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Abstract: In this paper, the problem of interval estimation is considered for the parameters of the
generalized inverted exponential distribution. Based on upper record values, different pivotal
quantities are proposed and the associated exact and generalized confidence intervals are constructed
for the unknown model parameters and reliability indices, respectively. For comparison purposes,
conventional likelihood based approximate confidence intervals are also provided by using observed
Fisher information matrix. Moreover, prediction intervals are also constructed for future records
based on proposed pivotal quantities and likelihood procedures as well. Finally, numerical studies
are carried out to investigate and compare the performances of the proposed methods and a real data
analysis is presented for illustrative purposes.
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1. Introduction

Let {Xn, n = 1, 2, . . .} be a sequence of independent and identically distributed (i.i.d.)
random variables. An observation Xj is called an upper record value if its value exceeds
those of previous observations. Thus Xj is an upper record value if Xj > Xi for each
j > i. Similar definition deals with the lower record values. The concept of record values,
initially introduced by [1], can be viewed as order statistics whose size is determined
by the values and the order of occurrence of observations. In many situations such as
sport matches, destructive stress testing, meteorology, hydrology, seismology, mining and
aerology, we may use such data. Due to the commonality and the importance, many
researchers have considered the use of record values in their studies. Interested readers
may refer to the works of [2–6] and the references cited therein. For more details, one can
see the monographs of [7,8].

For any lifetime distribution, the inferences of parameters and predictions of future
observations are always of fundamental importance in statistical theory. Besides estimation,
confidence interval is also of considerable interest and practical significance in statistical
inference. Such problems have been widely discussed by many authors, for example,
the works of [6,9–13] and the reference cited therein. However, likelihood based interval
estimation is affected heavily by its sample size, and hence, the associated confidence sets
may not have desirable properties when the sample size is not sufficiently large. Since data
sets consisting of record values may often lack sufficiently large sample size in data analysis,
it is of importance to pursue alternative inferential approach for statistical inference under
small sample size when record values are utilized. Similar works for confidence interval
estimation is also discussed by many authors. Kinaci et al. [14] studied the estimation
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problems for the generalized inverted exponential distribution based on progressively type-
II censored order statistics and record values. Marques [15] has proposed the confidence
interval expressions based on time-history records. Motivated by such reasons, this paper
considers the study of inference for the interval estimation of a lifetime distribution based
on data consisting of upper record values.

Let random variable, T, have the generalized inverted exponential distribution (GIED)
with scale parameter λ > 0 and shape parameter θ > 0, where the cumulative distribution
function (CDF) and probability density function (PDF) are given by

F(t; λ, θ) = 1− [1− e−λ/t]θ , t > 0, (1)

and

f (t; λ, θ) =
θλ

t2 e−λ/t[1− e−λ/t]θ−1, t > 0. (2)

The distribution of (1) was proposed by [16], wherein they carried out an extensive
study on the properties of GIED. From various studies on GIED, (e.g., [16,17]), one can
conclude GIED to be an useful lifetime model that could be treated as an potential alterna-
tive to the traditinal distributions such as gamma, Weibull, generalized exponential and
inverted exponential distributions. Recently, the GIED has received considerable attention
in literatures because of its practical significance in many situations like accelerated life
testing, horse racing, supermarket queues, wind speed and so on. For more information,
readers may refer to [2,18–20] and the references cited therein.

Due to the GIED’s importance and practicability, for comparing with traditional
asymptotic confidence intervals, our aim in this paper is to explore some alternative
confidence intervals for the unknown parameters of the GIED based on upper record
values. Another objective is to construct generalized prediction intervals for the future
upper record values based on the past upper record values from the GIED because it is very
important to correctly predict future record values given a sample of observed record values
in many fields such as earthquakes, flood, and rainfall. As far as we know, no attempt has
been made on different types of interval estimation and prediction for the parameters of the
GIED based on upper record values. Moreover, for the purpose of comparison, likelihood
based inferential procedures are also presented for model parameters and prediction of
future records, respectively.

This rest of this paper is organized as follows. In Section 2, different kinds of confi-
dence intervals using pivotal quantities are proposed for the unknown parameters and
generalized confidence intervals (GCIs) for the future upper record values from the GIED
based on the upper record values. In Section 3, simulation results and real-life examples are
presented to assess the performance of the proposed methods. Finally, some discussions
and remarks are provided in Section 4.

2. Confidence Interval Estimation

In this section, different types of interval estimators are proposed for the GIED param-
eters and the reliability indices through different approaches. The prediction intervals (PIs)
of record values are also presented for a given significance level.

2.1. F Pivotal Based Interval Estimation for λ and θ

In order to obtain the CIs of GIED parameters, a useful result is given firstly as follows.

Theorem 1. Let R = (R1, R2, . . . , Rn) be the first n upper records from the GIED of (1) with
parameters λ and θ. Denote pivotal quantities

P1(λ; R) = (n− 1)

[
ln[1− e−λ/Rn ]

ln[1− e−λ/R1 ]
− 1

]−1



Mathematics 2022, 10, 1047 3 of 20

and

Q1(λ, θ; R) = −2θ ln[1− e−λ/Rn ].

Then P1 follows F distribution with 2 and 2(n − 1) degrees of freedom, Q1 is chi-square
distributed with 2n degrees of freedom, and they are statistical independent.

Proof. See Appendix A.

Another useful lemma is also provided as follows.

Lemma 1. Let a and b be arbitrary positive values satisfying 0 < a < b and G(t) = ln[1−e−t/b ]
ln[1−e−t/a ]

, t >
0. Then

G(t) increases in t,
limt→0 G(t) = 1 and limt→∞ G(t) = ∞.

Proof. See Appendix B.

