ta; A|c)gb(tb; B|c)gc(c), where C is a random variable stochastically independent of Ta and Tb
and functionally independent of A, B.

This definition clearly generalizes the demands of pure selective influence to include a
certain type of dependence. Observe the distinction between this concept and his earlier
term “conditionally selective influence” which is our “indirect nonselective influence”. The
earlier one requires statement of any type of stochastic dependence between the random
variables of the processes, while the later one only allows the dependence between the
processes through a third source. There exists other, but mathematically equivalent, ways
of defining the concept (e.g., [33]). We view this one as the most pellucid and intuitive. The
notion of conditional independence is one found in many areas of applied statistics includ-
ing psychometrics in general and test theory in particular as well as in machine learning
(look for the so called naive Bayesian approach), economics and physics. Dzhafarov and
colleagues (e.g., [33,39]) have established conditions that can test for selective influence (see
definition in [39]). However, these methods typically assume that the joint distributions
of the random variables are observable. Given the quintessential importance of selective
influence in identification of psychological mechanisms, those results are quite fundamen-
tal. Yet, in many psychological milieus, as intimated earlier, the joint distributions are not
observable, and this has been the situation in most, if not all, cases where the uncovering
of mental architectures is the goal through the employment of response times (e.g., as in
[11,14,19,23,24,29,30,37,40]).

A simple example propaedeutic to Dzhafarov’s definition offers some intuition. In
fact, Townsend and Ashby ([1], Chapter 11, pp. 368–370) considered a special case of that
concept, where we conceived of the random variable C as denoting capacity. This capacity
was distributed between Sa and Sb in a serial system where A and B directly affected their
appropriate processes and, just as in Dzhafarov’s definition ([39]), fa and fb were, given
C = c, conditionally independent. It was demonstrated that the canonical prediction on
the mean interaction contrasts (MIC) for serial systems with direct selective influence
was fulfilled, namely MIC = 0 (see Propositions 8 and 9). Dzhafarov and colleagues
subsequently proved their more general results and made conditional independence a
cornerstone of their approach to factor selectivity.

We next move on to one of the key concepts in the present discourse as alluded to
above. It is called marginal selective influence, or marginal selectivity for short. It is implied
by some other types of selective influence, most pointedly, the aforementioned Dzhafarov
definition, and in some circumstances may allay certain avenues of nonselective influence
in discriminating mental architectures. It seems to have made its first formal appearance in
Townsend and Schweickert ([29]; also see [30]). It turns out to be an intriguing condition.

Its presence or absence may bear consequences for systems identification. In addition,
though, it might be useful in its own right. For instance, when a person is asked to make two
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responses on experimental trials, the marginal selectivity would perforce be immediately
available for inspection and offer critical information concerning the underlying processing
mechanisms. A recent example of a new design in systems factorial technology which
employs two responses is Howard, Garrett, Little, Townsend and Eidels [41].

Definition 7. Marginal Selective Influence.
In 1-direction serial systems where Sa always occur before Sb, marginal selectivity is said to hold

if and only if (1) fa(ta; A, B) = fa(ta; A) and (2) fb(tb; B) =
∫ ∞

0 fa(ta; A, B) fb(tb; B, A|ta)dta.
In parallel systems, the marginal selectivity is said to hold if and only if (1) ga(ta; A) =∫ ∞

0 ga(ta; A, B|tb)gb(tb; B, A)dtb and (2) gb(tb; B) =
∫ ∞

0 gb(tb; B, A|ta)ga(ta; A, B)dta.

We were surprised to discover, as in the next definition, that the concept of marginal
selective influence can be further disassembled into two sub-types and that these differ in
their implications for systems identification.

Definition 8. Strong and Weak Marginal Selective Influence.
(1). Strong marginal selectivity restricts the effect of any factor to its impact on the appropriate

marginal distribution. (2). Weak marginal selectivity, in our sense, demands that one or more of the
experimental factors influences the joint distribution outside their impact on the pertinent marginal
distribution.

As was the case for indirect nonselective influence, the presence of marginal selectivity
may be of import for other types of influence as well as drawing inferences regarding
mental mechanisms.

3. Key Propositions on Satisfaction of Marginal Selectivity

This section will focus on when marginal selectivity is or is not satisfied (Definition 7),
without regard to strictness conditions (Definition 8). In preparation for Propositions 1A and 1B,
and Propositions 2A and 2B, we continue reference to Townsend and R. Thomas [37]. In general,
their manifold demonstrations of failure of selective influence, even at the level of means,
implied that the distributions themselves were severely perturbed. That is, marginal selectivity
was destroyed by their examples. We can exhibit the havoc, even at the distributional level, that
can be wrought by indirect nonselective influence alone on Tb.

Example 1. Suppose A, B > 0, Sa(ta; A) = Exp(−Ata) and Sb(tb; B|ta) = Exp(−Btat2
b).

Note that there is no direct affliction from A, but the second stage is a function of ta indicating
indirect nonselective influence. Then, we can see that the longer stage Sa takes, the faster stage SB
will be, in a stochastic sense, provoking a negative correlation on these stages. We can intuit that
since A makes the first stage faster, there should ultimately be discovered a negative relationship
between A and Tb. Thus, deriving the marginal survivor function for Tb, we have

Sb(tb; B)

=
∫ ∞

0
AExp(−Ata)Exp(−Btat2

b)dta

=
A

Bt2
b + A

.

Figure 1a shows how the survivor function for Tb conditioned on Ta is a function of ta.
Then, Figure 1b exhibits how the marginal for Tb is a function of both A and B. Obviously,
since Sb is an increasing function of A as we suspected, the slower we make Sa go, the
faster will go Sb (because the survivor function on Tb will be smaller), and this happens
both at the within-trial as well as the across-trial levels. The reader will note that an even
simpler example works in principle, that is, where Sb(tb; B|ta) = Exp(−Btatb). However,
this model suffers from not possessing a mean in SB.
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B

S
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tb
 =

 1
; B

 | 
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)
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tb
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 1
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, B
)

(a) (b)

Figure 1. (a) The survivor function for Tb conditioned on ta in example 1. Sb(tb = 1; B|ta) decreases
with increases in ta and B. (b). The marginal survivor function for Tb in example. Sb(tb = 1; B)
increases with A and decreases with B.

Proposition 1A(a) indicates the trivial-to-show but interesting feature that, with both
1-directional seriality and no direct nonselectivity from the second to first stage in a 1-
direction serial system, overall selectivity is found on Ta. Proposition 1A(b) exhibits
the rather patent result that if pure selective influence (see Definition 4) is true, then
marginal selectivity perforce occurs. Proposition 1A(c) establishes the somewhat curious
but important outcome that if perturbation of selective influence is both direct and indirect,
then marginal selectivity can also be valid. Finally, Proposition 1A(d) discovers that this
type of cancellation can go in both directions, a result that we will see also pertains to
parallel systems.

Proposition 1 (A). On Satisfaction of Marginal Selectivity in 1-Direction Serial Systems.
Under the assumptions of 1-directional seriality,
(a). If direct nonselective influence of B on Sa is absent, then it is impossible that the marginal

distribution on Ta be a function of the “wrong” factor B in either the weak or strong sense. Hence,
indirect nonselective influence on Sa is ruled out and selective influence of A on Sa is assured. Thus,
fa(ta; A) is no function of B and marginal selectivity holds for Ta.

(b). If neither indirect nor direct nonselective influence are present in the Sa → Sb or the
opposite direction, then strong marginal selectivity on Tb is true.

(c). Suppose that fb(tb; B, A|ta) is a non-trivial function of A, B and ta. Then, even strong
marginal selectivity on Tb may succeed.

(d). We can construct a case where both factors cancel out and we are left with no influence,
selective or nonselective at all.

Proof. (a): For every value of ta, fb(tb; B, A|ta), integration over all values of tb yields 1,
leaving the marginal distribution of ta to be a function only of A. So, marginal selectivity is
determined in Stage Sa if there is no direct nonselective influence there.

(b): Obvious, because the hypothesis is tantamount to stochastic independence plus
direct selective influence, that is pure selective influence is in power. This could be seen as
a corollary to part (a).

(c): It is helpful to picture the integral of the product fa(ta; A) fb(tb; B, A|ta) over all
values of ta as a linear transformation T in continuous function space, arising from the
Markov kernel fa(ta; A). Then, we require that the marginal on Tb be invariant over the
factor A: fb(tb; B, A) = fb(tb; B) =

∫ ∞
0 fb(tb; B, A|ta) fa(ta; A)dta.

