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Abstract: In this paper, we introduce a general family of distributions based on Whittaker function.
The properties of obtained distributions, moments, ordering, percentiles, and unimodality are studied.
The distributions’ parameters are estimated using methods of moments and maximum likelihood.
Furthermore, a generalization of Whittaker distribution that contains a wider class of distributions is
developed. Validation of the obtained results is applied to real life data containing four data sets.

Keywords: Whittaker function; confluent hypergeometric series; Whittaker distribution; generalized
Whittaker distribution

1. Introduction

There is no single definition of “special functions”, as the term has been used for a
variety of functions. They are important to many mathematicians, such as mathematical
analysis, functional analysis, applied mathematics, and distribution theory. Such func-
tions can be written as a summation or an integration. Examples include the relatively
exponential, gamma, Bessel, hypergeometric, and Whittaker functions. For more instances
of special functions, see [1–3]. Most of these functions are non-negative and finite over a
certain range, and thus can be used to define probability distributions. Typical examples
are the Poisson, gamma, and Bessel distributions.

There was an early interest in special functions in the theory of distribution. This
included studies by [4,5], who introduced Bessel function distributions of types I and II. The
exact distribution of the product of two independent generalized gamma variables with the
same shape parameters using the modified Bessel function of the second kind was given
by [6]. A power series distribution generated by the first type of modified Bessel function
has been studied [7]. The generalized beta of the first and second kinds of distribution was
considered by [8]. The Kummer-beta distribution in the problem of common value action,
which features confluent hypergeometric functions, was defined [9]. The type I distribution
of the inverted hypergeometric function that includes a Gaussian hypergeometric function
is obtained [10]. A generalized Laplacian distribution using the modified Bessel function
of second kind has been introduced [11]. The product distribution of two independent
random variables featuring the Kummer-beta distribution was obtained by [12] using a
confluent hypergeometric series of a two-variable function. The distribution of the product
of two independent random variables, beta type II (beta prime) and beta type III, featuring
the hypergeometric function of two variables is derived [13]. The distribution of the
difference between independent gamma random variables with different shapes and scale
parameters, called the bilateral gamma, is introduced [14]. This distribution has used the
Whittaker function. The density of the product of type I variables of the Kummer–beta
and the inverted hypergeometric functions containing a confluent hypergeometric series
of a two-variable function was developed by [15]. They also derived the distribution
of the product of the beta type III and type I variables of the inverted hypergeometric
function that uses the hypergeometric function of two variables. Several properties of the
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extended Gauss hypergeometric and extended confluent hypergeometric functions have
been studied [16]. The distribution of the products of independent central normal variables
involving Meijer G-functions has been developed [17]. A new distribution was obtained
as a solution of the generalized Pearson differential equation by [18], and a generalization
of this distribution was also defined using the Whittaker functions. This Distribution
includes as special cases distributions obtained as the product of well-known distributions.
A distribution based on the generalized Pearson differential equation using a modified
Bessel function of the second kind was introduced by [19] and named as generalized
inverse Gaussian distribution (GGIG). The GGIG distribution is also defined in terms of
the Whittaker function.

The current paper belongs to the above studies. We use the Whittaker function to
introduce a new life distribution called the Whittaker distribution. This distribution is
a generalization of many important continuous distributions. The gamma, exponential,
chi-square, generalized Lindley, Lindley, beta prime, and Lomax are special cases of the
Whittaker distribution. In some applications, the Whittaker distribution has outperformed
the generalized gamma and log-normal distributions. We also define the generalized
Whittaker distribution as Y = X1/c, where X is the Whittaker distribution and c 6= 0.
The generalized gamma, half-normal, Weibull, half-t, half-Cauchy, Nakagami, Rayleigh,
Dagum, Lévy, type-2 Gumbel, inverse gamma, inverse chi-square, inverse exponential,
inverse Weibull, and inverse-Rayleigh distributions are special cases of the proposed
generalized Whittaker distribution.

The current paper is organized as follows: In Section 2, we proposed the Whittaker
distribution and examined some of its properties. Several important special distributions
are presented in Section 3. The parameters are estimated by methods of moments and
maximum likelihood in Section 4. To illustrate the usefulness of the proposed Whittaker
distribution, four data sets are analyzed in Section 5. Finally, some concluding remarks are
given in Section 6.

2. Whittaker Distribution

The Whittaker function is defined as in [2] (Ch. Confluent Hypergeometric Functions,
page 1024),

Wα,β(z) =
zαe−

z
2

Γ
(

β− α + 1
2

) ∫ ∞

0
e−ttβ−α− 1

2

(
1 +

t
z

)α+β− 1
2
dt, β− α > −1

2
(1)

This function can be used to introduce a probability distribution on (0, ∞) as follows:

Theorem 1. The function:

f (x) = Ce−λxxα−1
(γ

λ
+ x
)β−1

; x > 0, (2)

where C = e−
γ
2

Γ(α)

(
λ√
γ

)α+β−1 √
γ

W β−α
2 , α+β−1

2
(γ)

, α > 0, λ > 0, γ > 0, and −∞ < β < ∞ is a

probability density function.

Proof of Theorem 1. As b > a − 1
2 and z > 0, the Whittaker function Wa, b(z) is non-

negative and finite, hence f (x) ≥ 0 α > 0, λ > 0, γ > 0, and −∞ < β < ∞.
To show that

∫ ∞
0 f (x)dx = 1, we will use the following relation [3] (Ch. Laplace

Transforms-Arbitrary Powers p. 139 Equation (22),

∫ ∞

0
(t + a)2u−1(t− b)2v−1e−ptdt =

(a + b)u+v−1

pu+v e[
(a−b)p

2 ]Γ(2v)Wu−v,u+v− 1
2
(ap + bp), (3)

for t > b, Re v > 0, |arg(a + b)|〈π, Re p〉0.
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Therefore, by setting b = 0, u = β
2 , v = α

2 , p = λ, and a = γ
λ . The proof is complete. �

Definition 1. Let X be a non-negative random variable with probability density function (pdf) (2).
Then, we say that X has a Whittaker distribution and is denoted by WD(α, β, γ, λ).

Figure 1 gives sample plots of the Whittaker probability density function for different
values of the relevant parameters. We first note that λ is a scale parameter as exhibited in
Figure 1. In Figure 1b–k, we fix λ = 1.
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Figure 1. Plots of density function WD(α, β, γ, λ) for some parameters values.

From the plot in Figure 1b, when α + β > 2, we note that the change in the value
of γ has a negligible effect on the shape of the Whittaker probability density function.
In Figure 1c, when α + β ≤ 2, note that the change in the value of γ is taken as a scale
parameter, and has a greater effect when γ < 1. For β > 1 (β < 1), the distribution peaks
further as γ increases (decreases). In Figure 1d–k, we fix γ = 1. For α < 1, the Whittaker
pdf attains ∞ and decreases sharply to zero as shown in Figure 1d,f. In Figure 1e,g, as the
value of α decreases, the distribution peaks more.

From the plot in Figure 1k, we note that when the value of β increases, the mode
increases. Finally, we note that the Whittaker distribution is unimodal.

Theorem 2. The cumulative distribution function of the WD(α, β, γ, λ) is given by,

F(x) =
e−

γ
2

Γ(α + 1)
λα

γ
α−β

2

xα
Φ1

(
α, 1− β, α + 1,−λx,− λx

γ

)
W β−α

2 , α+β−1
2

(γ)
; x > 0, (4)

where α > 0, λ > 0, γ > 0, −∞ < β < ∞, and Φ1(α, β, γ, x, y) is the confluent hypergeometric
series of two variables defined in [2] (Ch. Exponentials and arbitrary powers, page 349),

Φ1(α, β, γ, x, y) =
1

B(α, γ− α)

∫ 1

0
tα−1(1− t)γ−α−1(1− yt)−βextdt, for γ > α > 0 arg(1− β) < π. (5)
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Proof of Theorem 2. F(x) = A
∫ x

0 uα−1(γ
λ + u

)β−1e−λudu; y > 0, where A = 1
Γ(α)

λα+β−1

γ
α+β

2 −1
e−

γ
2(

Wβ−α
2 , α+β−1

2
(γ)

)−1
.

Using (5) one acquires,

∫ x

0
uα−1

(γ

λ
+ u
)β−1

e−λudu = xα
(γ

λ

)β−1 ∫ 1

0
uα−1

(
1+

λx
γ

u
)−(1−β)

e−λxudu =
xα

α

(γ

λ

)β−1
Φ1

(
α, 1− β, α + 1,−λx,−λx

γ

)
;

λ > 0, α > 0. �

Using the properties of the cumulative distribution function, the following lemma
provides new properties of the confluent hypergeometric series of two variables:

Lemma 1. Let α > 0, the confluent hypergeometric series of two variables Φ1(α, β, γ, x, y)
satisfies the following conditions:

1- lim
x→0

[
xαΦ1

(
α, 1− β, α + 1,− λx

γ ,−λx
)]

= 0

2- lim
x→∞

[
xαΦ1

(
α, 1− β, α + 1,− λx

γ ,−λx
)]

= 1

3- xα
Φ1

(
α,1−β,α+1,−λx,− λ

γ x
)

W β−α
2 , α+β−1

2
(γ)

is a non-decreasing and right continuous function.