Corollary 1. From Lemma 1, it is noted that pivotal quantity P1(λ; R) is a monotonically decreas-
ing function with respect to λ and the associated range of P1(λ) is (0, ∞).

From Theorem 1, confidence interval based on pivotal quantity is constructed for
parameter λ as follows.

Theorem 2. Let R = (R1, R2, . . . , Rn) be the first n upper records from the GIED of (1) with
parameters λ and θ. For arbitrary 0 < γ < 1, a 100(1− γ)% F pivotal quantity based exact
confidence interval (FECI) for λ is given by(

ρ1

(
Fγ/2
[2,2(n−1)]; R

)
, ρ1

(
F1−γ/2
[2,2(n−1)]; R

))
,

where Fγ
[k1,k2]

denotes the right-tail 100γ% quantile of the F distribution with k1 and k2 degrees of
freedom and ρ1(t) is the solution of λ for equation P1(λ; R) = t.

Proof. See Appendix C.

Based on the proposed pivotal quantity P1(λ; R), the following hypotheses are pro-
vided as an application and complementary.

Remark 1. Hypotheses are often used to compare whether the values of the parameter are same or
not with past time. Here, we consider null hypothesis H0 and alternative hypothesis H1 as follows

(a) H0 : λ ≤ λ0 ↔ H1 : λ > λ0,

(b) H0 : λ ≥ λ0 ↔ H1 : λ < λ0,

(c) H0 : λ = λ0 ↔ H1 : λ 6= λ0.

From Theorem 1 and Lemma 1, it is observed that the pivotal quantity P1(λ) is F distributed
with 2 and 2(n− 1) degrees of freedom and decreases in λ. Therefore, for arbitrary 0 < γ < 1, the
decision rule to reject null hypothesis H0 in (a), (b), (c) can be respectively expressed as

(a)′
{

P1(λ0) ≥ Fγ
[2,2(n−1)]

}
, (b)′

{
P1(λ0) ≤ Fγ

[2,2(n−1)]

}
,

(c)′
{

P1(λ0) ≥ Fγ/2
[2,2(n−1)], or P1(λ0) ≤ F1−γ/2

[2,2(n−1)]

}
.

For parameter θ, a generalized confidence interval is constructed by using pivotal
quantities P1(λ; R) and Q1(λ; R) for a given significance level. Using the same notation in
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Theorem 2, denote ρ1(Y1; R) as the unique solution of P1(λ) = Y1, where Y1 ∼ F[2,2(n−1)].
Moreover, from Theorem 1, since pivotal Q1 = −2θ ln[1− e−λ/Rn ] is distributed as chi-
square distribution with 2n degrees of freedom, then one has

θ =
Q1

−2 ln[1− e−λ/Rn ]
.

Following the substitution method of [21], a generalized pivotal quantities, namely,
S1, can be constructed by substituting ρ1(Y1; R) for λ in expression of θ as follows

S1 =
Q1

−2 ln[1− e−ρ1(Y1;r)/rn ]
=

θ ln[1− e−ρ1(Y1;R)/Rn ]

ln[1− e−ρ1(Y1;r)/rn ]
,

where r = (r1, r2, . . . , rn) denotes the observation of records R = (R1, R2, . . . , Rn). It is noted
that the distribution of S1 is free from any unknown parameters from its first expression
and S1 reduces to θ when R = r. Therefore, we can conclude that S1 is a generalized pivotal
quantity for parameter θ. Furthermore, an extra Algorithm 1 is provided to derive the F
pivotal quantity based generalized confidence interval (FGCI) of θ as follows.

Algorithm 1: FGCI for parameter θ.

Step 1 Generate a realization y1 of Y1 from F distribution with 2 and 2(n− 1)
degrees of freedom. Then an observation ρ1 of ρ1(y1; R) can be obtained from
the equation P1(λ) = y1 for given records R.

Step 2 Generate random data for Q1 from chi-square distribution with 2n degrees of
freedom, and compute S1.

Step 3 Repeat Step 1 and 2 M times, one can obtain M values of S1.
Step 4 To construct the generalized confidence interval of θ, first arrange

all estimates of S1 in an ascending order as S[1]
1 , S[2]

1 , . . . , S[M]
1 . For arbitrary

0 < γ < 1, a 100(1− γ) confidence interval of θ can be obtained as

(S[j]
1 , S[j+M−[Mγ+1]]

1 ), j = 1, 2, . . . , [Mγ].

where [t] denotes the greatest integer less than or equal to t. Therefore, the
100(1− γ)% generalized confidence interval of θ can be constructed as the
j∗th one satisfying

S[j∗+M−[Mγ+1]]
1 − S[j∗ ]

1 =
[Mγ]

min
j=1

(S[j+M−[Mγ+1]]
1 − S[j]

1 ).

Remark 2. It is worth mentioning that based on S1, its CDF can be written as

FS1(s) =
∫ ∞

0
P(S1 < s|Y1 = y1) fY1(y1)dy1

= 1−
∫ ∞

0
Gχ2

2n
(−2s ln[1− e−ρ1(y1;r)/rn ]) f[2,2(n−1)](y1)dy1,

where notations Gχ2
k
(t) is the CDF of the chi-square distribution with k degrees of freedom and

f[k1,k2]
(t) is the PDF of F distribution with k1 and k2 degrees of freedom, respectively.

Using quantity P1(λ) and following similar procedure as previous, FGCI for parameter
λ can also be constructed using following Algorithm 2.
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Algorithm 2: FGCI for parameter λ.

Step 1 Generate a realization y1 of Y1 from F distribution with 2 and 2(n− 1)
degrees of freedom. Then an observation ρ1 of ρ1(y1; R) can be obtained
from the equation P1(λ) = y1 for given records R.