An example shows that this is possible. One is straightaway found by setting fa(ta, A) =
AExp(−Ata) and Sb(tb; B, A|ta) = Exp(−ABtat2

b). Integration over the interval from 0 to
∞ finds the marginal survivor function to be Sb(tb; B, A) = 1

1+Bt2
b

which is obviously a

function only of tb and B and therefore satisfies marginal selectivity. Rewriting the joint
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distribution function using the copula trick (detailed in the next section) of inverting the
marginals finds that no factorial influence outside of the marginal distribution resides.

(d): Prove with an example. Let fa(ta) = ABExp(−ABta) and Sb(tb|ta) = Exp(−ABtatb).
Now, calculate the marginal of Tb:∫ ∞

0
fb(tb; B, A|ta) fa(ta; A, B)dta

=
∫ ∞

0
Exp(−ABtatb)ABExp(−ABta)dta

= AB
∫ ∞

0
Exp[−ABta(1 + tb)]dta

=
1

1 + tb

which is a function of neither factor A (no direct nonselectivity), B (no direct selectivity)
nor ta (no indirect nonselectivity).

Figure 2 illustrates Proposition 1A(c) by exhibiting that the conditional survivor Sb(tb; B, A|ta)
is a function of A, B and ta but then reveals that its marginal form is a function only of B.

ta

A

S
b(
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, B
 | 

ta
)

0 1 2 3 4

0.
2
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4
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6
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8
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S
b(

tb
 =

 1
; B

)

(a) (b)

Figure 2. (a.) The survivor function for Tb in Proposition 1(c). Sb(tb = 1; B = 2, A|ta) decreases with
increase in ta and A. (b.) The marginal survivor function for Tb in Proposition 1(c). Sb(tb = 1; B)
decreases with B.

Now, taking up parallelism, since processing is going on simultaneously, we cannot ob-
tain the hypothesis in Proposition 1A(a) through any principle such as causality. However,
we can just impose something like it by fiat in Proposition 1A(a).

Proposition 1 (B). On Satisfaction of Marginal Selectivity in Parallel Exhaustive Systems.
Under the assumptions of parallel exhaustive processing:
(a). If Ta is afflicted by neither indirect nor direct nonselective influence, then its marginal

distribution is selective. As intimated in the prologue just above, we simply impose an absence of
direct and indirect nonselective influence on Ta. Then, integrating over Tb yields a marginal on Ta
that is selective.

(b). If neither indirect nor direct nonselective influence are present, then marginal selectivity
on Ta and Tb is true.

(c). Suppose that either ga(ta; A, B|tb) is a non-trivial function of A, B and tb, or gb(tb; B, A|ta)
is a non-trivial function of A, B and ta, then even strong marginal selectivity may succeed.

(d). As in Proposition 1A(d), if both channels are directly and indirectly influenced by the
“other” factor, then the result could have complete freedom from either type of influence on either
channel.



Mathematics 2022, 10, 1059 11 of 32

Proof. (a): The marginal distribution of Ta is:∫ ∞

0
gab(ta, tb; B, A)dtb

=
∫ ∞

0
ga(ta; A)gb(tb; B, A|ta)dtb

= ga(ta; A)
∫ ∞

0
gb(tb; B, A|ta)dtb, ( ∵ direct and indirect selectivity)

= ga(ta; A)

(b): Obvious. Because the hypothesis is tantamount to stochastic independence plus
direct selective influence, that is, pure selective influence is in power.

(c): We can employ a similar example to that used in Proposition 1. Let ga(ta; A) =
AExp(−Ata) and the survivor function Gb(tb; B, A|ta) = Exp(−ABtatb). Then, the marginal
survivor for Tb is:

Gb(tb; B, A)

=
∫ ∞

0
Gb(tb; B, A|ta)ga(ta, A)dta

=
∫ ∞

0
Exp(−ABtatb)AExp(−Ata)dta

=
1

1 + Btb

= Gb(tb; B)

which proves marginal selectivity. An analogous tactic to that in Proposition 1(c) works to
infer that this is the strong form of marginal selectivity.

(d): We perform the demonstration for Sb. The other direction is the same. Let
ga(ta; A, B|tb) = ABExp(−ABtbta) and Gb(tb; B, A|ta) = Exp(−ABtatb). Then, the marginal
survivor for Tb is: ∫ ∞

0
Exp(−ABtatb)ABExp(−ABtbta)dta

=
1

2tb

which is a function of tb only.

We find it intriguing the way in which the direct effect of factor A from Sa can
counteract the perturbing indirect effect of Ta in both parallel as well as serial systems. We
deem it of sufficient import to endow it with a name offset.

Definition 9. Offset.
The offset effect is referred as an instance where the presence of direct and indirect nonselective

influence from a process, say Sa, on the other process, say Sb, eliminate each other.

The reader may observe that, as intimated earlier, in a parallel system, there is the
possibility that a double-cancelling offset can occur ending with no influence in the system
at all (Proposition 1B(d)). Within the 1-direction serial systems, the next Proposition 2A(a)
indicates the fairly evident fact that direct nonselective influence by itself can cause failure
of marginal selectivity. Proposition 2A(b) states that marginal selectivity can fail if both
indirect and direct nonselective influence intrude. That is, offset is far from mandatory.
Finally, Proposition 2A(c) strengthens the Townsend and R. Thomas [37] developments by
proving the rather startling result that marginal selectivity in the second stage is impossible
in 1-direction serial systems if indirect nonselectivity does occur but direct nonselectiv-
ity does not. That is, without offset, and with the presence of contamination from Ta,
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marginal selectivity is impossible. This will be the most curious, yet vital, result of the next
proposition.

Proposition 2 (A). On Failure of Marginal Selectivity in 1-Direction Serial Systems.
Marginal selectivity of either type can fail through:
(a). Direct nonselective influence only on Sa, or only on Sb or both.
(b). Indirect and direct nonselectivity on Sb with direct selective influence on Sa.
(c). It must fail when only indirect nonselectivity on Sb occurs. Note that we also assume Ta

is neither directly influenced by B or indirectly by Tb.

Proof. (a): Obvious.
(b): Here, we see the intuitive statement that offset is by no means guaranteed.

Again, let fa(ta; A) = Exp(−Ata), but now let the conditional survivor function on Sb

be Sb(tb; B|ta) = Exp(− Btat2
b

A ). It will be found that the marginal survivor on Sb will be
Sb(tb; B, A) = A2

Bt2
b+A2 , revealing a critical dependence in Sb on the wrong factor A. In fact,

now, A slows down the second stage even more than in the example at the beginning of
this section.

(c): Due to its importance and its additional subtlety, we briefly rephrase this issue
and proceed with care.

Suppose fb(tb; B|ta) 6= fb(tb; B), that is, indirect nonselective influence is present,
but A is absent from fb(tb; B|ta) indicating that Tb is not directly nonselectively affected
by A. Then, marginal selectivity of Tb is impossible. Consider then the transformation
T[ fb(tb; B|ta)] =

∫ ∞
0 fb(tb; B|ta) fa(ta; A)dta. We can interpret fa(ta; A) as a Markov kernel

which maps A× ta into the measure space on B× tb. We also can regard the latter measure
as coming immediately from the parametric density fb(tb; B).

Let the symbol 1 represent the constant function f (t) ≡ 1. It is easy to see that T1 = 1
is the constant function because that is just the integral over the ordinary density fb(tb; B|ta)
over the domain of tb from 0 to ∞.

Now, assume marginal selectivity is to be true, that is,
∫ ∞

0 fb(tb; B|ta) fa(ta; A)dta =
fb(tb; B), and observe that the right-hand side is constant across values of A. Then, it
follows that T[ fb(tb; B|ta)] = fb(tb; B)1. Note that the right hand side is invariant over
all values of the A factor. We can re-express this fact as T[ fb(tb; B|ta)] − fb(tb; B)1 =∫ ∞

0 [ fb(tb; B, A|ta) fa(ta; A)− fb(tb; B)1]dta = 0.
Since T does not kill any function that is not already zero almost everywhere, then it

implies that fb(tb, B|ta) = fb(tb; B). That is, this outcome contradicts our hypothesis that ta
is effective in f b(tb; B|ta). Therefore, we conclude that marginal selectivity is false.

An analogous proposition for the parallel exhaustive systems is presented in Proposition 2B.

Proposition 2 (B). On Failure of Marginal Selectivity in Parallel Exhaustive Systems.
Marginal selectivity of either type can fail through:
(a). Direct nonselective influence only on Sa, or Sb or both.
(b). Indirect and direct nonselectivity on Sb with direct selective influence on Sa; or indirect

and direct nonselectivity on Sa with direct selective influence on Sb
(c). It must fail when only indirect nonselectivity occurs either on Sa or Sb.

Proof. Proofs are similar to those in Proposition 2A.

Again, we emphasize the part (c) of the above propositions that, in the presence
only of indirect nonselectivity, marginal selectivity is impossible, as exemplified in earlier
examples.