The proof is straightforward using the properties of the cumulative distribution func-
tion (cdf).

3. Statistical Properties

This section presents the statistical properties and main characteristics of WD(α, β, γ, λ).
We summarize these properties in the following theorem:

Theorem 3.

I. The Laplace transformation is L(t) =
(

λ
λ+t

) α+β
2 e

γt
2λ

W β−α
2 , α+β−1

2
(γ(1+ t

λ ))

W β−α
2 , α+β−1

2
(γ)

.

II. The rth moment about the origin is µ′r = E(Xr) = Γ(α+r)
Γ(α)

(
γ
λ2

) r
2

W β−α−r
2 , α+β+r−1

2
(γ)

W β−α
2 , α+β−1

2
(γ)

;

r = 1, 2, . . .

III. The mean is µ = α
√

γ
λ

W β−α−1
2 , α+β

2
(γ)

W β−α
2 , α+β−1

2
(γ)

.

IV. The variance is σ2 = α(α + 1) γ
λ2

W β−α
2 −1, α+β+1

2
(γ)

W β−α
2 , α+β−1

2
(γ)
− α2 γ

λ2

[
W β−α−1

2 , α+β
2

(γ)

W β−α
2 , α+β−1

2
(γ)

]2

.

V. The mode xmo of WD(α, β, γ, λ) for α ≥ 1 is xmo =
α+β−γ−2+

√
(α+β−γ−2)2+4γ(α−1)

2λ .
VI. The measures of skewness (γ1), kurtosis (γ2), and the coefficient of variation Cv of

WD(α, β, γ, λ) distribution are, respectively, γ1 = Γ(α+3)
Γ(α)

W β−α−3
2 , α+β

2 +1
(γ)

W β−α
2 , α+β−1

2
(γ)
−3α2(α+1)

W β−α−1
2 , α+β

2
(γ)W β−α

2 −1, α+β+1
2

(γ)

W β−α
2 , α+β−1

2
(γ)2

+2α3

W β−α−1
2 , α+β

2
(γ)

W β−α
2 , α+β−1

2
(γ)

3


α(α+1)
W β−α

2 −1, α+β+1
2

(γ)

W β−α
2 , α+β−1

2
()
−α2

W β−α−1
2 , α+β

2
(γ)

W β−α
2 , α+β−1

2
(γ)

2


3/2 , γ2 =

[
Γ(α+4)

αΓ(α+1)W β−α
2 −2, α+β+3

2
(γ)W β−α

2 , α+β−1
2

(γ)−4 Γ(α+3)
Γ(α+1)W β−α−1

2 , α+β
2
(γ)W β−α−3

2 , α+β
2 +1

(γ)+
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6α(α + 1)
W β−α−1

2 , α+β
2

(γ)2W β−α
2 −1, α+β+1

2
(γ)

W β−α
2 , α+β−1

2
(γ)

− 3α2
W β−α−1

2 , α+β
2

(γ)4

W β−α
2 , α+β−1

2
(γ)2

]
/

[
(α+1)

α W β−α
2 −1, α+β+1

2
(γ)−

W β−α−1
2 , α+β

2
(γ)2

W β−α
2 , α+β−1

2
(γ)

]2

,

and Cv =

√√√√ α+1
α

W β−α
2 −1, α+β+1

2
(γ)W β−α

2 , α+β−1
2

(γ)

W β−α−1
2 , α+β

2
(γ)2 − 1.

VII. The survival function is F(t) = 1− F(t) = 1− e−
γ
2

Γ(α+1)
λα

γ
α−β

2
tα

Φ1

(
α,1−β,α+1,−λt,− λ

γ t
)

W β−α
2 , α+β−1

2
(γ)

.

VIII. The hazard function is h(t) =
αγ
(

λ2
γ

) α+β
2 e−λx− γ

2 xα−1( γ
λ +x)

β−1

Γ(α+1)W β−α
2 , α+β−1

2
(γ)−γ

β−α
2 λαe−

γ
2 xαΦ1

(
α,1−β,α+1,−λx,− λx

γ

) .

Proof of Theorem 3.

I. The Laplace transformation: L(t) = λα+β−1

γ
α+β

2 −1

e−
γ
2

Γ(α)W β−α
2 , α+β−1

2
(γ)

∫ ∞
0 xα−1( γ

λ + x
)β−1

e−(λ+t)xdx = γ−
α+β

2 +1λα+β−1e−
γ
2

Γ(α)W β−α
2 , α+β−1

2
(γ)

( γ
λ

) α+β
2 −1 Γ(α)

(λ+t)
α+β

2
exp
[

γ(λ+t)
2λ

]
W β−α

2 , α+β−1
2

(
γ
(

λ+t
λ

))
=
(

λ
λ+t

) α+β
2 e

γt
2λ

W β−α
2 , α+β−1

2
(γ( λ+t

λ ))

W β−α
2 , α+β−1

2
(γ)

, by using (3).

II. The rth moment function is, µ′r = E(Xr) = λα+β−1

γ
α+β

2 −1

e−
γ
2

Γ(α)W β−α
2 , α+β−1

2
(γ)

∫ ∞
0 xα+r−1

( γ
λ + x

)β−1e−λxdx = Γ(α+r)
Γ(α)

γ
r
2

λr

W β−α−r
2 , α+β+r−1

2
(γ)

W β−α
2 , α+β−1

2
(γ)

, By using (3).

III. We have from II that, µ′1 = µ = α
√

γ
λ

W β−α−1
2 , α+β

2
(γ)

W β−α
2 , α+β−1

2
(γ)

, and µ′2 = α(α + 1) γ
λ2

W β−α
2 −1, α+β−1

2
(γ)

W β−α
2 , α+β−1

2
(γ)

.

IV. The variance is given by σ2 = µ′2 − µ2.
V. The mode xm0 can be obtained by differentiating the pdf of WD(α, β, γ, λ) with

respect to x as follows, f ′(x) = A
[
(α− 1)xα−2(γ + λx)β−1e−λx + λ(β− 1)xα−1

(γ + λx)β−2e−λx − λxα−1(γ + λx)β−1e−λx
]
=
[
(α−1)

x + λ(β−1)
(γ+λx) − λ

]
f (x).

However, the mode xm0 is obtained as the solution of f ′(xm0) = 0. Therefore, we have[
(α−1)

xm0
+ λ(β−1)

(γ+λxm0)
− λ

]
f (xm0) = 0, that leads to f (xm0) = 0, or

[
(α−1)

xm0
+ λ(β−1)

(γ+λxm0)
− λ

]
= 0.

By solving
[
(α−1)

xm0
+ λ(β−1)

(γ+λxm0)
− λ

]
= 0, one acquires,

xmo =
(α+β−γ−2)±

√
(α+β−γ−2)2+4γ(α−1)

2λ .
Since the distribution is defined on the set (0, ∞), we acquire xmo as in the form,

xmo =
(α+β−γ−2)+

√
(α+β−γ−2)2+4γ(α−1)

2λ . �
Note: The skewness (γ1), kurtosis (γ2), and the coefficient of variation Cv of WD(α, β, γ, λ)

do not depend on λ.
Some recurrence relations of the Whittaker function are provided in [1]. From the above

theorem, we can deduce other recurrence relations for the Whittaker function as follows.

Corollary 1. For z > 0 and b > a− 1
2 , we have,

1- Wa− 1
2 ,b+ 1

2
(z) = 2(a+b−z)+1

[2(b−a)+1]
√

z Wa,b(z) + 2
[2(b−a)+1]

√
z Wa+1,b(z).
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2- Wa+2,b(z) =
(

b− a + 1
2

)(
b− a + 3

2
)
z Wa−1,b(z) −

(
a + b + 1

2 +
(

a + b + 1
2 − z

)2
)

Wa,b(z)− 2
(
a + b− z + 3

2
)
Wa+1,b(z).

3- 2(b−a)+3
2(b−a)+1 Wa−1,b+1(z)Wa,b(z) >

[
Wa− 1

2 ,b+ 1
2
(z)
]2

.

Proof of Corollary 1. From Theorem 3, one can acquire the mean and the second order
moment using the Laplace transformation as follows, µ′1 = µ = − ∂

∂t L(t)
∣∣∣
t=0

= β
λ −

γ
λ + 1

λ

W β−α
2 +1, α+β−1

2
(γ)

W β−α
2 , α+β−1

2
(γ), andµ′2 = E

(
X2) = ∂2

∂t2 L(t)
∣∣∣
t=0

= β

λ2 +
1

λ2 (β− γ)2 +

2
λ2 (β− γ + 1)

W β−α
2 +1, α+β−1

2
(γ)

W β−α
2 , α+β−1

2
(γ)

+ 1
λ2

W β−α
2 +2, α+β−1

2
(γ)

W β−α
2 , α+β−1

2
(γ)

.

The mean and the second order moment can also be derived from the rth moment formula

in Theorem 3, µ′1 = µ = α
√

γ
λ

W β−α−1
2 , α+β

2
(γ)

W β−α
2 , α+β−1

2
(γ)

, and µ′2 = E
(
X2) = Γ(α+2)

Γ(α)
γ
λ2

W β−α
2 −1, α+β+1

2
(γ)

W β−α
2 , α+β−1

2
(γ)

.