Step 2 Repeat Step 1 M times, one can obtain M values of ρ1(y1; R) as estimates for λ.

Step 3 Arrange all estimates of ρ1(y1; R) in an ascending order as ρ
[1]
1 , ρ

[2]
1 , . . . , ρ

[M]
1 .

For arbitrary 0 < γ < 1, a 100(1− γ) confidence interval of θ can be
obtained as

(ρ
[j]
1 , ρ

[j+M−[Mγ+1]]
1 ), j = 1, 2, . . . , [Mγ].

Then, the 100(1− γ)% generalized confidence interval of λ can be provided
as the j∗th one satisfying

ρ
[j∗+M−[Mγ+1]]
1 − ρ

[j∗ ]
1 =

[Mγ]

min
j=1

(ρ
[j+M−[Mγ+1]]
1 − ρ

[j]
1 ).

2.2. Chi-Square Pivotal Based Interval Estimation for λ and θ

In this subsection, another set of alternative confidence intervals is proposed for GIED
parameters λ and θ.

Theorem 3. Let R = (R1, R2, . . . , Rn) be the first n upper records from the GIED of (1) with
parameters λ and θ. Pivotal quantity

P2(λ; R) = −2
n−1

∑
i=1

i ln

(
ln[1− e−λ/Ri ]

ln[1− e−λ/Ri+1 ]

)
= 2

n−1

∑
i=1

ln

(
ln[1− e−λ/Rn ]

ln[1− e−λ/Ri ]

)

is chi-square distributed with 2(n− 1) degrees of freedom. Moreover, P2 is also independent with
Q1(λ, θ; R) = −2θ ln[1− e−λ/Rn ] defined in Theorem 1.

Proof. See Appendix D.

Corollary 2. From Lemma 1, it is also observed that pivotal quantity P2 = P2(λ) increases in λ
and the corresponding range of P2(λ) is (0, ∞).

Based on Theorem 3, another confidence interval is proposed for parameter λ as follows.

Theorem 4. Let R = (R1, R2, . . . , Rn) be the first n upper records from the GIED of (1) with
parameters λ and θ. For arbitrary 0 < γ < 1, a 100(1− γ)% chi-square pivotal quantity based
exact confidence interval (CECI) for λ is given by(

ρ2(χ
1−γ/2
2(n−1); R), ρ2(χ

γ/2
2(n−1); R)

)
,

where χ
γ
k denotes the right-tail 100γ% quantile of a chi-square distribution k degrees of freedom

and ρ2(t; R) is the solution of λ for equation P2(λ) = t.

Proof. See Appendix E.

It should be mentioned that given 0 < p < 1 the solution to P2(λ) = χ
p
2(n−1) can be

obtained by R function, uniroot, and labeled by ρ2(χ
p
2(n−1); R). By using the distribution

property of P2(λ), other hypotheses are presented as an application and complementary.
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Remark 3. Consider the same null hypothesis H0 and alternative hypothesis H1 as provided in
Remark 1, since pivotal quantity P2(λ) is chi-square distributed and increases in λ with range
(0, ∞). Therefore, for arbitrary 0 < γ < 1, the decision rule to reject null hypothesis H0 in
(a), (b), (c) can be respectively written as

(a)′′
{

P2(λ0) ≤ χ
γ
2(n−1)

}
, (b)′′

{
P2(λ0) ≥ χ

γ
2(n−1)

}
,

(c)′′
{

P2(λ0) ≤ χ
γ/2
2(n−1), or P2(λ0) ≥ χ

1−γ/2
2(n−1)

}
.

It is noted that Remarks 1 and 3 provide two hypothesis-tests for λ. How to compare and
pursue a better one under this case remains an open problem.

Following similar approach as Section 2.1, another generalized confidence interval
could be proposed for parameter θ through pivotal quantities P2 and Q1.

Let ρ2(Y2; R) be the unique solution of P2(λ; R) = Y2, where Y2 ∼ χ2
2(n−1), then a

generalized pivotal quantities, namely S2, is constructed for λ as follows

S2 =
Q1

−2 ln[1− e−ρ2(Y2;r)/rn ]
=

θ ln[1− e−ρ2(Y2;R)/Rn ]

ln[1− e−ρ2(Y2;r)/rn ]
.

One can also observe that the distribution of S2 is free of any unknown parameters
from its first expression and S2 reduces to θ when R = r. Furthermore, a realization of
ρ2(Y2; R) can be derived by generating random sample y2 from chi-square distribution
with 2(n− 1) degrees of freedom and solving the equation P2(λ) = y2. Therefore, using
similar Monte-Carlo procedure as Algorithm 1, the chi-square pivotal quantity based
generalized confidence interval (CGCI) of θ could be obtained through replacing ρ1(y1; R)
by ρ1(y1; R).The detailed procedure is shown in Algorithm 3.

Algorithm 3: CGCI for parameter θ.

Step 1 Generate a data y2 of Y2 from the chi-square distribution with 2(n− 1)
degrees of freedom and compute observation ρ2 of ρ2(y2; R) from P2(λ) = y2.

Step 2 Generate random sample for Q1 from chi-square distribution with 2n degrees
of freedom and compute S2.

Step 3 Repeat Step 1 and 2 M times, then one can obtain M values of S2.
Step 4 To construct the generalized confidence interval of θ, first arrange all estimates

of S1 in an ascend order as S[1]
2 , S[2]

2 , . . . , S[M]
2 . For arbitrary 0 < γ < 1,

a 100(1− γ) confidence interval of θ can be obtained as

(S[j]
2 , S[j+M−[Mγ+1]]

2 ), j = 1, 2, . . . , [Mγ],

where [t] denotes the greatest integer less than or equal to t. Therefore, the
100(1− γ)% generalized confidence interval of θ can be constructed as the
j∗th one that satisfies

S[j∗+M−[Mγ+1]]
2 − S[j∗ ]

2 =
[Mγ]

min
j=1

(S[j+M−[Mγ+1]]
2 − S[j]

2 ).