Sometimes, things that work for continuous functions do not for discrete, even finite
cases. For instance, difference equations with certain properties expressed as functional
equations do not always generalize to their “natural” continuous counterparts expressed
in terms of differential equations [42,43]. In the present situation, the proven statement is
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actually a bit stronger in the discrete version, as we show in Appendix A (Proposition A1).
The next observation, though obvious, is so important that we render it as a proposition.

Proposition 3. Indirect Nonselectivity and the Dzhafarov Definition of Selectivity. (a). In 1-
direction serial systems Sa → Sb, if indirect influence only afflicts Sb, then the Dzhafarov definition
of selective influence fails. (b) In parallel systems, if indirect influence only afflicts either Sa or Sb,
then the Dzhafarov definition of selective influence fails.

Proof. The falsity of marginal selectivity implies the failure of the Dzhafarov definition.

Previously, we chose exponential distributions for Ts in the proof for Proposition 1A(c)
and 1B(c) to show that systems having both direct and indirect nonselective influences can
still have marginal selectivity. This is because the exponential distribution possesses high
intuitive value in response time modeling and enjoys an exceedingly rich history in the
employment of exponential distributions in that venue (e.g., [1,37]). Next, we show that a
Gaussian example can also accomplish precisely this type of result.

In Sternberg’s original statements [15], it was allowed that selective influence on Tb
might still occur even with the stochastic dependence on Ta. This is a natural impulse
because of one of the backbones of classical statistical analyses: Multivariate Gaussian
distributions possess mathematically independent parameters of means and covariances.
Gaussian distributions, though ill-suited for response times (due to being defined for
T < 0), figure heavily in theory and applications to non-response time data (e.g., [38,39,44]).
This leads to an example where there exists both direct and indirect nonselective influence,
yet marginal selectivity is found. For instance, consider a bivariate Gaussian distribution
where the means are taken as the experimental factors and there is a non-zero correlation.
The correlation could be a function of both factors as well. This is a case where we should
consider the Ts as other than time variables so that they can take on negative values.

A key component of linear regression is that the mean of Tb conditional on Ta = ta
is just the Gaussian distribution fb(tb; B, A|ta) and thus is distributed as N(µb + ρ(ta −
µa), (1− ρ2)σ2) where µa = A, µb = B are the respective factors, σ is the mutual standard
deviation and ρ is the correlation coefficient. Notice that the conditional distribution is
a function of the experimental factor A and B and is dependent on ta. Therefore, under
our defined structure, both direct and indirect nonselective influence are present. Yet,
integrating over Ta = ta would leave Tb to be a function only of its variance and mean
parameters (σ2

a and µb), thus satisfying marginal selectivity. Therefore, we have another
instance of offset here. That is, a case of both direct as well as indirect nonselective influence,
yet overall marginal selectivity, is found in the end.

Finally, for this section, a brief excursion shows how the Dzhafarov conditional inde-
pendence conception of selective influence can be viewed as a case of offset with regard to
marginal selectivity. To conjoin the concept of conditional independence to our general line
of attack, let us write the critical conditional probability of the Sb duration on Ta in the con-
text of the former condition. It will not do serious harm to the generality of our inference to
assume that the random variable C is defined on the positive real line. Let us check the sta-

tus of indirect nonselective influence: fb(tb; B, A|ta) =
∫ ∞

0 fb(tb ;B,A|ta ,c) fa(ta ;A,B|c) fc(c)dc∫ ∞
0 fa(ta ;A,B|c)dc

. This

expression reveals that, in general, Tb given Ta = ta is not independent of ta or, equivalently,
Tb is a non-trivial function of ta, regardless of whether or not direct nonselective influence
is existent. How about the latter, that is, is fb(tb; B, A|ta) a function of A in general, after
integration over values of C = c, as opposed to indirect dependence through integration
of ta?

Apparently, even if fa(ta; A, B|c) = fa(ta; A|c) for all ta and even if fb(tb; B, A|ta, c) is
not a function of A, still in general, fb(tb; B|ta) can be a function not only of B but also of
A. We rewrite the above integral to facilitate the reader’s scrutiny with these restrictions:

fb(tb; B, A|ta) =
∫ ∞

0 fb(tb ;B|ta ,c) fa(ta ;A|c) fc(c)dc∫ ∞
0 fa(ta ;A|c)dc

. The reader will notice that fb(tb; B, A|ta) is a

function of both A as well as ta and therefore meets the requirement for offset (Definition 9).
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4. Canonically Shaped Distribution Interaction Contrasts and Marginal Selectivity

As observed in the introduction, an absolutely essential aspect of almost any dis-
cussion of selective influence is that of its implications for identification of psychological
structure and mechanisms and its own experimental testability. As also mentioned in the
introduction, the root of SFT via its leveraging of selective influence in experiments lies
in the original additive factors method as invented by S. Sternberg [15]. We have already
limned in the way in which his early notion of selective influence not only provided for
hundreds of studies testing for serial processing in mean RTs but instigated a deep and
massive evolution of the notion of that concept.

A key attendant axiom in almost all applications of selective influence in SFT since the
late 1970s is the added requirement that an experimental factor acts to order cumulative
distribution functions on processing times of the associated entity (e.g., a perceptual,
cognitive or motor subprocess involved in a task; see [23,27,28]). While the advent of
distribution ordering turned out to carry with it much more penetrating consequences for
system identification than did mean orderings alone, it is far less demanding than other
even more intense forms of ordering but putting more constraints on nature. For example,
an ordering of hazard functions implies the distributional ordering but not vice versa, and
a monotonic likelihood function implies the hazard ordering but also not in reverse [28].

The present section will provide new developments regarding the relationships of
distinct notions of selective influence on the canonical signatures of architecture recapped
below. For the authors, the place in the armamentarium of SFT that marginal selectivity
enjoys was especially intriguing. Candidly, we had long thought, without any proof
whatsoever, that it might be quite formidable in its consequences for systems identification,
particularly through the canonical classical SFT predictions. In the early stages of the
present theoretical developments, we had anticipated that this tenet would be false. It
simply seemed too coarse of a condition. As the story unfolds, we will find that the true
nature of marginal selectivity vis-a-vis the survivor interaction contrast (or equivalently,
the distributional interaction contrast, see below) predictions seems more complex and
subtle than we had anticipated, and the denouement is not yet complete.

At this point, we need to repeat once again for the general reader, the basic concept
of the double difference or so-called interaction contrast. Using only a finite number of
statistical functions, it is straightforward to implement with data. However, it turns out
to be highly useful in certain theoretical contexts, to utilize its continuous analogue, the
second order, mixed partial derivative. This tactic permits the immediate employment of
elegant tools from the calculus.

The mean interaction contrast (MIC; Figure 3) has been employed since its inception
in the 1960s to test for the presence of serial processing. If selective influence holds in
serial systems, then the MIC is predicted to be 0, irrespective of the attendant stopping
rule [15]. As long as the means are ordered through the experimental factors, even without
an ordering of the distributions themselves, this prediction is in force. However, even
at the mean response time level, other architectures necessitate more impactful means of
influence (e.g., [23]).

Definition 10. Mean Interaction Contrast.

MIC = [E(TLL)− E(THL)]− [E(TLH)− E(THH)], (1)

where L = low salience level and H = high salience level.
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Figure 3. MIC for serial systems, parallel exhaustive systems and parallel self-terminating system.

Next, it is required to recall the vital statistical function that differentiates various
stopping rules and architectures, the so-called survivor interaction contrast (SIC(t)). The
survivor function itself is straightforwardly defined as S(t) = 1− F(t) where F(t) is the
well-known cumulative distribution function as used above. That is, F(t) = P(T ≤ t).
Thus, interpreted at the level of F(t) and S(t), the faster the processing time, the larger
F(t) is and the smaller S(t) is for a given t. As formally defined in Definition 11, SIC(t) is
just a double difference of the survivor functions under distinct combinations of the two
experimental factors at different salience level, low (L) and high (H) [14].

Definition 11. Distributional Contrast Functions.
(a). The survivor interaction contrast: Let A, B be the experimental factors and write the

survivor function on the underlying processing times as SAB(t). Then, the survivor interaction
contrast function is defined as:

SIC(t) = [SLL(t)− SHL(t)]− [SLH(t)− SHH(t)], ∀t ≥ 0.
(b). The distribution interaction contrast: Using a similar notation as in (A), we can exhibit

the distribution interaction contrast (DIC(t)) as:

DIC(t) = [FHH(t)− FHL(t)]− [FLH(t)− FLL(t)] = −SIC(t), ∀t ≥ 0. (2)

Figure 4 shows the well-known signatures for the prototypical 1-direction serial
and parallel architectures with a conjunctive (AND, exhaustive) stopping rule under the
assumption of pure selective influence. Note that the total processing time of the system is
the sum of all stages for serial and is the maximum time for parallel.
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Figure 4. SIC(t)s simulated from a serial exhaustive system and a parallel exhaustive system with
the same set of parameters for the density functions of the sub-channel processing time.