Hence, by equating the two formulas of µ, we acquire W β−α−1
2 , α+β

2
(γ) =

β−γ
α
√

γ W β−α
2 , α+β−1

2
(γ)

+ 1
α
√

γ W β−α
2 +1, α+β−1

2
(γ).

By replacing α, β, and γ with b − a + 1
2 , a + b + 1

2 , and z, respectively, we acquire,

Wa− 1
2 ,b+ 1

2
(z) = 2(a+b−z)+1

[2(b−a)+1]
√

z Wa,b(z) + 2
[2(b−a)+1]

√
z Wa+1,b(z).

Similarly, by equating the two formulas of E
(
X2), we acquire,

(
β + (β− γ)2

)
W β−α

2 , α+β−1
2

(γ) = α(α + 1)γW β−α
2 −1, α+β−1

2
(γ)− 2(β− γ + 1)W β−α

2 +1, α+β−1
2

(γ)−W β−α
2 +2, α+β−1

2
(γ).

By replacing α, β, and γ with b − a + 1
2 , a + b + 1

2 , and z, respectively, we acquire,

Wa+2,b(z) =
(

b− a + 1
2

)(
b− a + 3

2
)
z Wa−1,b(z)−

(
a + b + 1

2 +
(

a + b + 1
2 − z

)2
)

Wa,b(z)

− 2
(
a + b− z + 3

2
)
Wa+1,b(z).

Since σ2 = α(α + 1) γ
λ2

W β−α
2 −1, α+β+1

2
(γ)

W β−α
2 , α+β−1

2
(γ)
− α2 γ

λ2

[
W β−α−1

2 , α+β
2

(γ)

W β−α
2 , α+β−1

2
(γ)

]2

> 0.

By replacing α, β, and γ with b − a + 1
2 , a + b + 1

2 , and z, respectively, we acquire,
2(b−a)+3
2(b−a)+1 Wa−1,b+1(z)Wa,b(z) >

[
Wa− 1

2 ,b+ 1
2
(z)
]2

.
The proof is complete. �

Corollary 2. For a > 0 and z > 0, the Whittaker function satisfies the following conditions,

I. W1
2−a,a(z) = z

1
2−ae−

z
2 .

II. W1−a, a+ 1
2
(z) = z1−ae−

z
2
(
2az−1 + 1

)
; a, z > 0.

Proof of Corollary 2.

I. W1
2−a, a(z) =

z
α
2 + 1

2 e−
z
2

Γ(2a)

∫ ∞
0 e−ztt2a−1dt = z

1
2−ae−

z
2 .

II. W1−a, a+ 1
2
(z) = za+1e−

z
2

Γ(2a)

∫ ∞
0 e−ztt2a−1(1 + t)dt =

za+1e−
z
2

Γ(2a)

(
z−2aΓ(2a) + z−(2a+1)Γ(2a + 1)

)
= z1−ae−

z
2
(
2az−1 + 1

)
. �

Corollary 3. For α + β < 1 and α > 0, the confluent hypergeometric function of the second kind
satisfies the relation,

U(α, α + β, 0) =
Γ(1− α− β)

Γ(1− β)
. (6)
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Proof of Corollary 3. The confluent hypergeometric function of the second kind is defined
in [1] (Ch. Confluent Hypergeometric functions/Integral Representations page 505),

U(a, b, z) =
1

Γ(a)

∫ ∞

0
e−ztta−1(1 + t)b−a−1dt.

At z = 0, we acquire U(α, α + β, 0) = 1
Γ(α)

∫ ∞
0 tα−1(1 + t)β−1dt = Γ(1−α−β)

Γ(1−β)
. �

Theorem 4. Let X ∼WD(α, β, γ, λ). Then,

(a) For α > 1 and α + β > 2, f (x) is log-concave.
(b) For α < 1 and α + β < 2, f (x) is log-convex.

Proof of Theorem 4. It is simple to see that, ∂
∂x log f (x) = (α+β−2)

( γ
λ +x)

+
(α−1) γ

λ

x( γ
λ +x)

− λ.

It is a decreasing (increasing) function for α + β > 2 (< 2), and α > 1 (< 1). Thus,
f (x) is log-concave (convex). �

Theorem 4 does not cover all ranges of α and β as shown in Figure 2. In the following
example, we illustrate that there is no obvious conclusion outside the above ranges.
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Example: The second derivative of the log of density is,

g(x) =
∂2

∂x2 log f (x) = − (α− 1)
x2 − (β− 1)( γ

λ + x
)2 .

Figure 3 shows the function g(x) for the two cases where (α, β) = (0.5, 4) and
(α, β) = (1.5,−4). When (α, β) = (0.5, 4), g(x) is positive for x < 0.69, and for
x ≥ 0.69, g(x) is negative. Therefore f (x) is neither log-convex nor log-concave. Fur-
ther, when (α, β) = (1.5,−4), g(x) is negative for x < 0.46, and for x ≥ 0.46 is positive.
Therefore, f (x) is neither log-convex nor log-concave.

The distributions with log-concave density are unimodal and have increasing failure
rate property.

Theorem 5.

I. The Whittaker distribution has a monotonic likelihood ratio in x with respect to α when the
other parameters are constant.

II. The Whittaker distribution has a monotonic likelihood ratio in x with respect to β when the
other parameters are constant.
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III. The Whittaker distribution has a monotonic likelihood ratio in x with respect to γ when the
other parameters are constant and β < 1.

Proof of Theorem 5.

I Let α2 > α1. Then, ∂
∂x

(
fα2 (x)
fα1 (x)

)
= C(α2 − α1)xα2−α1−1 > 0, where C =

[
Γ(α1)
Γ(α2)

]n
λn(α2−α1)

γn
α2−α1

2[
W β−α1

2 ,
α1+β−1

2
(γ)

W β−α2
2 ,

α2+β−1
2

(γ)

]n

.

II. The proof is similar to that of I.

1. For γ1 < γ2, we acquire ∂
∂x

(
fγ2 (x)
fγ1 (x)

)
= (β− 1)(γ1 − γ2)

(γ2+λx)β−2

(γ1+λx)β , where C =

λe−
γ2−γ1

2

(
γ1
γ2

) α+β
2

W β−α
2 , α+β−1

2
(γ1)

W β−α
2 , α+β−1

2
(γ2)

If β < 1, then ∂
∂x

(
fγ2 (x)
fγ1 (x)

)
> 0. �

Note: The Whittaker distribution is not a member of the monotonic likelihood ratio
family with respect to λ when other parameters are constant.
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Percentiles

Now, we compute the percentiles of Whittaker distribution. For any 0 < q < 1, the
100q-th percentile is a number xq such that the area under f (x) to the left of xq is q. That is,
xq is any root of the equation,

F
(
xq
)
=
∫ xq

0
f (x)dx = q

Using numerical simulation, the percentage points xq associated with the cdf of X are
computed for some selected values of the parameters using Mathematica software (The
code is provided in Appendix A).

Definition 2. Let X ∼ WD(α, β, γ, λ) and Y = X1/c, then, Y is defined as the generalized
Whittaker distribution given by,

f (y) =
e−

γ
2

Γ(α)
|c|λα

γ
α+β

2 −1
e−λyc yαc−1(γ + λyc)β−1

W β−α
2 , α+β−1

2
(γ)

; y > 0, (7)

where α > 0, λ > 0, γ > 0, −∞ < β < ∞, and ∀c 6= 0. For simplicity, we use the notation
GWD(α, β, γ, λ, c).



Mathematics 2022, 10, 1058 9 of 23

4. Special Cases

Many well-known distributions can be viewed as special cases of the WD and GWD.
Figure 4 summarizes all these findings. Whereas the distribution defined in [18,19] are
neither a generalization nor a special cases of the WD.
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4.1. Generalized Lindley Distribution

If β = 2, then the Whittaker distribution is reduced to the generalized Lindley distri-
bution proposed by [20], as follows:

At β = 2, the mgf MX(t) =
(

λ
λ−t

) α
2 +1

e
−γt
2λ

W 2−α
2 , α+1

2
(γ( λ−t

λ ))

W 2−α
2 , α+1

2
(γ)

.

By using Corollary 2(II) at a = α
2 , we acquire W2−α

2 , α+1
2
(z) = z−

α
2 +1e−

z
2
(
αz−1 + 1

)
.

Then,

MX(t) =
(

λ

λ− t

) α
2 +1

e
−γt
2λ

(
γ
(

λ−t
λ

))− α
2 +1

e−
γ
2 (

λ−t
λ )

(
α
(

γ
(

λ−t
λ

))−1
+ 1
)

γ−
α
2 +1e−

γ
2 (αγ−1 + 1)

,MX(t) =
(

λ

λ− t

)α+1 αλ + γ(λ− t)
αλ + γλ

.

Thus, if α = 1, β = 2, and λ = γ, the Whittaker distribution is reduced to the Lindley
distribution [21].