Remark 4. Based on the distribution of Y2 and Q1, the CDF of the generalized pivotal quantity S2
is given by

FS2(s) =
∫ ∞

0
P(S2 < s|Y2 = y2) fY2(y2)dy2

= 1−
∫ ∞

0
Gχ2

2n
(−2s ln[1− e−ρ2(y2;r)/rn ])Gχ2

2(n−1)
(y2)dy2.



Mathematics 2022, 10, 1047 7 of 20

Furthermore, based on pivotal quantity P2(λ), a CGCI for parameter λ can be con-
structed based on following Algorithm 4.

Algorithm 4: CGCI for parameter λ.

Step 1 Generate a realization y2 of Y2 from the chi-square distribution with 2(n− 1)
degrees of freedom and obtain an observation ρ2 of ρ2(y2; R) from equation
P2(λ) = y2.

Step 2 Repeat above 1 for M times to obtain M values of ρ2(y2; R).

Step 3 Arrange all ρ2(y2; R) in an ascending order as ρ
[1]
2 , ρ

[2]
2 , . . . , ρ

[M]
2 . For arbitrary

0 < γ < 1, a 100(1− γ) confidence interval of θ can be obtained as
(h[j]2 , h[j+M−[Mγ+1]]

2 ), for j = 1, 2, . . . , [Mγ]. Then, a 100(1− γ)% CGCI of λ is
obtained as the j∗th one satisfying

ρ
[j∗+M−[Mγ+1]]
2 − ρ

[j∗ ]
2 =

[Mγ]

min
j=1

(ρ
[j+M−[Mγ+1]]
2 − ρ

[j]
2 ).

Remark 5. Based on the results obtained in Sections 2.1 and 2.2, generalized pivotal quantities for
mean µ, 100γ% quantile tγ, reliability function R(t0) and failure rate function r(t0) of GIED are
constructed. From (1), it is observed that µ, tγ, R(t0) and r(t0) of GIED can be expressed as

µ =
∫ ∞

0
[1− e−λ/t]θdt, tγ = − λ

ln[1− γ1/θ ]
,

R(t0) = [1− e−λ/t0 ]θ , r(t0) =
λθ

t2
0

e−λ/t0

[1− e−λ/t0 ]
.

Following similar approach as discussed earlier and using S1, S2 and Q1, generalized pivotal
quantities for µ, tγ, R(t0) and r(t0) can be constructed respectively as follows,

Tµ =
∫ ∞

0
[1− e−ρj(Yj ;r)/t]Sj dt, Ttγ = −

ρj(Yj; r)

ln[1− γ1/Sj ]
,

TR(t0)
= [1− e−ρj(Yj ;r)/t0 ]Sj and Tr(t0)

=
hj(Yj; r)Sj

t2
0

e−ρj(Yj ;r)/t0

[1− e−ρj(Yj ;r)/t0 ]
,

for j = 1 and 2, respectively. Therefore, the Monte Carlo algorithm could be used to obtain the
associated generalized confidence intervals for different reliability indices.

2.3. Approximate Confidence Interval Estimation

In this section, conventional approximate confidence intervals (ACIs) are presented
based on the asymptotic theory of the maximum likelihood estimation, and the ACIs
for the GIED parameters and reliability indices are constructed by using observed Fisher
information matrix.

Let R = (R1, R2, . . . , Rn) be the upper records from the GIED (1), then the log-
likelihood function of λ and θ, say `(λ, θ), can be expressed as

`(λ, θ) = n ln θ + n ln λ− λ
n

∑
i=1

1
ri
+ θ ln[1− e−λ/rn ]−

n

∑
i=1

ln[1− e−λ/ri ].

Therefore, the observed Fisher information matrix of (λ, θ) can be expressed as

I(λ, θ) =

[
− ∂2`

∂θi∂θj

]
i,j=1,2

=

[
I11 I12
I12 I22

]
,
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where the elements of Fisher information matrix is given by

I11 = −∂2`(λ, θ)

∂λ2 =
n
λ2 +

θ

r2
n

e−λ/rn

[1− e−λ/rn ]2
−

n

∑
i=1

1
r2

i

e−λ/ri

[1− e−λ/ri ]2
,

I21 = I12 = −∂2`(λ, θ)

∂λ∂θ
= − 1

rn

e−λ/rn

1− e−λ/rn
and I22 = −∂2`(λ, θ)

∂θ2 =
n
θ2 .

For deriving the ACIs for GIED parameters λ and θ, the following asymptotic distri-
bution is presented for MLEs of the parameters.

Theorem 5. As n→ ∞, one has

(λ̂− λ, θ̂ − θ)
d−→ N(0, I−1(λ, θ)),

where d−→ means ‘distributed as’, (λ̂, θ̂) is the MLE of (λ, θ) being the solution of following
equations

n
λ
−

n

∑
i=1

1
ri
+

θ

rn

e−λ/rn

1− e−λ/rn
−

n

∑
i=1

1
ri

e−λ/ri

1− e−λ/ri
= 0 and

θ = − n
ln[1− e−λ/rn ]

and

I−1(λ, θ) =
1

I11 I22 − I2
12

(
I22 −I12
−I12 I11

)
.

Proof. Using the asymptotic properties of MLEs for (λ, θ) under regularity conditions and
multivariate central limit theorem, the result can be proved.