Another highly beneficial tool from previous work, and as intimated earlier, is the sub-
stitution of second-order, mixed partial derivatives for the second-order, mixed differences
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(even used some by [14]). Basically, as intimated just above, we assume that what is going
on at the macro level extends in the limit to the local-level derivatives for well-behaved
processes. Thus, the signatures for the various architectures and their stopping rules follow
the qualitative properties of the finite differences and vice versa.

Before advancing to in-depth exploration of marginal selectivity, we pause to exhibit
a strong consequence of the Dzhafarov definition of selective influence (see Definition 6)
which will play an intriguing role in what follows.

Proposition 4. Single Signed Distribution Interaction Contrast. Consider any joint distribution
on Ta, Tb and any well-defined function of Ta, Tb, say R(Ta, Tb). Suppose pure selective influence
for the architecture and stopping rule produce R that is single signed over all values of Ta, Tb.
Under the Dzhafarov definition of selective influence, if the second order mixed partial derivative
(mixed partial difference) on R(Tb, Tb) is single signed with the same sign over Ta, Tb values for all
Dzhafarov mixing parameter C, then the same holds for the marginal distribution over C = c and
the canonical DIC(t) function is preserved.

Proof. Consider P(R(Ta, Tb) ≤ r; A, B|C = c) and then ∂2[R(ta ,tb ;A,B,c)]
∂A∂B ≥ 0 without loss of

generality. Then, the overall signature is the marginal,
∫ ∞
−∞

∂2[R(ta ,tb ;A,B,c)
∂A∂B dc ≥ 0 as well.

This rather obvious result has powerful consequences and immediately implies the
canonical predictions, under the Dzhafarov condition, for parallel systems. However, by
the same token, we will see that the absence of the constant sign bears portent for systems
identification as well. The theorems of Dzhafarov, Schweickert and Sung [45] cover cases of
distributional double differences which are not themselves single signed but by formulating
integrals of these are. However, we shall adduce some new theorems below which broaden
the spectrum of canonical DIC(t)s delivered through the Dzhafarov [39] condition.

Next, in order to explore the consequences of marginal selectivity for the signatures
of architectures cum stopping rules, it is helpful, if not obligatory, to be able to generate
compliant joint distributions without independence. As the reader may be persuaded by
such attempts, it can be taxing to come up with distributions with non-trivial dependencies
that do satisfy marginal selectivity.

Mercifully, a deus ex machina takes the stage in the form of copula theory. Copula
theory, as we will shortly see, does not mandate marginal selectivity, but it does offer a
rather crafty way of producing it, at least in parallel systems. Copula theory has become a
valuable strategy in applied mathematics areas such as finance, actuarial theory, reliability
engineering, turbulence and even medicine. It has recently been introduced into psychology
and cognitive science by H. Colonius and colleagues [46–48]. The Colonius doctrine
has contributed much in the way of rigorous theory and methodology to the field of
redundant signals research in general and of multi-sensory perception in particular. He
formulated powerful theorems regarding workload capacity comparing response times
when an observer is confronted with, say, one vs. several signals, and detection of any
determines a decision by assuming the marginal distributions remain invariant when
moving from one to several signals ([48]; see also [49]). This is tantamount to marginal
selective influence when the number of signals is interpreted as an experimental factor [36].
However, the usage to which he put copulas does not broach the strong vs. weak distinction.
In any event, we again repurpose copulas here in such a way as to help provide answers to
some of our critical issues, although not all derivations require their usage.

We have no space for even a tutorial here, but suffice it to say, this approach per-
mits the development of joint distributions with specified marginals. Let Ga(ta; A) be the
marginal cumulative distribution function for Sa and similarly for the other process, Sb,
and then by the provenance of copula theory, the joint cumulative distribution function
may be expressed as Pab(Ta ≤ ta, Tb ≤ tb; A, B) = Fab(ta, tb; A, B) = H[Ga(ta; A), Gb(tb; B)].
This result, known as Sklar’s theorem (e.g., see [50]), can be viewed as a generalization to
multi-dimensions of the so-called integral transform since the arguments of H can be inter-
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preted as random variables Ua, Ub each uniformly distributed on [0, 1] (see, e.g., [51]). The
dependency structure of the original joint distribution Pab is inherent in H. Conditions for
the existence of H are extremely weak and we shall make the further common assumption
that Pab is built upon a continuous joint density function. The marginals of H are naturally
just Ga and Gb, and the reader will observe that in the above formular, we have imposed
our rule that the marginal distributions conform to marginal selectivity a fortiori. This
constraint will be relaxed in some of what follows.

Recall that the distribution interaction contrast function for parallel models with
exhaustive processing is always greater than or equal to 0. The very next result makes good
use of copulas and might mislead the theorist into hoping for very great benefits with the
satisfaction of marginal selectivity. There are, indeed, substantial benefits but perhaps not
so all-encompassing as the theorist might wish.

The distinction between strong and weak marginal selectivity is instrumental in
Propositions 5 and 6.

Recall that the canonical mixed partial difference (or derivative) of the cumulative dis-
tribution function for exhaustive processing is greater than or equal to 0. The implications
from Proposition 4 are all to the good. The less appealing results emerge below.

Proposition 5. When Experimental Factors Affect the Joint Distribution of Parallel Exhaustive
Systems only Through the Marginal Distributions: The Case with Strong Marginal Selectivity.
Consider the class of joint parallel distribution functions.

(a). Every parallel system with a joint distribution whose copula indicates that the experimental
factors influence the distribution only through the marginals (strong marginal selectivity) predicts
that the second order mixed partial derivative of the joint distribution itself will be non-negative.

(b). Every parallel system enjoying strong marginal selectivity predicts that the second order
mixed partial derivative of the cumulative distribution on the maximum processing time will be
non-negative. Thus, this situation entails the canonical DIC function.

Proof. (a). First, construct the copula for the joint cumulative distribution of a 2-channel
parallel system: Gab(ta, tb; A, B). It can be expressed as H[Ga(ta; A), Gb(tb; B)]. Then,

∂2Gab
∂ta∂tb

=
∂2H

∂ta∂tb

=
∂2H

∂Ga∂Gb

∂Ga

∂ta

∂Gb
∂tb

= gab(ta, tb)

> 0 ( ∵ gab(ta, tb) is the actual joint probability density function of Ta and .Tb)

By hypothesis that the experimental factors only influence the distribution through

the marginals, ∂Ga
∂ta

and ∂Gb
∂tb

are > 0. Therefore, it must be that ∂2 Hab
∂Ga∂Gb

> 0. Again, use the
chain rule, we have

∂2Hab
∂A∂B

=
∂2Hab

∂Ga∂Gb

∂Ga

∂A
∂Gb
∂B

>0.

If the support is not the entire positive real line, then ∂2 Hab
∂A∂B = 0.

(b). Obvious.

The next corollary can be regarded as part B of the Proposition 5. We restate it to
emphasize its interpretation in terms of distributional contrast functions.



Mathematics 2022, 10, 1059 18 of 32

Corollary 1 (1). The second mixed partial derivative of the CDF: P(Ta ≤ t, Tb ≤ t; A, B) =

P(max(Ta, Tb) ≤ t) is ∂2GMAX(Tmax)
∂A∂B > 0.

Proof. Obvious.

In addition, the next corollary simply states the implied result for the finite DIC(t)
function.

Corollary 1 (2). The DIC(t)) for MAX(Ta, Tb) is

DIC(t) = [G(t, t; AH BH)− G(t, t; AH BL)]− [G(t, t; ALBH)− G(t, t; ALBL)] > 0, ∀t > 0.

Proof. Obvious.

The upshot is that the canonical DIC (or SIC) holds for any possibly dependent
parallel model that satisfies marginal selectivity and selective influence only works through
the marginal distributions.

The reader will espy that Proposition 5(a) establishes an even stronger result than
that for which we sought. Namely, the mixed partial differences are always positive (or 0)
even for the precise joint distribution function. Due to obscurations of processing times by
residual processes and the like, we do not usually have these available, but they might be in
some of Dzhafarov and colleagues’ designs (see, e.g., [52–54]) and other future extensions
such as the RT designs with two responses on every trial, as intimated earlier.

This is all to the good—strong marginal selectivity forces the canonical signature for
exhaustive parallel processing if the only locus where the experimental factors influence
speed is through the marginal distributions. We must confess pleasant surprise by this
finding. However, we soon discover that relinquishing that seemingly innocent constraint
unleashes destruction on the canonical signatures.