4.2. Beta Prime Distribution

If β < min(0, (1− α)), γ = λ, and λ→ 0 , the Whittaker distribution is reduced to the
beta prime distribution [22].
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For γ = λ, the pdf of WD(α, β, λ, λ) is reduced to f (x) = 1
Γ(α)λ

α+β
2 e−λ(x+ 1

2 )
xα−1(1+x)β−1

W β−α
2 , α+β−1

2
(λ)

.

By using [1] (Ch. Confluent Hypergeometric functions, page 505),

Wλ,µ(z) = exp(−z/2)zµ+ 1
2 U
(

µ− λ +
1
2

, 1 + 2µ; z
)

. (8)

we acquire W β−α
2 , α+β−1

2
(λ) = e−

λ
2 λ

α+β
2 U(α, α + β; λ).

Then, f (x) = 1
Γ(α) e−λx xα−1(1+x)β−1

U(α, α+β; λ)
. By taking the limit as λ tends to zero, one acquires

lim
λ→0

(
1

Γ(α) e−λx xα−1(1+x)β−1

U(α,α+β;λ)

)
= 1

Γ(α)
1

U(α,α+β,0) xα−1(1 + x)β−1.

Using Corollary 3, we acquire the pdf f (x) = Γ(1−β)
Γ(α)Γ(1−α−β)

xα−1(1 + x)β−1; y > 0.
Thus, if α = 1, β < 0, γ = λ, and λ→ 0 , the Whittaker distribution is reduced to

Lomax [23] and the Pareto distribution [24].

4.3. Generalized Gamma Distribution

If X ∼ GWD(α, 1, γ, λ, c), then X follows a generalized gamma distribution [25].
Hence the corresponding pdf is,

f (x) =
e−

γ
2

Γ(α)
cλα

γ
α−1

2
e−λxc xαc−1

W1−α
2 , α

2
(γ)

.

From Corollary 2 (I), we acquire W1−α
2 , α

2
(γ) = γ

1−α
2 e−

γ
2 .

Therefore, f (x) = c
Γ(α)λαxαc−1e−λxc

.
Notes:

(a) If β = 1, c = 2, and λ = α
ν , the generalized Whittaker distribution is reduced to the

Nakagami distribution [26].
(b) If α = 1, β = 1, and c = 2, the generalized Whittaker distribution is reduced to

Rayleigh distribution [27].
(c) If α = 0.5, β = 1, and c = 2, the generalized Whittaker distribution is reduced to the

half-normal distribution.
(d) If α = 1, and β = 1, the generalized Whittaker distribution is reduced to the Weibull

distribution.
(e) If β = 1, and c = 1, the generalized Whittaker distribution is reduced to the gamma

distribution.
(f) If α = 1 and β = 1, the Whittaker distribution is reduced to an exponential distribution.
(g) If β = 1, 2α = n, and λ = 2, the Whittaker distribution is reduced to a chi-square

distribution with n degrees of freedom.

4.4. Dagum Distribution

If X ∼ GWD(α,−α, λ, λ, c), X follows the Dagum distribution [28] with f (y) =

c
Γ(α) e−λyc yαc−1(1+yc)−(α+1)

U(α,0;λ) .

Recalling Corollary 3, we acquire the pdf as f (y) = cαyαc−1(1 + yc)−(α+1).

4.5. Half-t Distribution

If X follows a generalized Whittaker distribution with γ
λ = v, α = 1

2 , β = 1−v
2 , c = 2,

and at λ→ 0 , the generalized Whittaker distribution is reduced to the half-t distribution.

The pdf of GWD
(

1
2 , 1−v

2 , λν, λ, 2
)

is given by f (x) = e−
λν
2

Γ( 1
2 )

2λ
2−v

4

ν
−ν−2

4
e−λx2 (ν+x2)

−1−v
2

W−ν
4 ,−ν

4
(λν)

.

From (8), we acquire W−ν
4 ,−ν

4
(λν) = e−

λν
2 (λν)

2−ν
4 U

(
1
2 , 1− ν

2 ; λν
)

. Then,
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f (x) =
1

Γ
(

1
2

) 2

ν
−ν
2

e−λx2
(
ν + x2)−1−v

2

U
(

1
2 , 1− ν

2 ; λν
) lim

λ→0

 1

Γ
(

1
2

) 2

ν
−ν
2

e−λx2
(
ν + x2)−1−v

2

U
(

1
2 , 1− ν

2 ; λν
)
 =

v
v
2

Γ
(

1
2

) 2

U
(

1
2 , 1− v

2 , 0
)(ν + x2

)−1−v
2

From Corollary 3, at α = 1
2 , β = 1−v

2 , we acquire U
(

1
2 , 1− v

2 , 0
)
=

Γ( v
2 )

Γ( v+1
2 )

.

Therefore,

f (y) = 2v−
v+1

2 v
v
2

Γ
(

v+1
2

)
Γ
(

1
2

)
Γ
( v

2
)(1 +

y2

v

)− v+1
2

= 2
Γ
(

v+1
2

)
√

vπΓ
( v

2
)(1 +

y2

v

)− v+1
2

.

Thus, if α = 1
2 , β = 0, c = 2, γ = λ, and λ→ 0 , the generalized Whittaker distribution

is reduced to a half-Cauchy distribution.

4.6. Inverse Gamma Distribution

If X ∼ GWD(α, 1, γ, λ,−1), X follows the inverse gamma distribution [23], as,

f (x) =
e−

γ
2

Γ(α)
λα

γ
α−1

2
e−

λ
x

x−α−1

W1−α
2 , α

2
(γ)

From Corollary 2 (I), we acquire W1−α
2 , α

2
(γ) = γ

α−1
2 e−

γ
2 .

Therefore,

f (x) =
λα

Γ(α)
x−α−1e−

λ
x .

Notes:

(a) If α = 1
2 , β = 1, and c = −1, the generalized Whittaker distribution is reduced to

Lévy distribution [29].
(b) If α = 1, β = 1, and c = −1, the generalized Whittaker distribution is reduced to the

inverse exponential distribution.
(c) If 2α = v, β = 1, λ = 1

2 , and c = −1, the generalized Whittaker distribution is
reduced to the inverse chi-square distribution.

4.7. Type-2 Gumbel Distribution

If X ∼ GWD(1, 1, γ, λ, c), then X follows a Type-2 Gumbel distribution [30], as,

f (x) = e−
γ
2 |c|λe−λxc xc−1

W0, 1
2
(γ)

.

From Corollary 2 (I), we acquire W0, 1
2
(γ) = e−

γ
2 .

Therefore, f (x) = |c|λxc−1e−λxc
.

Note: If α = 1, β = 1, and c = −2, then the generalized Whittaker distribution is
reduced to inverse Rayleigh distribution [31].

5. Estimation

In this section, we focus on the estimation of the parameters α, β, λ, and γ of the
Whittaker distribution. We introduce the estimation of parameters via the moments’ and
the maximum likelihood methods, denoted by MME and MLE, respectively.

Let X1, X2, . . . Xn be i.i.d. WD(α, β, γ, λ), the we have the following estimates.
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5.1. Method of Moments

λ̂MM = α̂MM

√
γ̂MM

X

W β̂MM−α̂MM−1
2 , α̂MM+β̂MM

2
(γ̂MM)

W β̂MM−α̂MM
2 , α̂MM+β̂MM−1

2
(γ̂MM)

, (9)

where α̂MM, β̂MM, and γ̂MM can be calculated by solving the following system of non-
linear equations:

S2 = X2
(

1 +
1

α̂MM

)W β̂MM−α̂MM
2 , α̂MM+β̂MM−1

2
(γ̂MM)W β̂MM−α̂MM

2 −1, α̂MM+β̂MM+1
2

(γ̂MM)[
W β̂MM−α̂MM−1

2 , α̂MM+β̂MM
2

(γ̂MM)

]2 − X2 (10)

∑n
i=1 Xi

3

nX3 =
Γ(α̂MM + 3)

α̂2
MMΓ(α̂MM + 1)

[
W β̂MM−α̂MM

2 , α̂MM+β̂MM−1
2

(γ̂MM)

]2
W β̂MM−α̂MM−3

2 , α̂MM+β̂MM
2 +1

(γ̂MM)[
W β̂MM−α̂MM−1

2 , α̂MM+β̂MM
2

(γ̂MM)

]3 (11)

In addition,

∑n
i=1 Xi

4

nX4 =
Γ(α̂MM + 4)

α̂3
MMΓ(α̂MM + 1)

[
W β̂MM−α̂MM

2 , α̂MM+β̂MM−1
2

(γ̂MM)

]3
W β̂MM−α̂MM

2 −2, α̂MM+β̂MM+3
2

(γ̂MM)[
W β̂MM−α̂MM−1

2 , α̂MM+β̂MM
2

(γ̂MM)

]4 , (12)

where X is the sample mean, and S2 is the sample variance.