Based on Theorem 5 and replacing (λ, θ) by its MLE (λ̂, θ̂), for arbitrary 0 < γ < 1,
the ACIs for λ and θ can be constructed respectively as(

λ̂∓ zγ/2

√
Var(λ̂)

)
and

(
θ̂ ∓ zγ/2

√
Var(θ̂)

)
,

where zγ is the upper γ-th quantile of the standard normal distribution and(
Var(λ̂) Cov(λ̂, θ̂)

Cov(λ̂, θ̂) Var(θ̂)

)
= I−1(λ̂, θ̂).

Moreover, in order to obtain ACIs for reliability indices Tµ, Ttγ , TR(t0)
, Tr(t0)

, the fol-
lowing result is needed.

Theorem 6. Let K = K(λ, θ) be the reliability index for GIED (1). When n→ ∞,

(K̂− K) d−→ N(0, V(λ, θ)),

where V(λ, θ) = (OK)T I−1(λ, θ)(OK) and

OK =

(
∂K
∂λ

,
∂K
∂θ

)T
=

(
n
λ
−

n

∑
i=1

1
ri
+

θ
rn

e−λ/rn

1− e−λ/rn
−

n

∑
i=1

1
ri

e−λ/ri

1− e−λ/ri
,

n
θ
+ ln[1− e−λ/rn ]

)
.

Proof. See Appendix F.
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Let K = K(λ, θ) = Tµ, Ttγ , TR(t0)
, Tr(t0)

and be the reliability indices of GIED model
respectively. Based on Theorem 6 and replacing (λ, θ) by its MLE (λ̂, θ̂), for arbitrary
0 < γ < 1, the ACI of K can be constructed as(

K̂− zγ/2

√
V̂ar(K̂), K̂ + zγ/2

√
V̂ar(K̂)

)
,

where

V̂ar(K̂) = [OK̂]TV̂ar(λ̂, θ̂)[OK̂], V̂ar(λ̂, θ̂) = I−1(λ̂, θ̂),

and

OK̂ =

(
∂K
∂λ

,
∂K
∂θ

)T∣∣∣
λ=λ̂,θ=θ̂

.

Sometimes, the ACI obtained by previous procedure may have a negative lower bound.
In order to overcome this drawback, the logarithmic transformation and delta methods
can be used to obtain the asymptotic normality distribution of ln K̂ as ln K̂−ln K

Var(ln K̂)
→ N(0, 1).

Therefore, a 100(1− γ)% ACI of K obtained in this manner can be constructed as K̂

exp
(

zγ/2

√
V̂ar(ln K̂)

) , K̂ exp
(

zγ/2

√
V̂ar(ln K̂)

),

where V̂ar(ln K̂) = V̂ar(K̂)/K̂.

2.4. Prediction Interval of Future Records

Prediction problems have emerged as one of the basic methodologies in many practical
studies such as reliability, industrial experiments, agricultural, clinical trials, mortality and
survival analysis. This subsection discusses the prediction intervals of record values when
first n upper records are available, and associated prediction intervals are obtained based
on pivotal and likelihood procedures, respectively.

2.4.1. Pivotal Quantity Based Prediction

Using the same notations in the proof of Theorem 1, besides Z1, Z2, . . . , Zn, we
further define

Zn+1 = −θ(ln[1− e−λ/Rn+1 ]− θ ln[1− e−λ/Rn ]),

Zn+2 = −θ(ln[1− e−λ/Rn+2 ]− θ ln[1− e−λ/Rn+1 ]),

. . .

Zn+k = −θ(ln[1− e−λ/Rn+k ]− θ ln[1− e−λ/Rn+k−1 ]),

where Rn+1, Rn+2, . . . , Rn+k are future next k record values. Therefore, it is seen from
Theorem 1 that Z1, . . . , Zn, Zn+1, . . . , Zn+k are independent and identically distributed
(i.i.d.) from the standard exponential distribution with mean 1. Along with notation
Wi = ∑i

j=1 Zi = −θ ln[1 − e−λ/Ri ], i = 1, 2, . . . , n + k, one has that 2Wn = Q1 follows

chi-square distribution with 2n degrees of freedom, 2 ∑n+k
i=n+1 Zi is independent of 2Wn and

chi-square distribution with 2k degrees of freedom, and that Wn+k = Wn + ∑n+k
i=n+1 Zi.

Furthermore, we further denote pivotal quantity

S =
Wn

Wn+k
=

[
1 +

k
n

2 ∑n+k
i=n+1 Zi/2k
Q1/2n

]−1

=
ln[1− e−λ/Rn ]

ln[1− e−λ/Rn+k ]
. (3)
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Using the independent and distribution properties of chi-square quantities Q1 and

2 ∑n+k
i=n+1 Zi, T =

2 ∑n+k
i=n+1 Zi/2k
Q1/2n has F distribution with 2k and 2n degrees of freedom of

which PDF is given by

fT(t) =
Γ(k + n)
Γ(k)Γ(n)

(
k
n

)k
tk−1

(
1 +

k
n

t
)−(k+n)

.

Therefore, one can conduct from theory of sampling distribution that the PDF of
pivotal quantity S can be expressed as

fS(s) =
Γ(k + n)
Γ(k)Γ(n)

sn−1(1− s)k−1, 0 < s < 1,

which implies that pivotal quantity S is Beta distributed with n and k degrees of freedom
and that Rn+k from (3) can be expressed as

Rn+k =
−λ

ln(1− [1− e−λ/Rn ]1/S)
.

Based on pivotal quantities P1, P2 and Q1, for j = 1, 2 two kinds of generalized pivotal
quantities can be constructed as

S3 =
−hj(Yj; r)

ln(1− [1− e−hj(Yj ;r)/Rn ]1/S)
. (4)

A Monte Carlo simulation Algorithm 5 is provided as follows to obtain the generalized
prediction interval of Rn+k.