Proposition 6. When Experimental Factors Affect Joint Distributions in Ways Outside the
Marginals: The Case with Weak Marginal Selectivity.

Consider the class of joint parallel distribution functions.
(a). If the experimental factors satisfy only weak marginal selectivity, then it is possible that

canonical parallel predictions can fail.
(b) If weak marginal selectivity holds, then it may be that the canonical parallel predictions

still are in force.

Proof. (a). Prove with a counter example. If the canonical prediction on DIC holds for
the parallel system when experimental factors affect the joint distribution, then for any
Hab(ta, tb; A, B) which is monotone in A and B (and, of course, also in ta and tb), its second
mixed partial derivative must be > 0.

The Gumbel’s copula ([55], Vol. 2) is:

Cα(Ga, Gb) = GaGb[1 + α(1− Ga)(1− Gb)], ∀0 ≤ Ga, Gb ≤ 1, |α| ≤ 1, (3)

where α is some function of A and B.
We derived that:
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∂2Ha,b(ta, tb; A, B)
∂A∂B

=
∂α(A, B)

∂A∂B
D(Ga, Gb)

+
∂α(A, B)

∂A
∂D(Ga, Gb)

∂Gb

∂Gb
∂B

+
∂α(A, B)

∂B
∂D(Ga, Gb)

∂Ga

∂Ga

∂A

+
∂2Cα(Ga, Gb)

∂Ga∂Gb

∂Ga

∂A
∂Gb
∂B

,

where D(Ga, Gb) =
∂Cα(Ga ,Gb)

∂α .
Let us have the experimental factors influence both the joint and the marginals by tak-

ing α(A, B) =
√

A + B, Ga(ta; A) = 1− e−θ(1+A)ta , Gb(tb; B) = 1− e−θ(1+B)tb . Following

the derived formula for ∂2 Ha,b(ta ,tb ;A,B)
∂A∂B , we have :

∂2Ha,b(ta = t, tb = t; A, B)
∂A∂B

=
−1

4(A + B)3/2 GaGb(1− Ga)(1− Gb)

+
1

2(A + B)1/2 Ga(1− Ga)(1− 2Gb)θt(1− Gb)

+
1

2(A + B)1/2 Gb(1− Gb)(1− 2Ga)θt(1− Ga)

+
∂2C√a+b(Ga, Gb)

∂Ga∂Gb
θ2t2(1− Ga)(1− Gb),

where ∂2Cα(Ga ,Gb)
∂Ga∂Gb

≥ 1− α
4 , ∀ α ≥ 0.

If a+ b→ 0, then ∂2 Ha,b(ta=t,tb=t;A,B)
∂A∂B → −∞. If a+ b = 1 and θ → ∞, then ∂2Cα(Ga ,Gb)

∂Ga∂Gb
≥

3
4 and ∂2 Ha,b(ta=t,tb=t;A,B)

∂A∂B → +∞. Thus, the second mixed derivative ∂2 Ha,b(ta=t,tb=t;A,B)
∂A∂B has

a sign inversion with difference values of experimental factors A and B, which violates the
canonical prediction on parallel systems.

(b). Prove with an example. Let us set a parallel exhaustive system whose joint
cumulative distribution follows a Gumbel’s distribution with the joint part α(A, B) = B

A :

P(Ta ≤ t, Tb ≤ t; A, B)

=Ga,b(t; A, B)

=1− e−At − e−Bt + e−At−Bt− Bt2
A

In such a system, the joint distribution is influenced by both experimental factors, yet
the marginals are still influenced by their pertinent factors. That is, the weak marginal
selectivity holds. As shown in Figure 5, the DIC(t) produced from this system follows the
canonical pattern of the parallel exhaustive system.

This concludes the proof.

The two foregoing theorems imply that if factors influence a parallel joint distribution
only through the marginals and strong marginal selectivity is present, then all is well but
may not be if the influence spreads beyond the marginals as in weak marginal selectivity.

We next have a corollary regarding implications for the mean interaction contrast (MIC).
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Figure 5. The DIC(t) estimated from a parallel exhaustive system that satisfies weak marginal
selectivity with AL = 3, AH = 12, BL = 1, BH = 4.

Corollary 2. Implications of where the Experimental Factors Affect the Joint Distribution for Mean
Interaction Contrast Statistics in Exhaustive Parallel Processing.

Consider the class of parallel joint distribution functions.
(a). If the conditions in Proposition 5 are met, that is, the factors only influence the distributions

through the marginal distributions, then the mean interaction contrasts are canonical: MIC < 0.
(b). If the conditions in Proposition 6 are met, that is, the factors influence the joint distribution

outside of the marginal distributions, then the canonical mean interaction contrast sign may also be
violated.

Proof. (a). First, recall that the mean processing time is just the integral from 0 to ∞
of the survivor function: E(T) =

∫ ∞
0 S(t)dt. Moreover, as shown in Equation (2), the

distributional interaction contrast is simply the negative of the survivor interaction contrast:
DIC(t) = −SIC(t). Then, as proved that the DIC(t) is canonical and single valued under
the condition of Proposition 5, so in the SIC(t). Thus, the mean interaction contrast’s
canonical nature ensues: MIC < 0.

(b). Prove with a counter example. Let us construct the parallel joint cumulative
function following Gumbel’s distribution (see Equation (3) in the proof of Proposition 6)
by having AL = 0.005, AH = 0.01, BL = 0.1, BH = 0.8 and θ = 5. Then, compute the MIC
following Equation (1) and the result is positive (Figure 6), which contradicts the canonical
prediction on MIC for parallel exhaustive systems.
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Figure 6. Resulted MIC from the counter example of the proof for Corollary 2(1).

Now, the previous two propositions and their corollaries not only specify a range
of when parallel systems can and cannot predict canonical DIC functions, they tell us
how to formulate models which do vs. do not obey marginal selectivity. We can take
note especially from Corollary 2(1) that even the MICs are not assured to be proper if the
conditions in Propositions 1A and 1B are violated.
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How do these latest results relate to the Dzhafarov definition? We include known
results from Dzhafarov and colleagues for completeness sake.

Proposition 7. Relationship of how the Experimental Factors Affect the Joint Distribution and
the Dzhafarov Definition of Selective Influence in Parallel Systems. Consider the class of parallel
systems with an exhaustive stopping rule. (a). The Dzhafarov definition of selective influence
implies strong marginal selectivity. (b). Strong marginal selectivity does not imply the Dzhafarov
condition. (c). The Dzhafarov condition does not imply weak marginal selectivity. (d). Weak
marginal selectivity does not imply the Dzhafarov condition.

Proof. (a). The proof that marginal selectivity is forced by the Dzhafarov definition of
selective influence ([33]) in fact entails the strong version can be seen through the fact that
the latter only allows factor effects through the pairwise combining of the random variable
with a factor—there is no other accompanying factorial influence.

(b). Observe that lots of joint distributions in copula form may have dependencies not
expressed simply via conditional independence.

(c). If this was not the case, then absence of weak marginal selectivity would imply
falsity of the Dzhafarov condition, but we know this is not true because strong marginal
selectivity and weak marginal selectivity are incompatible.

(d). If weak marginal selectivity implied the Dzhafarov condition then weak marginal
selectivity would imply canonical DICs, but we know this is wrong.

At first glance, one might think that Proposition 7 contradicts Proposition 4. However,
the insertion of the extra perturbations caused by influences of factors on non-marginal
aspects of the joint distributions, in fact, violates the original terms of Dzhafarov’s definition.

Now that we have valuable information concerning parallel systems, what is the
situation for serial systems? At this point, we have not been able to effectively utilize
copula theory for assistance with serial models. Compared with certain other topics, even
independent serial processing (thereby fomenting convolutions) has not been much treated,
and we are not aware of any results regarding stochastically dependent serial events in
relation to selective influence. We have been able to discover some facts as follows, but the
story is far from complete as we will learn.

Because the canonical signature for exhaustive serial systems is not single signed
but rather guarantees an odd number of crossovers (see [56]), we fully expected to find
that even in the presence of the Dzhafarov ([39]) condition, we could find violating DIC
functions. We were rather astonished to discover that all 1-direction serial systems that obey
the Dzhafarov dictum perforce generate canonical DIC signatures. The following result
goes beyond previous theorems regarding Dzhafarov’s definition of selective influence.

Proposition 8. 1-Direction Serial Systems and the Dzhafarov Definition of Selective Influence.
Consider the class of 1-direction, two-stage serial systems which meet the Dzhafavov ([39]) definition
of selective influence. Then, the DIC will be canonical, that is, the number of crossovers will be odd.