5.2. Maximum Likelihood Estimates

The log-likelihood function is given by,
ln L = nα ln λ− n

(
α+β

2 − 1
)

ln γ− n ln Γ(α)− n ln W β−α
2 , α+β−1

2
(γ)− λ ∑n

i=1 xi − n γ
2 +

(α− 1)∑n
i=1 ln xi + (β− 1)∑n

i=1 ln(γ + λxi).
The MLE of α, β, γ, and λ can be obtained by solving numerically the equations

∂ ln L
∂α = 0, ∂ ln L

∂β = 0, ∂ ln L
∂γ = 0, and ∂ ln L

∂λ = 0, respectively:

∂ ln L
∂λ

=
nα

λ
−

n

∑
i=1

xi + (β− 1)
n

∑
i=1

xi
γ + λxi

, (13)

∂ ln L
∂γ

= −
n
(

α+β
2 − 1

)
γ

− n
2
+ (β− 1)

n

∑
i=1

1
γ + λxi

− n
2

(
1− β− α

γ

)
+

n
γ

W β−α
2 +1, α+β−1

2
(γ)

W β−α
2 , α+β−1

2
(γ)

, (14)

∂ ln L
∂α

= n ln λ− n ln γ +
n

∑
i=1

ln xi −
n

[
γ

α+β
2 e

−γ
2

Γ(α)

∫ ∞
0 e−γttα−1(1 + t)β−1log(t)dt

]
W β−α

2 , α+β−1
2

(γ).
(15)

where,

∂

∂α
W β−α

2 , α+β−1
2

(γ) =
log(γ)

2
W β−α

2 , α+β−1
2

(γ)− ψ(α)W β−α
2 , α+β−1

2
(γ) +

γ
α+β

2 e
−γ
2

Γ(α)

∫ ∞

0
e−γttα−1(1 + t)β−1log(t)dt,

In addition,
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∂ ln L
∂β

= −n ln γ +
n

∑
i=1

ln(γ + λxi)−
n

[
γ

α+β
2 e

−γ
2

Γ(α)

∫ ∞
0 e−γttα−1(1 + t)β−1log(1 + t)dt

]
W β−α

2 , α+β−1
2

(γ)
, (16)

where,

∂

∂β
W β−α

2 , α+β−1
2

(γ) =
log(γ)

2
W β−α

2 , α+β−1
2

(γ) +
γ

α+β
2 e

−γ
2

Γ(α)

∫ ∞

0
e−γttα−1(1 + t)β−1log(1 + t)dt.

and ψ(.) is the di-gamma function.

6. Validations

In this section, we consider the application of GWD and WD to four different data sets
to study the behavior of the parameters c, α, β, λ, and γ. Mathematica software is adopted
to find the parameter estimates (The computer codes are provided in Appendix B). The
four data sets are described below.

Data set 1: The data set consisted of third-party motor insurance data for Sweden
(1977), described and analyzed in [32].

Data set 2: The data set represented an uncensored data set corresponding to remission
times (in months) of a random sample of 128 patients of bladder cancer reported in [33].

Data set 3: It represented the survival times (in days) of 72 guinea pigs infected with
virulent tubercle bacilli, observed and reported in [34].

Data set 4: It represented waiting times (in minutes) before service of 100 bank cus-
tomers as discussed [35].

Table 1 lists the model evaluation statistics for fitting the GWD and the WD together
with some other distributions. The best model is shown in bold.

Table 2 presents the values of the Vuong test for WD against normal, Johnson SL, and
log-normal distributions for all data sets.

The variance covariance matrix I(θ)−1 of the MLEs under the Whittaker distribution
for data set 1 are computed as,

93.8653 −227.9330 0.0029 −5.3054
−227.9330 555.0520 0.0154 13.0219

0.0029 0.0154 0.0163 0.0004
−5.3054 13.0219 0.0004 0.3127


Thus, the 95% confidence intervals for α, β, γ, and λ were (0, 21.1722), (42.6242,

134.978), (39.733, 40.2333), and (3.6761, 5.8683), respectively. Since α is always nonegative,
the lower bound of the confidence interval of α was set to zero.

For GWD (WD), the value of Pearson’s chi-square test was χ2 = 1.758 (2.1865) with p-
value 0.1849 (0.3351), which implies that GWD (WD) fits the data well. Regarding the maximum
values of the log-likelihood, and the minimum values of the AIC and BIC for GWD, and WD,
the results of both models are nearly identical. From the result of fitting GWD(α, β, γ, λ, c), the
estimated value is c = 1.03. Therefore, we perform an LRT for the hypothesis H0 : c = 1 against
H0 : c 6= 1. The value of the test statistic is χ2 = 0.18 with a p-value of 0.671, providing c = 1.
This implies that we can reduce the model GWD to the model WD with fewer parameters.
Figure 5 illustrates the estimated density of WD for data set 1.

The WD distribution is better than the log-normal distribution in terms of log-likelihood,
AIC, and BIC. The value of the Vuong test for WD versus log-normal is V = 2.873
(p-value = 0.0041), which implies that the WD yielded a significantly better fit than the
log-normal distribution. While the WD distribution outperforms the normal distribution
in terms of log-likelihood and AIC, this was not the case in terms of BIC. The value of
the Vuong test for the WD distribution versus the normal distribution is V = 0.8716
(p-value = 0.3834), indicating no significant difference between the models.
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Table 1. Estimation results for all data sets.

Data Set 1 Data Set 2 Data Set 3 Data Set 4

Model MLE
Parameters Log(L) MLE

Parameters Log(L) MLE
Parameters Log(L) MLE

Parameters Log(L)

GWD

α = 3.6368
β = 91.5863
λ = 4.3822
γ = 46.4312
c = 1.0304

−3768.62

α = 0.9679
β = −3.5285
λ = 0.0051
γ = 0.1665
c = 1.0921

−400.762

α = 3.2583
β = 1.0196
λ = 1.8831
γ = 134.651
c = 0.9701

−94.2268

α = 32.4000
β = −29.696
λ = 0.2028
γ = 0.0054
c = 0.9707

−316.930

WD

α = 2.1829
β = 88.8009
λ = 4.7722
γ = 39.9831

−3768.71

α = 1.0959
β = −4.8971
λ = 0.0033
γ = 0.1030

−400.815

α = 3.0834
β = 1.0000
λ = 1.7438
γ = 2.9426

−94.2291

α = 31.5464
β = −28.9529
λ = 0.1775
γ = 0.0050

−316.931

Log-normal µ = 2.3506
σ = 0.1899 −3788.58 µ = 1.5109

σ = 1.2819 −406.802 µ = 0.3991
σ = 0.629 −97.5222 µ = 2.0211

σ = 0.7801 −319.174

Normal µ = 10.6786
σ = 1.9757 −3773.45 µ = 8.5688

σ = 10.5191 −482.883 µ = 1.7682
σ = 1.0273 −104.106 µ = 9.877

σ = 7.2007 −339.312

Johnson SL

δ = 1.1633
γ = −2.2532
τ = −1.3757

−406.447

δ = 1.5878
γ = −1.9284
λ = 0.7481
τ = 0.3849

−92.9256

δ = 1.2306
γ = 2.6058
λ = 78.0372
τ = −0.5843

−317.086

Generalized
Gamma

α = 31.9737
λ = 0.1925
c = 0.8918

−3774.44
α = 1.6997
λ = 0.2410
c = 0.4266

−401.66
α = 3.1607
λ = 0.5208
c = 0.9701

−94.2268
α = 3.7429
λ = 0.1178
c = 0.4788

−317.225

Weibull λ = 11.5022
k = 5.8106 −3818.69 λ =8.2303

k = 0.9227 −402.191 λ = 1.996
k = 1.8254 −95.790 λ =10.9553

k = 1.4585 −318.731

Gamma α = 28.5388
λ = 2.6725 −3773.27 α =0.9155

λ =0.1068 −402.624 α = 3.0834
λ = 1.7438 −94.2291 α = 2.0088

λ = 0.2034 −317.3

Exponential λ=0.1167 −402.96

Generalized
Lindley

α = 28.0971
λ = 2.6938
γ = 5.4342

−3773.13
α = 0.3594
λ = 0.1455
γ = 1.1499

−407.868
λ = 1.8248
α = 2.3367
γ = 14.7453

−94.0893
λ = 0.2300
α = 1.4949
γ = 0.8024

−317.836

Lindley λ = 0.2129 −417.924

Table 2. Vuong test of WD vs. some models for all data sets.

Data Set 1 Data Set 2 Data Set 3 Data Set 4

WD vs Test statistic p-value Test statistic p-value Test statistic p-value Test statistic p-value
Log-normal 2.8733 0.0041 1.4188 0.1559 0.3568 0.7212 0.1284 0.8979

Normal 0.8716 0.3834 4.4671 <0.001 2.0183 0.0436 3.5893 0.0003

Johnson (Johnson SL)
2.3096 0.0209 (Johnson SU)

−1.0613 0.2885 (Johnson SB)
0.3735 0.7088
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The generalized gamma distribution and Weibull distributions are special cases of the
generalized Whittaker distribution. Therefore, there is no need to fit these distributions. The
gamma and generalized Lindley distributions are special cases of the Whittaker distribution
at β = 1 and β = 2, respectively. It is clear that β̂ = 88.8 in the WD is neither one nor two.
For the gamma distribution, the value of LRT is χ2 = 9.12 (p-value = 0.0104). Then, β 6= 1.
The same conclusion is obtained under the generalized Lindley, β 6= 2, where the value of
the test statistic is χ2 = 8.84 (p-value = 0.003).