Algorithm 5: Generalized prediction interval for Rn+k.

Step 1 Generate a realization hj(yj; R) of hj(Yj; R) from equation Pj(λ) = yj with yj
being random sample of F distribution with 2 and 2(n− 1) degrees of freedom
or chi-square distribution with 2(n− 1) degrees of freedom, respectively.

Step 2 Generate random data for S from beta distribution with n and k degrees of
freedom and compute S3 in (4).

Step 3 Repeat Step 1 and 2 for M times to obtain M values of S3.
Step 4 To obtain the generalized prediction interval of Rn+k, arrange all estimates

of S3 in an ascending order as S[1]
3 , S[2]

3 , . . . , S[M]
3 . For arbitrary 0 < γ < 1, a

100(1− γ) prediction interval of Rn+k can be obtained as

(S[j]
3 , S[j+M−[Mγ+1]]

3 ), j = 1, 2, . . . , [Mγ].

Hence, the 100(1− γ)% generalized prediction interval of Rn+k can be
constructed as the j∗th one satisfying

S[j∗+M−[Mγ+1]]
3 − S[j∗ ]

3 =
[Mγ]

min
j=1

(S[j+M−[Mγ+1]]
3 − S[j]

3 ).

2.4.2. Likelihood Based Plugging Prediction

Now, suppose that the first n record values from a population with CDF F(·) and
PDF f (·), and the goal is to predict the kth upper record say Y = Rk, k > n. Due to the
well-known Markovian property of record statistics, the conditional distribution of Y given
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r = (r1, r2, . . . , rn) is just the distribution of Y given Rn = rn that can be written as (see
Arnold et al. [8])

f (y; rn) =
[H(y)− H(rn)]k−n−1

Γ(k− n)
f (y)

1− F(rn)
, rn < y < ∞,

where H(·) = − ln[1− F(·)].
For the GIED of (1), the prediction distribution can be expressed as

f (y, λ, θ; rn) =
[ln[1− e−λ/rn ]θ − ln[1− e−λ/y]θ ]k−n−1

Γ(k− n)

θλ
y2 e−λ/y[1− e−λ/y]θ−1

[1− e−λ/rn ]θ
, rn < y. (5)

Therefore, by substituting λ̂ and θ̂ into (5), for 0 < γ < 1, a simple 100(1− γ)%
likelihood based plugging prediction interval (LPI) for Rk can be obtained as (yL, yR), where
yL and yR are the associated prediction bounds being the solutions of following equations∫ yL

rn
f (y, λ̂, θ̂; rn) =

γ

2
and

∫ ∞

yR

f (y, λ̂, θ̂; rn) =
γ

2
. (6)

3. Numerical Illustration

In this section, simulation studies and real-life examples are presented to assess the
performance of the proposed methods.

3.1. Simulation Studies

Monte Carlo simulation study is performed for investigating the effectiveness of the
proposed generalized interval estimates in terms of average width (AW) and coverage
probability (CP) when upper records data is utilized.

The following Algorithm 6 is presented firstly to generate a group of record values as
follows.

Algorithm 6: Generation procedure of record data

Step 1 Generate a group of random samples, namely Z1, Z2, . . . , Zn, from uniform
distribution over [0, 1] interval.

Step 2 Make transformation Yi = − ln(1− Zi), then Yi, i = 1, 2, . . . , n, are the i.i.d.
samples from standard exponential distribution Exp(1) with mean 1.

Step 3 Let Wi = Y1 + Y2 + . . . + Yi, for 1 ≤ i ≤ n. Since the exponential distribution
has the lack of memory property, then the sequence of Wi, i = 1, 2, . . . , n, are
the record values from standard exponential distribution.

Step 4 Denote Ui = 1− e−Wi , then the sequence Ui, i = 1, 2, . . . , n, are the record
values from uniform distribution over [0, 1] interval.

Step 5 For arbitrary continuous CDF F(·), make transformation Ri = F−1(Ui),
sequence Ri, i = 1, 2, . . . , n are the sequence of record values from
population F(·), where F−1(·) is the inverse function of F(·).

It should be mentioned that Step 5 will generate the record values, Ri, i = 1, 2, . . . , n,
from GIED with with scale parameter λ > 0 and shape parameter θ > 0 by utilizing F of (1).

Using the above proposed record sampling algorithm, simulation studies are carried
out to investigate the performance of different proposed confidence intervals for parameters
λ, θ, Rn+1 and reliability indices µ, tγ, R(t0), r(t0), respectively. The simulation inputs
include n = 4, 5, 6, 7, 9, 10, the number of upper records, (λ, θ) = (2, 1.1) and (0.9, 0.5). For
each combination inputs, the simulation were repeated 10,000 runs. In each simulation run,
all confidence intervals with 90% confident level were obtained. Therefore, there are 10,000
confidence intervals for each type and parameter considered. The average width (AW)
of the confidence interval for each type and parameter can be calculated. The coverage
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probability (CP) that is defined as the percentage of 10,000 confidence intervals containing
the true input parameter can be evaluated, too. Parts of simulation results were presented
in Tables 1 and 2, where the results of the FECI/CECI and FGCI/CGCI for parameter λ are
shown in the first and second column of Table 1, respectively.

From the simulated results shown in Tables 1 and 2, it is observed that

1 The AWs of all interval estimates for parameters λ, θ, Rn+1, reliability indices µ, t0.1, R(2),
r(2) decrease, and the associated CPs increase when the number, n, of records increases.

2 For fixed n, both FECIs and CECIs of λ have shorter interval lengths than correspond-
ing FGCIs and CGCIs, respectively.