Proof. Following Dzhafarov’s definition, the joint cumulative function of T of the 1-
direction serial systems is: Fab(t; A, B, C = c) =

∫ t
0 Fb(t − ta; B|ta, C = c) fa(ta; A|C =

c) fc(C = c)dta.
Then, the DIC(t) is:
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DIC1-direction, serial(t)

=
∫ t

0
Fb(t− ta; BH |ta, c) fa(ta; AH |c) fc(C = c)dta −

∫ t

0
Fb(t− ta; BH |ta, c) fa(ta; AL|c) fc(c)dta

−
∫ t

0
Fb(t− ta; BL|ta, c) fa(ta; AH |c) fc(C = c)dta +

∫ t

0
Fb(t− ta; BL|ta, c) fa(ta; AL|c) fc(c)dta

= fc(c)
∫ t

0
[Fb(t− ta; BH |ta, c)− Fb(t− ta; BL|ta, c)][ fa(ta; AH |c)− fa(ta; AL|c)]dta.

Since fc is a density function for C, fc(c) > 0. By definition, Fb(t − ta; BH |ta, c) −
Fb(t− ta; BL|ta, c) > 0. When t < t∗ where t∗ is the crossover point of the density functions,
fa(ta; AH |c)− fa(ta; AL|c) > 0. Thus, for small t that 0 < t < t∗, DIC(t) must be positive.
In addition, following the proof for Proposition 2.1 in H. Yang et al. ([56]), we can show
that when t→ ∞,

∫ t
0 [Fb(t− ta; BH |ta, c)− Fb(t− ta; BL|ta, c)][ fa(ta; AH |c)− fa(ta; AL|c)]dta

must approach 0 from the negative side. Therefore, the DIC1-direction, serial(t) of the systems
satisfying Dzhafarov’s definition on selective influence must be a function that is positive
for small ts and converges to 0 from the negative side for t → +∞, for every value of c,
which implies that it must have an odd number of crossovers.

Any function which starts negative and ends positive must have an odd number of
crossovers. To see this is valid for the present circumstance, recall that the Dzhafarov
definition of selective influence basically postulates a probability mixture on the pertinent
density functions. Each one of these starts with a positive departure so the first one to be
visible must also. The reverse holds in the sense that all densities in the mixture end with
its functions being negative. So, will also be the last to appear.

Together with Proposition 5, we have the pleasant result that the Dzhafarov selective
influence condition ensures that both parallel and serial systems will evince canonical
DIC signatures, as long as pernicious influences do not arise via affecting aspects of the
joint (parallel) distributions outside of the marginal. Figure 7 takes an earlier example of a
1-direction serial system which obeys the Dzhafarov definition and demonstrates that its
DIC function is canonical.
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Figure 7. DIC(t) of a 1-direction serial exhaustive system that obeys the Dzhafarov’s definition.

The next derivation, featured in Proposition 9, shows that marginal selectivity is
sufficient to evince canonical MICs with serial exhaustive processing.

Proposition 9. Marginal Selectivity and 1-Direction Serial Systems. If even weak marginal
selectivity is in force, regardless of satisfaction of the Dzhafarov condition, mean interaction contrast
is canonical: MIC = 0.

Proof. We provide the proof for exhaustive processing.
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For exhaustive systems, the mean RT is:

E(T) = E(Ta + Tb)

=
∫ ∞

0

∫ ∞

0
(ta + tb) fa(ta; A) fb(tb; B, A|ta)dtadtb

=
∫ ∞

0
ta fa(ta; A)dta +

∫ ∞

0
tb fb(tb; B)dtb ( ∵ marginal selectivity)

= E(Ta; A) + E(Tb; B).

Taking the factorial combinations of AL, AH , BL, BH and figuring the double difference
clearly yields:

MIC

=E(Ta; AL) + E(Tb; BL)− [E(Ta; AH) + E(Tb; BL)]

−[E(Ta; AL) + E(Tb; BH)] + [E(Ta; AH) + E(Tb; BH)]

=0

So, weak marginal selectivity, a rather coarse type of influences, to say the least, is all
it takes to guarantee a proper mean interaction contrast result in a 1-direction serial system.
Naturally, strong marginal selectivity will also do the trick, but we do not bother to make
that a formal statement.

Our final question for this study is still an enigma: Does strong marginal selectivity
imply canonical DICs in exhaustive serial systems? We do not know the answer. On the
one hand, even strong marginal selectivity would seem to be incapable of forcing canonical
DICs. Why should a condition where the dependencies are integrated out imply something
formidable on a generalized convolution (i.e., the sum of the two random variables but
with stochastic dependence) of the joint distribution? Although it certainly did with the
class of exhaustive parallel systems, the sum function appears less directly affected, for
example, than in the parallel models (recall that just letting Ta = Tb = T altered the joint
distribution into the distribution on the maximum function). In addition, the relative ease
with which Townsend and R. Thomas ([37]) came up with dependencies that disrupted
even the canonical MICs would not seem to suggest very robust DICs.

On the other hand, we have analyzed and performed computations with numerous
dependent serial systems that obey strong marginal selectivity but that (so far) produce
canonical DICs. Some of the classic distributions in copula form, and made to satisfy
strong marginal selectivity, form impressive examples. In addition, we do have our earlier
example from Proposition 1A(c) which indicates a felicitous type of offset and evinces
proper DICs. In fact, we begin our final exploration by exhibiting the DICs for several
parameter settings of this rather classic example of offset, in Figure 8. In each of these cases,
as predicted, the MICs equal 0.

Next, we outline our reasoning with respect to features of what a counter example
(i.e., possessing strong marginal selectivity but failing to reveal a canonical DIC) might
logically possess and end with an example discussing what happens when we try that with
a modification of a classic copula-interpreted distribution. It ends in failure, but perhaps a
reader may see their way through to a counterexample or even to a proof to the contrary.
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Figure 8. Estimated DIC(t) from the example 1-direction serial exhaustive system in
Proposition 1A(c) with AL = 3, AH = 8, BL = 4, BH = 6.

One way in which to try to perturb canonicality would be to simply predict an incorrect
MIC. However, that is a non-starter since, as already demonstrated, a canonical MIC in
the case of seriality (and specifically here, exhaustive seriality) is guaranteed by strong
marginal selectivity. To more readily appreciate the logic, consider first the special version
where we can separate the first Sa density from that for Sb and assume direct selectivity on
fa(t). In addition, we start by assuming no direct nonselective influence of A on Sb. We
know that this cannot end with marginal selectivity.

First, set P(Ta = ta, Tb ≤ tb; A, B) = fa(ta; A)Fb(tb; B|ta). Next, we transform this to
the conditional convolution: P(Ta + Tb ≤ t; A, B) =

∫ t
0 fa(ta; A)Fb(t− ta; B|ta)dta and then

DIC(t) =
∫ t

ta=0[ fa(ta; AH)− fa(ta; AL)][Fb(t− ta; BH |ta)− Fb(t− ta; BL|ta)]dta.
Observe that the second difference in the integral is always positive. In addition,

in order to produce Fa(ta; AH) > Fa(ta; AL) for small ta, the first difference must also be
positive. Under positive circumstances, this ensures that the DIC begins its trajectory as
a positive function. We believe this type of machinery has to be overcome if a counter
example were to be forthcoming.

Of course, when we insert direct nonselectivity in the second stage here:

DIC(t) =
∫ t

ta=0
fa(ta; AH)[Fb(t− ta; AH , BH)− Fb(t− ta; AH , BL)]

− fa(ta; AL)[Fb(t− ta; AL, BH)− Fb(t− ta; AL, BL)]dta

the expression becomes even more complicated.
Now, we currently know of no algorithm to even produce marginal selectivity from

such expressions, although we do know that both indirect as well as direct nonselectivity
must be present to induce marginal selectivity.

One natural tactic, given the success with copulas with parallel processing, might be
to take such joint distributions but now interpret the random variables as serial duration
rather than parallel processing times. We can then convert the expression to a generalized
convolution as just above. One starts with the joint distribution and differentiates with
regard to ta. Then, substitute t− ta for tb and integrate the expression (integrand) over ta
from 0 to t.

This approach possesses the advantage of generating a number of cases with automatic
marginal selectivity characteristics. Nonetheless, so far, we have not been able to find a
counterexample or to use the copula technique to find a proof that even strong marginal
selectivity entails canonical DIC functions. Yet, all our considered examples have turned
out to engender canonical DICs.

We now offer an example endowed with machinery that we had hoped might perturb
the initial positivity alluded to above. Basically, we must transform the general expression
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P(Ta ≤ ta, Tb ≤ tb; A, B) to P(Ta = ta, Tb ≤ tb; A, B) via differentiation with respect to ta
and then to convert to our generalized convolution and taking the double difference.