The variance covariance matrix I(θ)−1 of the MLEs under the Whittaker distribution
for data set 2 was computed as,

0.0238 0.1390 −2.65× 10−6 0.0002
0.1390 5.9668 −0.00004 0.0051

−2.65× 10−6 −0.00004 8.32× 10−6 2.16× 10−7

0.0002 0.0051 2.16× 10−7 4.86× 10−6


Thus, the 95% confidence intervals of α, β, γ, and λ are (0.7937, 1.3981), (−9.684,

−0.1094), (0.09735, 0.1087), and (0, 0.0076), respectively. The lower bound of the confidence
interval of λ is negative. Since λ is always non-negative, zero is considered the lower bound.

The results of Pearson’s chi-square test for GWD (WD) yield χ2 = 12.0676 (12.3476)
with a p-value 0.0984 (0.1944), which implies that GWD (WD) fits the data well. The result
of GWD shows that the estimated value of c is 1.09, and the other parameters are nearly
the same as those of WD. Therefore, we perform the LRT for hypotheses H0 : c = 1 and
H0 : c 6= 1. The value of the test statistic is χ2 = 0.106 (p-value = 0.7447). This implies that
we can reduce GWD to WD, which has fewer parameters. Figure 6 illustrates the estimated
density of WD for data set 2.
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Figure 6. Estimated density of WD(α, β, γ, λ) for data set 2.

According to the Vuong test, we can conclude that WD fits the data better than the
normal distribution and Johnson’s SL with (V = 4.47 with p-value < 0.001) and (V = 2.31
with p-value = 0.021), respectively. There is no significant difference between the WD
distribution and the log-normal distribution with a p-value of 0.156.

The generalized gamma and Weibull distributions are special cases of GWD, and thus
are eliminated from the comparison. Using the LRT to check where the data had been
drawn from an exponential distribution, the value of the test statistic becomes χ2 = 4.29
(p-value = 0.2318). This implies that the exponential distribution fits the data.
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The variance covariance matrix I(θ)−1 of the MLEs under the Whittaker distribution
for data set 3 is computed as follows.

3.0194 −14.3655 0.0022 −2.1450
−14.3655 74.2163 −0.0114 11.7791

0.0022 −0.0114 0.0095 −0.0018
−2.1450 11.7791 −0.0018 1.9596


Thus, the 95% confidence intervals of α, β, γ, and λ were (0, 6.4892), (−15.8852, 17.8852),

(2.7513, 3.1339), and (0, 4.4875), respectively. The lower bounds of the confidence intervals
of α and λ are negative; and as both α and λ are always non-negative, zero is used as
lower bound.

We fit the models WD and GWD to data on survival times. The results of Pearson’s
chi-square test for GWD (WD) yield a value χ2 = 3.766 (3.8114) with p-value 0.1521 (0.2826),
which implies that GWD (WD) fits the data well. The results (in Table 1) of GWD show
that the estimated value of c is 0.97, and the other parameters are nearly identical to those
of WD. Using the LRT, the value of the test statistic is χ2 = 0.005 (p-value = 0.946). This
implies that we can reduce the model GWD to WD, which has fewer parameters. Figure 7
illustrates the estimated density of WD for data set 3.
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Using the Vuong test (in Table 2), there is no significant difference between the fitted
model using the WD distribution and all remaining tested distributions.

The generalized gamma and Weibull distributions are a special case of GWD, and
thus are eliminated from the comparison. From the results of fitting WD, we note that
the estimated value of β is one, and the other fitting measures of α and λ are identical
to those of Gamma(α, λ). Therefore, we perform the LRT (H0 : β = 1) with a p-value of
one, with providing β = 1. The generalized Lindley is a special case of the WD when β
is two. Without testing, we know that the gamma distribution yields a better fit than the
generalized Lindley for this data set.

The variance covariance matrix I(θ)−1 of the MLEs under the Whittaker distribution
for data set 4 is computed as follows.

1442.85 −1461.15 −0.0001 −0.9952
−1461.15 1479.8 0.0001 1.0190
−0.0001
−0.9952

0.0001
1.0190

1.78× 10−8

−1.67× 10−9
−1.67× 10−9

0.0019
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Thus, the 95% confidence intervals for α, β, γ, and λ are (0, 106.00), (−104.35, 46.4446),
(0.0047, 0.0053), and (0.0922, 0.2627), respectively. The lower bound of the confidence
interval of α is negative. As α is non-negative, zero is used as lower bound.

We fit the models WD and GWD to data of waiting times. The results of Pearson’s
chi-square test for GWD (WD) yield a value of χ2 = 10.9955 (11.0327) with a p-value 0.202
(0.2735), which implies that GWD (WD) fits the data well. The result (in Table 1) for GWD
shows that the estimated value of c is 0.97. Using the LRT for c = 1, the value of the test
statistic is χ2 = 0.002 (p-value = 0.964). This implies that we can reduce the model GWD
to WD, which has fewer parameters. Figure 8 illustrates the estimated density of WD for
data set 4.
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Figure 8. Estimated density of WD(α, β, γ, λ) for data set 4.

According to the Vuong test, we can conclude that WD yields a better fit than the nor-
mal with (V = 4.47 with p-value < 0.001), and there is no significant difference between the
fitted model using the WD distribution, and the log-normal and Johnson’s SB distributions.
The generalized gamma and Weibull distributions are special cases of GWD, and thus are
eliminated from the comparison. Using the LRT, the value of the test statistic of H0 : β = 2
was χ2 = 1.81 (p-value = 0.179). This implies that the generalized Lindley distribution
fits the data. Finally, the value of the test statistic of the LRT for H0 : β = 1 is χ2 = 0.738
(p-value = 0.691). This implies that the gamma distribution fits the data as well.

7. Conclusions

Based on Whittaker function a modified life distribution that is called Whittaker
distribution has been introduced. The Whittaker distribution is a generalization of many
well-known continuous distributions such as gamma, exponential, chi-square, generalized
Lindley, Lindley, beta prime, and Lomax distributions. Furthermore, we have defined
the generalized Whittaker distribution that also has the generalized gamma, half-normal,
Weibull, half-t, half-Cauchy, Nakagami, Rayleigh, Dagum, Lévy, type-2 Gumbel, inverse
gamma, inverse chi-square, inverse exponential, inverse Weibull, and inverse-Rayleigh
distributions as special cases. We Validated the proposed distributions on four real data
sets. The results of Pearson’s chi-square test confirmed that the Generalized Whittaker
distribution and the Whittaker distribution fit the data well for all the four data sets. In
some applications, the vuong test showed that the Whittaker distribution has significantly
better fit than the normal, log-normal and Jhonson distributions.
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Appendix A

The code for calculating the 25th percentiles of the Whittaker distribution:
(Code file)
Clear[a1,a2,b1,b2,x,f,g,cf]
a1 = 10.5; a2 = 1.25; b = 3.5; v = 2.5;
f[x_]:= Exp[−v/2]/Gamma[a1] bˆa1/vˆ((a1 + a2)/2 − 1)*(xˆ(a1 − 1) (v + b*x)ˆ(a2 −

1))/WhittakerW[(a2 − a1)/2,(a1 + a2 − 1)/2,v] Exp[−x*b]
cf[u_]: = Exp[−v/2]/Gamma[a1] bˆa1/vˆ((a1 + a2)/2 − 1)*1/WhittakerW[(a2 −

a1)/2,(a1 + a2−1)/2,v] NIntegrate[xˆ(a1 − 1) (v + b*x)ˆ(a2 − 1) Exp[−x*b],{x,0,u}]
w1 = FindRoot[Exp[−v/2]/Gamma[a1] bˆa1/vˆ((a1 + a2)/2−1)*1/WhittakerW[(a2−a1)

/2,(a1 + a2−1)/2,v] NIntegrate[xˆ(a1− 1) (v + b*x)ˆ(a2− 1) Exp[−x*b],{x,0,u}]−0.25,{u,0.12}]
q1 = u//.w1
cf[q1]
{u− > 2.38469}
2.38469
0.25

Appendix B

The computer codes for the maximum likelihood estimation, the Voung test and for
the variance covariance matrix I(θ)−1 of the MLEs under the Whittaker distribution for
data set 2:

(Code file)
y = {0.08,0.52,0.22,0.82,0.62,0.39,0.96,0.19,0.66,0.4,0.26,0.31,0.73,3.48,6.97,25.74,2.54,5.32,