3 For all parameters and reliability indices, the FGCIs feature shortest interval lengths
and ACIs have longest interval lengths among all interval estimates under same
sample size; the prediction interval obtained under pivotal quantities perform better
than the associated LPIs.

4 The CPs of all interval estimates are close to the nominal confidence level.

All confidence intervals were developed based on a high level of confidence, 90%. The
simulated confidence interval with small AW and CP closed to 90% will be considered as a
good confidence interval. To sum up, it is noted that the proposed pivotal quantities based
confidence intervals perform better than conventional likelihood based confidence intervals
in terms of AW and CP. Therefore, for parameter λ, the FECI may be an appropriate choice
for interval estimation, whereas FGCIs for other parameters and reliability indices are
recommended under same significance level which also features more concise expression
than the associated chi-square pivotal quantity based intervals.

Table 1. AWs and CPs (within bracket) of interval estimates for GIED parameters.

(λ, θ) n
F pivotal quantity based confidence intervals
λ (FECI) λ (FGCI) θ Rn+1

(2, 1.1) 4 6.8527 [0.8791] 7.2971 [0.8821] 4.7835 [0.8741] 5.1010 [0.8921]
6 5.7231 [0.8824] 6.3849 [0.8847] 3.4128 [0.8798] 3.8327 [0.8942]
9 1.6693 [0.8938] 2.5714 [0.9011] 1.0519 [0.8893] 1.0061 [0.9016]

(0.9, 0.5) 5 4.5248 [0.8829] 5.6383 [0.8840] 5.3492 [0.8816] 3.8432 [0.8868]
7 3.5915 [0.8904] 4.3739 [0.8916] 4.8221 [0.8873] 3.1459 [0.8897]

10 1.6274 [0.9020] 2.4824 [0.8998] 3.5309 [0.8945] 1.4073 [0.8974]

(θ, λ) n
Chi-squared pivotal quantity based confidence intervals
λ (CECI) λ (CGCI) θ Rn+1

(2, 1.1) 4 7.3564 [0.8809] 8.4026 [0.8749] 5.2834 [0.8814] 6.2571 [0.8912]
6 6.4287 [0.8825] 7.1215 [0.8832] 4.6290 [0.8839] 4.5684 [0.8973]
9 2.8136 [0.9018] 3.3509 [0.8927] 2.1113 [0.8927] 2.2119 [0.9038]

(0.9, 0.5) 5 5.3552 [0.8838] 6.8742 [0.8862] 7.0229 [0.8852] 4.2203 [0.8872]
7 4.7369 [0.8892] 5.3961 [0.8931] 6.4783 [0.8891] 3.8972 [0.8930]

10 2.1250 [0.9017] 3.4926 [0.9022] 4.4812 [0.8980] 2.5614 [0.8992]

(θ, λ) n
Approximate confidence interval and LPI
λ θ Rn+1

(2, 1.1) 4 9.2738 [0.8753] 6.1283 [0.8837] 6.4769 [0.8929]
6 7.9254 [0.8840] 5.3679 [0.8872] 5.1253 [0.8968]
9 4.3210 [0.8996] 3.4142 [0.9005] 2.4561 [0.9049]

(0.9, 0.5) 5 8.2441 [0.8906] 8.9238 [0.8891] 5.0937 [0.8901]
7 6.7532 [0.8945] 8.0763 [0.8934] 4.2311 [0.8931]

10 3.8728 [0.9028] 5.8345 [0.9019] 2.9148 [0.9006]
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Table 2. AWs and CPs (within bracket) of interval estimates for other indices from GIED.

(θ, λ) n
F pivotal quantity based confidence intervals
µ t0.1 R(2) r(2)

(2, 1.1) 4 4.7282 [0.8891] 7.8732 [0.8843] 0.3621 [0.8935] 5.7823 [0.8843]
6 3.2971 [0.8914] 5.9012 [0.8862] 0.2935 [0.8954] 4.9637 [0.8879]
9 1.1233 [0.8963] 3.2329 [0.8911] 0.1724 [0.8981] 3.2521 [0.8936]

(0.9, 0.5) 5 3.2986 [0.8903] 5.7925 [0.8855] 0.3151 [0.8920] 3.9319 [0.8865]
7 2.4975 [0.8915] 4.8301 [0.8871] 0.2616 [0.8948] 3.1743 [0.8890]
10 1.0821 [0.8982] 2.4219 [0.8913] 0.1543 [0.8996] 1.4176 [0.8948]

(θ, λ) n
Chi-squared pivotal quantity based confidence intervals
µ t0.1 R(2) r(2)

(2, 1.1) 4 5.5438 [0.8895] 11.8293 [0.8860] 0.4302 [0.8930] 6.4895 [0.8858]
6 4.6210 [0.8926] 9.8278 [0.8875] 0.3525 [0.8947] 5.8750 [0.8892]
9 2.9075 [0.8978] 6.6231 [0.8924] 0.2018 [0.8988] 3.6246 [0.8940]

(0.9, 0.5) 5 3.7128 [0.8911] 7.7823 [0.8862] 0.3529 [0.8929] 5.0121 [0.8863]
7 2.9190 [0.8933] 6.6327 [0.8881] 0.2914 [0.8954] 3.9237 [0.8904]
10 1.3013 [0.8978] 3.4996 [0.8933] 0.1698 [0.8989] 2.0632 [0.8952]

(θ, λ) n
Approximate confidence interval
µ t0.1 R(2) r(2)

(2, 1.1) 4 6.7291 [0.8886] 16.3527 [0.8848] 0.4827 [0.8944] 8.3823 [0.8857]
6 5.5325 [0.8930] 13.6154 [0.8881] 0.3851 [0.8965] 6.7319 [0.8901]
9 3.8092 [0.8998] 8.8231 [0.8932] 0.2530 [0.9006] 3.9072 [0.8964]

(0.9, 0.5) 5 4.5871 [0.8915] 9.2023 [0.8875] 0.3931 [0.8931] 7.2398 [0.8890]
7 3.6992 [0.8930] 7.8921 [0.8893] 0.3656 [0.8960] 6.1243 [0.8917]
10 2.1132 [0.9010] 5.8190 [0.8946] 0.2039 [0.9010] 3.1111 [0.8971]

3.2. Real-Life Examples

Example 1 (Breakdown data of electrical insulating fluid). The following real-life data set is
taken from Lawless ([22] (p. 3)) and is presented under a logarithm transformation which represents
the times to breakdown of electrical insulating fluid subjected to 30 kilovolts.