DIC(t) =
∫ t

0
{[P(Ta = ta, Tb ≤ t− ta; AH , BH)− P(Ta = ta, Tb ≤ t− ta; AH , BL)]

− [P(Ta = ta, Tb ≤ t− ta; AL, BH)− P(Ta = ta, Tb ≤ t− ta; AL, BL)]}dta

The present copula distribution is slightly modified from the classic Gumbel’s bivariate
exponential distribution (e.g., see [48]). Set:

P(Ta ≤ ta, Tb ≤ tb; A, B) = 1− e−Ata − e−Btb + e−Ata−Btb−q(A,B)tatb ,

where 0 ≤ q(A, B) ≤ 1.

Then, we take the derivative of the joint CDF with respect to ta to calculate P(Ta =
ta, Tb ≤ tb; A, B):

∂P(Ta ≤ ta, Tb ≤ tb; A, B)
∂ta

= P(Ta = ta, Tb ≤ tb; A, B)

= Ae−Ata + (−A− q(A, B)tb)e−Ata−Btb−q(A,B)tatb

The cumulative distribution of the 1-directional serial exhaustive system: P(Ta + Tb ≤
t; A, B) is calculated by replacing tb with t− ta and integrating P(Ta = ta, Tb ≤ tb; A, B)
with respect to ta from 0 to t:

P(Ta + Tb ≤ t; A, B)

=
∫ t

0
{Ae−Ata + (−A− q(A, B)(t− ta))e−Ata−B(t−ta)−q(A,B)ta(t−ta)}dta

We now try to find a counterexample by countering the earlier tilt toward a DIC. We
do this by searching for a function q(A, B) that satisfies its constraint but tends to lessen
the early density’s (ta = 0 + ε, when ε is small) trend to be larger for AH than AL. We
performed calculations of DIC assuming, say, q(A, B) = B

An such that B
An ∈ [0, 1]. Several

of these are given in Figure 9. Clearly, this track did not pay off.
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Figure 9. Estimated DIC(t)s from a 1-direction serial exhaustive system having Gumbel’s bivariate
exponential distribution where q(A, B) = B

An . AL = 3, AH = 12, BL = 1, BH = 4.

Appendix B presents other distributions that possess well-know copula form (and
thereby immediately satisfy marginal selectivity). Putting them into proper form of 1-
direction serial systems finds that they also induce canonical DICs. We still suspect there
must be a counterexample there. Two other examples based on the copula strategy are
offered in the appendix. Perhaps one or more readers will solve this puzzler.

5. Summary and Discussion

Our introduction outlines some of the previous history and scientific philosophy
regarding selective influence. We began with the apparently indisputable claim that any
theoretical venture in psychology that goes beyond pure description or in a quantitative
sense, curve fitting, must impart some notion of what we have called the “principle of
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correspondent change”. The latter, of course, includes symmetry and conservation laws of
modern physics which can arguably be referred to as the linchpins of the science.

Due to the inextricable relationship of selective influence and mental architectures, we
began our more rigorous developments with definitions of canonical serial and parallel
systems (see Definitions 1 and 2). On seriality, we confine ourselves to “1-direction serial
systems”, which assume a single processing order, say, “Sa → Sb”. We believe this tactic
helps unveil essential structures and serial-parallel distinctions in a reasonably clear and
cogent fashion. When in the realm of initial forays into complex territories, we have
found this approach to be useful, as in the investigation of DICs (recall, distributional
interaction contrasts) for the number of channels or stages greater than two. Multi-order
serial processes, self-terminating stopping rules (e.g., single-target, self-terminating and
minimum time) and more-than-two subprocesses in the system (see, [56]) await extension
of the present results.

The groundbreaking concept of selective influence was first formally proposed by S.
Sternberg ([15]). The formulation indicated that if experimental factors selectively influence
two or more successive and temporally non-overlapping processing durations, then the
mean response times would be an additive function of those experimental factors. Our next
definition (Definition 3) captures what we now refer to as Sternbergian selective influence.
We move to our definition (Definition 4) of “pure selective influence” which is more general
than the Sternbergian version in that it pertains to either a parallel or a serial architecture
but, unlike the latter, explicitly assumes stochastic independence.

Perturbations caused by nonselective influences come in two major forms, direct and
indirect, which are defined in Definition 5. Direct nonselective influence occurs when
a probability distribution on processing time is an explicit, deterministic function of the
“other” factor acting as parameter. Indirect nonselective influence is propagated by a process
duration being stochastically dependent on the duration of a separate process.

When we give up pure selective influence, it might seem as if the proverbial doors
to perdition itself might be opened. However, a robust generalization of the conception
of selective influence which permits a type of stochastic dependence was proposed by
Dzhafarov ([39]). We refer to this as “conditional independence selective influence” (Def-
inition 6). We reviewed some of what is known about its ability to expose architecture
and stopping rules and prove some novel ones. The reader is referred to the numerous
references to his and his colleagues’ work for detail.

Yet another species of selective influence comes in the guise where the marginal
distributions are only functions of the “proper” factor and are irrespective of potential
nonselectivity of either the direct or indirect sort (Definition 7). The basic intuition is
that, although the processes may be stochastically dependent and possibly even subject to
direct nonselectivity, somehow the pernicious influences average out. It was lurking in the
background at least back to Townsend ([23]) and, as admitted earlier in the present study,
we incorrectly (and implicitly) believed if it held, then canonical DICs would perforce
always be propagated. Subsequently, it began to be explicitly named “marginal selective
influence”. When more than two subprocesses are present, Dzhafarov ([39]) introduced
a more strict definition of marginal selectivity that implies the version for n = 2. It turns
out that there is another way to further deconstruct marginal selectivity which can impact
systems identification as exhibited in Definition 8. Definition 8 breaks down the concept
of marginal selectivity into two separate and mutually exclusive cases, strong vs. weak
marginal selectivity. Marginal selectivity in either guise is not ordinarily accessible in
standard RT experiments. However, there exist designs where it can itself be assessed
(e.g., [52,54]). Its relationships with other forms of selectivity and structural features turn
out to be intriguing as well.

Returning to the concept of indirect nonselectivity, Dzhafarov ([38]) investigated a
number of fundamental properties and consequences of this concept (i.e., nonselectivity
caused through stochastic dependence). However, it remained unknown as to its relation-
ship to marginal selectivity. Proposition 1A and 1B establish how it can be satisfied. The
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most intriguing aspect is that it can still be true even if both indirect and direct nonselective
influence hold. This ability of direct nonselective influence to compensate for indirect
perturbations is then defined as “offset” (Definition 9).

Propositions 1A and 1B limn in conditions that suffice for marginal selectivity in serial
and parallel systems. Propositions 2A and 2B do the same regarding failure. Sealing the
importance of offset in allowing (though not forcing) marginal selectivity is discovered in
the portion of Proposition 2A(c), which proves that, lacking offset and in the presence of
indirect nonselective influence, marginal selectivity is impossible. An immediate inference
deriving from Proposition 2A and 2B comes with Proposition 3: Since the Dzhafarov
definition of selective influence implies marginal selectivity, without offset but with indirect
nonselective influence, the Dzhafarov condition must fail.

After deliberation and explication through more examples comes the inevitable issue
of the impact of all these results on identification of architecture, the backbone of systems
factorial technology ([14]). The next section ensues with reminders of the foundational
definitions of the double difference statistics which, under proper conditions of selective
influence, permit such identification. These form the distinguishing characteristics of
the mean interaction contrast (MIC) and the much more potent distributional interaction
contrast (DIC or its complement, survivor interaction contrast, SIC). These remind the
reader in Definitions 10 and 11.

We consider that the qualitative features of the architecture (and the pertinent) stop-
ping rule predicted under pure selective influence to be characterized by the term “canon-
ical”. For instance, under pure selective influence, exhaustive parallel systems produce
survivor interaction contrasts that are always negative ([14]). Exhaustive serial systems’
survivor interaction contrasts start negative, cross the abscissa an odd number of times and
end positive ([56]) and so on.

Proposition 4 states the fact employed earlier by Dzhafarov, Schweickert and Sung ([45])
that if the DIC is single valued, then the Dzhafarov definition of selective influence pre-
serves the canonical DIC signature. In the case of some architectures, integration was called
upon by these authors to produce the single signed property. Although very useful, this
device can also bring forth more DIC mimicking of signature. We revisit our new theorem
on serial exhaustive processing below.

As acknowledged in the earlier text, we had, for a long spell, supposed that marginal
selective influence would force canonical DIC functions. One of the stark and surprising
outcomes of the present theoretical enterprise was the finding that this belief might not be
universally valid. On the one hand, we discovered for exhaustive parallel processing, with
marginal selectivity and the imposed condition, that factors influence the joint distributions
only through the marginals, then canonical results do indeed emerge. That is, strong marginal
selectivity is well named. Yet, if the factors can exert influence in ways outside the marginals
as with weak marginal selectivity, there can be (and probably usually will be) failure of the
classical predictions. These findings are captured in Propositions 5 and 6. These discoveries we
made possible through the use of copula theory, introduced into mathematical psychology by
Colonius ([46–48]). Presently, we have not found a path to their exploitation with serial systems
excepting for the means.