14.83,1.05,4.26,17.14,4.34,19.13,6.54,3.36,6.94,13.29,2.46,5.17,10.06,0.9,4.23,7.63,1.35,7.93,3.25,
12.03,8.65,13.11,2.26,5.09,9.74,32.15,4.18,7.62,46.12,5.62,18.1,6.25,2.02,22.69,0.2,5.06,9.47,26.31,
3.88,7.59,16.62,2.83,11.64,4.4,12.02,6.76,2.09,4.98,13.8,0.51,3.82,10.34,36.66,2.75,11.25,3.02,11.98,
4.51,2.07,4.87,9.02,0.5,3.7,7.32,34.26,2.69,5.41,79.05,5.71,1.76,8.53,6.93,8.66,0.4,3.64,7.28,14.77,

www.math.uni.wroc.pl/~dabr/R/motorins.html
http://www.naturalspublishing.com/files/published/j9wsil53h390x8.pdf
https://rivista-statistica.unibo.it/article/viewFile/6282/6061
https://rivista-statistica.unibo.it/article/viewFile/6282/6061
http://biomedicine.imedpub.com/on-generalized-lindley-distribution-and-its-applications-to-model-lifetime-data-from-biomedical-science-and-engineering.pdf
http://biomedicine.imedpub.com/on-generalized-lindley-distribution-and-its-applications-to-model-lifetime-data-from-biomedical-science-and-engineering.pdf
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2.69,5.41,17.12,2.87,11.79,4.5,20.28,12.63,23.63,3.57,7.26,14.76,2.64,5.34,10.75,1.26,7.87,1.46,8.37,
3.36,5.49,2.23,7.09,14.24,0.81,5.32,10.66,43.01,4.33,17.36,5.85,2.02,12.07};

n = 128;
w1 = FindRoot[{c*Sum[Log[y[[i]]], {i, 1, n}] − (n*((1/2)*Derivative[0, 1, 0][Whittak-

erW][(a2 − a1)/2, (1/2)*(a1 + a2 − 1), v] −
(1/2)*Derivative[1, 0, 0][WhittakerW][(a2 − a1)/2, (1/2)*(a1 + a2 − 1), v]))/Whittaker

W[(a2 − a1)/2, (1/2)*(a1 + a2 − 1), v] − n*PolyGamma[0, a1] + n*Log[b] − (1/2)*n*Log[v],
Sum[Log[b*y[[i]]ˆc + v], {i, 1, n}] − (n*((1/2)*Derivative[0, 1, 0][WhittakerW][(a2 − a1)/2,
(1/2)*(a1 + a2 − 1), v] +

(1/2)*Derivative[1, 0, 0][WhittakerW][(a2 − a1)/2, (1/2)*(a1 + a2 − 1), v]))/Whittaker
W[(a2 − a1)/2, (1/2)*(a1 + a2 − 1), v] − (1/2)*n*Log[v],

(a2− 1)*Sum[1/(b*y[[i]]ˆc + v), {i, 1, n}]− (n*((1/2− (a2− a1)/(2*v))*WhittakerW[(a2
− a1)/2, (1/2)*(a1 + a2 − 1), v] − WhittakerW[(a2 − a1)/2 + 1, (1/2)*(a1 + a2 − 1),
v]/v))/WhittakerW[(a2 − a1)/2, (1/2)*(a1 + a2 − 1), v] − (n*((a1 + a2)/2 − 1))/v − n/2,
(a2 − 1)*Sum[y[[i]]ˆc/(b*y[[i]]ˆc + v), {i, 1, n}] − Sum[y[[i]]ˆc, {i, 1, n}] + (a1*n)/b && a1 > 0
&& v > 0 && b > 0}, {{a1, 1.08}, {a2, −4.57}, {b, 0.005}, {v, 0.15}}]

{a1− > 1.09587,a2− > −4.89705,b− > 0.00331532,v− > 0.103035}
Clear[a1, a2, v, b, c]
w = FindRoot[{n*Log[b] − (1/2)*n*Log[v] − n*PolyGamma[0, a1] + c*Sum[Log[y[[i]]],

{i, 1, n}] − (n*((1/2)*Derivative[0, 1, 0][WhittakerW][(1/2)*(−a1 + a2), (1/2)*(−1 + a1
+ a2), v] − (1/2)*Derivative[1, 0, 0][WhittakerW][(1/2)*(−a1 + a2), (1/2)*(−1 + a1 +
a2), v]))/ WhittakerW[(1/2)*(−a1 + a2), (1/2)*(−1 + a1 + a2), v], (−(1/2))*n*Log[v] +
Sum[Log[v + b*y[[i]]ˆc], {i, 1, n}] − (n*((1/2)*Derivative[0, 1, 0][WhittakerW][(1/2)*(−a1
+ a2), (1/2)*(−1 + a1 + a2), v] + (1/2)*Derivative[1, 0, 0][WhittakerW][(1/2)*(−a1 + a2),
(1/2)*(−1 + a1 + a2), v]))/ WhittakerW[(1/2)*(−a1 + a2), (1/2)*(−1 + a1 + a2), v], −(n/2)
− ((−1 + (a1 + a2)/2)*n)/v + (−1 + a2)*Sum[1/(v + b*y[[i]]ˆc), {i, 1, n}] − (n*((1/2 − (-a1
+ a2)/(2*v))*WhittakerW[(1/2)*(−a1 + a2), (1/2)*(−1 + a1 + a2), v] − WhittakerW[1 +
(1/2)*(−a1 + a2), (1/2)*(−1 + a1 + a2), v]/v))/ WhittakerW[(1/2)*(−a1 + a2), (1/2)*(−1
+ a1 + a2), v], (a1*n)/b − Sum[y[[i]]ˆc, {i, 1, n}] + (−1 + a2)*Sum[y[[i]]ˆc/(v + b*y[[i]]ˆc),
{i, 1, n}], n/c + a1*Sum[Log[y[[i]]], {i, 1, n}] − b*Sum[Log[y[[i]]]*y[[i]]ˆc, {i, 1, n}] + (−1 +
a2)*Sum[(b*Log[y[[i]]]*y[[i]]ˆc)/(v + b*y[[i]]ˆc), {i, 1, n}] && a1 > 0 && v > 0 && b > 0}, {{a1,
0.98}, {a2, −3.47}, {b, 0.005}, {v, 0.15}, {c, 1.5}}]

{a1− > 0.967908,a2− > −3.52849,b− > 0.00510853,v− > 0.166534,c− > 1.09214}
“Vuong test”
k = 4;
a1 = 1.09587;
a2 = −4.897054;
b = 0.0033153184;
v = 0.103034;
f[x_]:= (Exp[−v/2]/Gamma[a1])*(bˆa1/vˆ((a1 + a2)/2 − 1))*((xˆ(a1 − 1)*(v + b*x)ˆ(a2

− 1))/WhittakerW[(a2 − a1)/2, (a1 + a2 − 1)/2, v])*Exp[(−x)*b]
“Log-normal”
Clear[u, se]
wln = FindRoot[{−(n/se) − Sum[−((−u + Log[y[[i]]])ˆ2/seˆ3), {i, 1, n}], −Sum[−((−u

+ Log[y[[i]]])/seˆ2), {i, 1, n}]}, {{u, 2.3}, {se, 0.2}}]
se = se //. wln;
u = u //. wln;
fln[x_]:= (1/(x*se*Sqrt[2*Pi]))*Exp[−((Log[x] − u)ˆ2/(2*seˆ2))];
lln = (−n)*Log[Sqrt[2*Pi]] − Sum[Log[y[[i]]], {i, 1, n}] − n*Log[se] − Sum[(Log[y[[i]]]

− u)ˆ2/(2*seˆ2), {i, 1, n}]
lrln = Sum[Log[f[y[[i]]]/fln[y[[i]]]], {i, 1, n}] − (k − 2);
wnln = (1/n)*Sum[Log[f[y[[i]]]/fln[y[[i]]]]ˆ2, {i, 1, n}]− ((1/n)*Sum[Log[f[y[[i]]]/fln[y[[i]]]],

{i, 1, n}])ˆ2;
vln = lrln/Sqrt[n*wnln]
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2*(1 − CDF[NormalDistribution[], Abs[vln]])
“Normal”
Clear[sn, un, w1, vnor, lrnor, wnnor, fn, lnor]
w1 = FindRoot[{−(n/sn) + Sum[(−un + y[[i]])ˆ2, {i, 1, n}]/snˆ3, −(Sum[−2*(−un +

y[[i]]), {i, 1, n}]/(2*snˆ2))}, {{un, 1}, {sn, 1}}]
un = un //. w1;
sn = sn //. w1;
fn[x_]:= (1/Sqrt[2*Pi*snˆ2])*Exp[−((x − un)ˆ2/(2*snˆ2))]
lnor = (−(n/2))*Log[2*Pi] − n*Log[sn] − Sum[(y[[i]] − un)ˆ2, {i, 1, n}]/(2*snˆ2)
lrnor = Sum[Log[f[y[[i]]]/fn[y[[i]]]], {i, 1, n}] − (k − 2);
wnnor = (1/n)*Sum[Log[f[y[[i]]]/fn[y[[i]]]]ˆ2, {i, 1, n}] − ((1/n)*Sum[Log[f[y[[i]]]/

fn[y[[i]]]], {i, 1, n}])ˆ2;
vnor = lrnor/Sqrt[n*wnnor]
2*(1 − CDF[NormalDistribution[], Abs[vnor]])
“Johnson”
Clear[bj, tj, cj]
vjo = −2.25315;
cj = 1.1633;
tj = −1.37569;
fj[x_]:= (cj/Sqrt[2*Pi])*(1/(x − tj))*Exp[(−2ˆ(−1))*(vjo + cj*Log[x − tj])ˆ2]
lnj = n*Log[cj/Sqrt[2*Pi]] − Sum[Log[y[[i]] − tj], {i, 1, n}] − (1/2)*Sum[(vjo + cj*Lo

g[y[[i]] − tj])ˆ2, {i, 1, n}]
lrj = Sum[Log[f[y[[i]]]/fj[y[[i]]]], {i, 1, n}] − (k − 3);
wnj = (1/n)*Sum[Log[f[y[[i]]]/fj[y[[i]]]]ˆ2, {i, 1, n}] − ((1/n)*Sum[Log[f[y[[i]]]/f

j[y[[i]]]], {i, 1, n}])ˆ2;
vj1 = lrj/Sqrt[n*wnj]
2*(1 − CDF[NormalDistribution[], Abs[vj1]])
Vuong test0e
Log-normal
{u− > 1.51087,se− > 1.28189}
−406.802
1.41883
0.155948
Normal
{un− > 8.56875,sn− > 10.5191}
−482.833
4.46717
7.92596 × 10−6

Johnson
−406.447
2.30962
0.0209092
“CI”
a11 = n*((vˆ((a1 + a2)/2)*Exp[−v/2])/Gamma[a1])*(NIntegrate[Exp[(−v)*t]*tˆ(a1 −

1)*(1 + t)ˆ(a2 − 1)*Log[t]ˆ2, {t, 0, Infinity}]/WhittakerW[(a2 − a1)/2, (a1 + a2 − 1)/2, v]) −
n*(((vˆ((a1 + a2)/2)*Exp[-v/2])/Gamma[a1])*(NIntegrate[Exp[(−v)*t]*tˆ(a1 − 1)*(1 + t)ˆ(a2
− 1)*Log[t], {t, 0, Infinity}]/WhittakerW[(a2 − a1)/2, (a1 + a2 − 1)/2, v]))ˆ2;

a12 = n*((vˆ((a1 + a2)/2)*Exp[−v/2])/Gamma[a1])*(NIntegrate[Exp[(−v)*t]*tˆ(a1 −
1)*(1 + t)ˆ(a2 − 1)*Log[t]*Log[1 + t], {t, 0, Infinity}]/WhittakerW[(a2 − a1)/2, (a1 + a2 −
1)/2, v]) − n*((vˆ((a1 + a2)/2)/Gamma[a1])*(Exp[−v/2]/WhittakerW[(a2 − a1)/2, (a1 +
a2 − 1)/2, v]))ˆ2*NIntegrate[Exp[(-v)*t]*tˆ(a1 − 1)*(1 + t)ˆ(a2 − 1)*Log[t], {t, 0, Infinity}]*
NIntegrate[Exp[(−v)*t]*tˆ(a1 − 1)*(1 + t)ˆ(a2 − 1)*Log[1 + t], {t, 0, Infinity}];

a13 = −(−(n/v) − n*(a2 − v)*((vˆ((a1 + a2)/2 − 1)*Exp[−v/2])/Gamma[a1])*(NInteg
rate[Exp[(−v)*t]*tˆ(a1 − 1)*(1 + t)ˆ(a2 − 1)*Log[t], {t, 0, Infinity}]/
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WhittakerW[(a2 − a1)/2, (a1 + a2 − 1)/2, v]) + n*((vˆ((a1 + a2)/2)*Exp[-v/2])/Gamm
a[a1])*(NIntegrate[Exp[(−v)*t]*tˆa1*(1 + t)ˆ(a2 − 1)*Log[t], {t, 0, Infinity}]/ WhittakerW[(a2
− a1)/2, (a1 + a2 − 1)/2, v]) − n*((vˆ((a1 + a2)/2 − 1)*Exp[-v/2])/Gamma[a1])*Whittaker
W[(a2 − a1)/2 + 1, (a1 + a2 − 1)/2, v]*

(NIntegrate[Exp[(−v)*t]*tˆ(a1 − 1)*(1 + t)ˆ(a2 − 1)*Log[t], {t, 0, Infinity}]/Whittaker
W[(a2 − a1)/2, (a1 + a2 − 1)/2, v]ˆ2));

a14 = −(n/b);
a22 = n*((vˆ((a1 + a2)/2)*Exp[-v/2])/Gamma[a1])*(NIntegrate[Exp[(−v)*t]*tˆ(a1 −

1)*(1 + t)ˆ(a2 − 1)*Log[1 + t]ˆ2, {t, 0, Infinity}]/WhittakerW[(a2 − a1)/2, (a1 + a2 − 1)/2, v])
− n*(((vˆ((a1 + a2)/2)*Exp[−v/2])/Gamma[a1])*(NIntegrate[Exp[(−v)*t]*tˆ(a1 − 1)*(1 +
t)ˆ(a2 − 1)*Log[1 + t], {t, 0, Infinity}]/WhittakerW[(a2 − a1)/2, (a1 + a2 − 1)/2, v]))ˆ2;

a23 =−(−(n/v) + Sum[1/(v + b*y[[i]]), {i, 1, n}] + n*((vˆ((a1 + a2)/2)*Exp[-v/2])/Gamm
a[a1])*(NIntegrate[Exp[(-v)*t]*tˆa1*(1 + t)ˆ(a2− 1)*Log[1 + t], {t, 0, Infinity}]/WhittakerW[(a2
− a1)/2, (a1 + a2 − 1)/2, v]) + n*(1 − a2/v)*((vˆ((a1 + a2)/2)*Exp[-v/2])/Gamma[a1])*(N
Integrate[Exp[(-v)*t]*tˆ(a1 − 1)*(1 + t)ˆ(a2 − 1)*Log[1 + t], {t, 0, Infinity}]/WhittakerW[(a2
− a1)/2, (a1 + a2 − 1)/2, v]) − (n/v)*((vˆ((a1 + a2)/2)*Exp[-v/2])/Gamma[a1])*Whittaker
W[(a2 − a1)/2 + 1, (a1 + a2 − 1)/2, v]* (NIntegrate[Exp[(-v)*t]*tˆ(a1 − 1)*(1 + t)ˆ(a2 −
1)*Log[1 + t], {t, 0, Infinity}]/WhittakerW[(a2 − a1)/2, (a1 + a2 − 1)/2, v]ˆ2));

a24 = −(n/b − Sum[v/((v + b*y[[i]])*b), {i, 1, n}]);
a33 = −((n/vˆ2)*(a1 − 1) + (n/vˆ2)*(v/2 − (a2 − a1)/2 − 2)*(WhittakerW[(a2 − a1)/2

+ 1, (a1 + a2 − 1)/2, v]/WhittakerW[(a2 − a1)/2, (a1 + a2 − 1)/2, v]) −
(n/vˆ2)*(WhittakerW[(a2 − a1)/2 + 2, (a1 + a2 − 1)/2, v]/WhittakerW[(a2 − a1)/2,

(a1 + a2 − 1)/2, v]) − (a2 − 1)*Sum[1/(v + b*y[[i]])ˆ2, {i, 1, n}]);
a34 = (a2 − 1)*Sum[y[[i]]/(v + b*y[[i]])ˆ2, {i, 1, n}];
a44 = −(−((n*(a1 + a2 − 1))/bˆ2) + (−1 + a2)*Sum[(y[[i]]*v)/(b*(v + b*y[[i]])ˆ2), {i, 1,

n}] + (−1 + a2)*Sum[v/(bˆ2*(v + b*y[[i]])), {i, 1, n}]);
beta = {{a11, a12, a13, a14}, {a12, a22, a23, a24}, {a13, a23, a33, a34}, {a14, a24, a34, a44}};
inbeta = Inverse[beta];
MatrixForm[inbeta]
CI
(_{{0.0237651, 0.139018, −2.65017 × 10−6, 0.00020543},
{0.139018, 5.96683, −0.0000375354, 0.00511258},
{−2.65017 × 10−6, −0.0000375354, 8.32295 × 10−6, 2.16077 × 10−7},
{0.00020543, 0.00511258, 2.16077 × 10−7, 4.85993 × 10−6}}_)
“a1”
Sqrt[inbeta[[1,1]]]
“p-value”
2*(1 − CDF[NormalDistribution[], a1/Sqrt[inbeta[[1,1]]]])
a1 + 1.96*Sqrt[inbeta[[1,1]]]
a1 − 1.96*Sqrt[inbeta[[1,1]]]
“a2”
Sqrt[inbeta[[2,2]]]
“p-value”
2*(1 − CDF[NormalDistribution[], Abs[a2/Sqrt[inbeta[[2,2]]]]])
a2 + 1.96*Sqrt[inbeta[[2,2]]]
a2 − 1.96*Sqrt[inbeta[[2,2]]]
“v”
Sqrt[inbeta[[3,3]]]
“p-value”
2*(1 − CDF[NormalDistribution[], v/Sqrt[inbeta[[3,3]]]])
v + 1.96*Sqrt[inbeta[[3,3]]]
v − 1.96*Sqrt[inbeta[[3,3]]]
“b”
Sqrt[inbeta[[4,4]]]
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“p-value”
2*(1 − CDF[NormalDistribution[], b/Sqrt[inbeta[[4,4]]]])
b + 1.96*Sqrt[inbeta[[4,4]]]
b − 1.96*Sqrt[inbeta[[4,4]]]
a1
0.154159
p-value
1.16995 × 10−12

1.39805
0.793748
a2
2.44271
p-value
0.0449863
−0.10939
−9.68481
v
0.00288495
p-value
0.
0.108655
0.0973455
b
0.00220453
p-value
0.134414
0.00762087
−0.00102087
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