Proposition 7 explores the relationships of the two tiers of marginal selectivity to the
Dzhafarov ([39]) definition of selective influence. Moving on to serial systems, we observed
that the earlier Dzhafarov, Schweickert and Sung ([45]) results did not include the canonical
serial predictions, perhaps because these are not single valued DIC functions. We frankly
expected that the canonical serial predictions would therefore not be valid even when the
Dzhafarov condition was in force. Therefore, we were surprised to espy a simple proof
that exhaustive serial systems enjoying selective influence of the Dzhafarov variety would
indeed effectuate the canonical signature. This is Proposition 8.

A final fairly patent result may also be viewed as a partial, if weak, justification for our
earlier belief in the impact marginal selectivity can have on system identifiability. Namely,
marginal selectivity does imply the canonical MIC result for exhaustive serial systems,
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namely MIC = 0. This statement partly, but only partly, helps justify our earlier belief in
the force of marginal selectivity.

We finally investigated the linkages of marginal selectivity and distributions on the
serial sum of times in serial exhaustivity, with very minor success. We trust that future
work by mathematical psychologists can cut the Gordian knot on this one.

The seemingly simple unadorned notion of selective influence has turned out to be
rather more complex and multifaceted than perhaps earlier appreciated. We now advocate
for more of a rich, multi-tiered and not necessarily linearly ordered-by-implication set of
concepts. Various types of influence may come to be most appropriate or observable in
somewhat distinct circumstances. We look forward to further advances in this quest in the
near future.
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Appendix A. Proposition 2A(c) in the Finite Case

All of our own previous theoretical work and almost all of the others’ theoretical
and empirical applications of SFT to response times have assumed continuous densities.
However, some investigators have engaged discrete probability distributions in various
venues (e.g., see a number of these in the review by [57]; see also [58]). The following
offers a proof of Proposition 2A(c) in the finite case. Readers with a background in linear
algebra may also find the following demonstration more intuitive. We also lay out the
steps in even more detail. The greater strength lies in the fact that the discrete settings
permit well-behaved inverses under general conditions. Inverse functions will exist under
analogous conditions in continuous function space, but they themselves may not be well
behaved (e.g., continuous almost everywhere, etc.). We assume non-degenerate probability
mass distributions and effective action of the factors, just as before.

Proposition A1. In the 1-directional serial systems, suppose the dependent random variables
Ta and Tb take on finite set of n distinct real number values, Ta = {ta1 , ta2 , · · · , tan−1 , tan} and
Tb = {tb1 , tb2 , · · · , tbn−1 , tbn}. Indirect nonselective influence is present but not direct nonselective
influence, so that fa(tai ; A, B) = fa(tai ; A) for all i and fb(tbj

; A, B|tai ) = fb(tbj
, B|tai ) 6=

fb(tbj
; B) for all i, j. Note that mathematically, we could prove the more general result for Lebesgue

integrable functions, and then specialize, in the form of a corollary, the finite result but here we
pursue the opposite course to optimize comprehensibility.

Further, assume that there exist n distinct values for A = {A1, A2, · · · , An−1, An} and
B = {B1, B2, · · · , Bn−1, Bn} and that all functions are non-trivial functions of their independent
variables. Finally, assume that the square matrix operator:

Λn×n =

 fa(ta1 ; A1) fa(ta2 ; A1) · · · fa(tan−1 ; A1) fa(tan ; A1)
...

...
. . .

...
...

fa(ta1 ; An) fa(ta2 ; An) · · · fa(tan−1 ; An fa(tan ; An)


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is nonsingular. Moreover, consider the vector < fb(tbj
; B|tai ) >1×n where j is fixed at some

j = 1, 2, · · · , n− 1, n and i varies for each fixed j over i = 1, 2, · · · , n− 1, n. Then, marginal
selectivity is impossible.

Proof. First, observe that ∑n
j=1 fa(taj ; Ai) = 1 for each i, so that Λn×n < 1, · · · , 1 >T

n= 1n×1.
This implies that < 1, · · · , 1 >T

n is an eigenvector of Λ corresponding to eigenvalue 1 for
Λn×n. This implies:

Λ−1
n×n < 1, · · · , 1 >T

n=< 1, · · · , 1 >T
n (A1)

Next, observe that:

Λn×n < fb(tbj
; B|tai ) >

T
n

=


fa(ta1 ; A1) fb(tbj

; B|ta1) + fa(ta2 ; A1) fb(tbj
; B|ta2) + · · ·+ fa(tan ; A1) fb(tbj

; B|tan)

fa(ta1 ; A2) fb(tbj
; B|ta1) + fa(ta2 ; A2) fb(tbj

; B|ta2) + · · ·+ fa(tan ; A2) fb(tbj
; B|tan)

...
fa(ta1 ; An) fb(tbj

; B|ta1) + fa(ta2 ; An) fb(tbj
; B|ta2) + · · ·+ fa(tan ; An) fb(tbj

; B|tan)



=


fab(ta1, tbj

; A1, B) + fa,b(ta2, tbj
; A1, B) + · · ·+ fab(tan , tbj

; A1, B)
fab(ta1, tbj

; A2, B) + fa,b(ta2, tbj
; A2, B) + · · ·+ fab(tan , tbj

; A2, B)
...

fab(ta1, tbj
; An, B) + fab(ta2, tbj

; An, B) + · · ·+ fab(tan , tbj
; An, B)



=


∑n

m=1 fab(tam, tbj
; A1, B)

∑n
m=1 fab(tam, tbj

; A2, B)
...

∑n
m=1 fab(tam, tbj

; An, B)


Now, let us assume that the indirect selectivity also holds so that marginal selectivity

satisfies. This means that: ∑n
m=1 fa,b(tam, tbj

; Ai, B) = fb(tbj
; B), ∀j = 1, 2, . . . , n and B and

notice that fb(tbj
; B) are identical across different Ai.

Then, it follows that:

Λn×n < fb(tbj
; B|tai ) >

T
n = fb(tbj

; B) < 1, · · · , 1 >T
n

Λn×n


fb(tbj

; B|ta1)

fb(tbj
; B|ta2)
...

fb(tbj
; B|tan)


n

= fb(tbj
; B) < 1, · · · , 1 >T

n


fb(tbj

; B|ta1)

fb(tbj
; B|ta2)
...

fb(tbj
; B|tan)


n

= fb(tbj
; B)Λ−1

n×n < 1, · · · , 1 >T
n , (substitute with Equation (A1))


fb(tbj

; B|ta1)

fb(tbj
; B|ta2)
...

fb(tbj
; B|tan)


n

=


fb(tbj

; B)
fb(tbj

; B)
...

fb(tbj
; B)


n

Following that, we find the implication that if marginal selectivity holds, fb(tbj
; B|tai ) =

fb(tbj
; B), ∀i, j = 1, 2, . . . , n and B.
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Hence, the degenerate constraint is found that if fb(tb; B) cannot depend on value of
A, then the probability density for any tbj

cannot be dependent on ta. Therefore, marginal
selectivity is impossible if A, and ta are effective.

Appendix B. DICs Simulated from Two 1-Directional Serial Exhaustive Systems Using
the Copula Strategy

The example is constructed from the 1-directional serial exhaustive systems that have
the Farlie–Gumbel–Morgenster (FGM) bivariate cumulative distribution (see [48], p. 259):

P(Ta ≤ ta, Tb ≤ tb; A, B)

=Fa(ta; A)Fb(tb; B)α{[1− Fa(ta; A)][1− Fb(tb; B)]}

We set the marginals Fb(ta) = 1− e−Ata and Fb(tb) = 1− e−Btb , which satisfies the
marginal selectivity. Then, take the partial derivative of the CDF with respect to ta:

P(Ta = ta, Tb ≤ tb; A, B)

=
∂P(Ta ≤ ta, Tb ≤ tb; A, B)

∂ta

=− Aαe−Ata−btb(1− e−Ata)(1− e−Btb)

+ Ae−Ata(1− e−Btb)(1 + αe−Ata−Btb)

The CDF of the total processing time of the system: P(Ta + Tb ≤ t; A, B) is obtained
by replacing tb with t− ta and integrating it with respect to ta from 0 to t. The simulated
DIC is shown in Figure A1 and MIC = 0 for all the cases.

D
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Figure A1. Estimated DIC(t)s simulated from a 1-direction serial exhaustive system having FGM
cdf with different α values. AL = 3, AH = 12, BL = 1, BH = 4.
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