2.836, 3.120, 3.045, 5.169, 4.934, 4.970, 3.018, 3.770, 5.272, 3.856, 2.046

Before progressing further, we first check whether the GIED of (1) can be used or not
to analyze these breakdown data of the electrical insulating fluid. By computation, the
Kolmogorov–Smirnov (K-S) distance and the corresponding p-value comes out to be 0.2091
and 0.6681 respectively, which suggests that the GIED of (1) fits the transformed breakdown
data set well. Further, based on the breakdown data of electrical insulating fluid, a group
of record data with sample size 4 can be generated as

2.836, 3.120, 5.169, 5.272 (7)

Therefore, under confidence level 1 − α = 0.9 and based on record data (7), the
FECIs/FGCIs, CECIs/CGCIs and ACIs for model parameters are provided in Table 3, and
associated interval estimates for reliability indices are presented in Table 4 respectively,
where the interval lengths are also provided in squared brackets.
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Table 3. Interval and prediction interval estimates of parameters using breakdown record data (7) of
the electrical insulating fluid.

FGCI CGCI ACI FECI CECI

λ (0.1705, 1.7324) (1.4462, 22.2995) (1.5571, 24.5919) (0.1630, 1.6924) (1.4444, 21.0982)
[1.5619] [20.8533] [23.0348] [1.5294] [19.6538]

θ (2.8634, 47.4589) (2.0978, 73.0060) (0.3412, 156.7204)
[44.5955] [70.9082] [156.3792]

R5 (6.5381, 9.0154) (5.2819, 8.2041) (5.3469, 8.4665)
[2.4773] [2.9222] [3.1195]

Table 4. Interval estimates of reliability indices using breakdown record data (7) of the electrical
insulating fluid.

µ t0.1 R(4) r(4)

FGCI (0.3994, 2.1898) (0.3756, 4.1265) (0.0001, 0.2033) (0.2764, 1.9773)
[1.7904] [3.7509] [0.2032] [1.7009]

CGCI (1.4450, 3.7198) (2.4699, 6.5671) (0.0284, 0.2479) (0.3174, 2.5046)
[2.2748] [4.0972] [0.2195] [2.1872]

ACI (2.0411, 4.3501) (1.0291, 5.6470) (0.0787, 0.3652) (0.0074, 23.0982)
[2.3090] [4.6179] [0.2865] [23.0908]

From the results listed in Table 3, it is seen that the FECI of λ feature shorter interval
length than that of the corresponding FGCI, and similar phenomenon also appears between
the CECI and CGCI for λ. Meanwhile, one can observe that the F quantity pivotal based
confidence interval is superior to the chi-square pivotal based confidence interval for
parameter λ in terms of interval length. Moreover, all pivotal quantities based on exact and
generalized confidence intervals have better performance than the associated likelihood
based ACI of λ. For both parameters θ and prediction record R5, we note that the proposed
FGCIs have shorter interval lengths than those of the CGCIs, respectively. Similarly, for
the confidence intervals as shown in Table 4, it is also observed that, for reliability indices
µ, t0.1, R(4) and r(4), both FGCIs and CGCIs appears better performance than the ACIs,
while the FGCI appears shortest interval lengths among three interval estimates.

Example 2 (Lung cancer survival data). The survival times in days of 16 lung cancer patients
from Lawless ([22] (p. 319)) is presented as follows

6.96, 9.30, 6.96, 7.24, 9.30, 4.90, 8.42, 6.05,

10.18, 6.82, 8.58, 7.77, 11.94, 11.25, 12.94, 12.94.

We first fit the GIED to the above data set. The K-S distance between the empirical
distribution function and the fitted GIED is 0.1445 and the corresponding p value is 0.8650.
Therefore, it is clear that the GIED distribution provides a very good fit to the above survival
times of lung cancer patients.

Because upper recorded data set is a special ordered observations, we would like to
use this type of ordered observations with small sample size to compare all the proposed
estimation methods. From the 16 survival times of the lung cancer data, a set of record data
with sample size 5 can be generated as

6.96, 9.30, 10.18, 11.94, 12.94. (8)
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Therefore, under same significance level γ = 0.1, different generalized and approx-
imate intervals for model parameters and reliability indices as well as future one-step
prediction interval are obtained as shown in Tables 5 and 6.

Table 5. Interval and prediction interval estimates using the lung cancer survival data (8).

FGCI CGCI ACI FECI CECI

λ (0.3847, 3.9446) (0.4246, 20.7612) (9.2335, 70.3682) (0.3214, 3.7867) (0.0002, 7.9787)
[3.5599] [20.3366] [61.1347] [3.4653] [7.9785]

θ (1.6131, 9.7976) (5.2028, 94.3762) (0.5363, 273.3536)
[8.1845] [89.1734] [272.8173]

R6 (14.8734, 18.5643) (13.5022, 17.4767) (12.0061, 16.2382)
[3.6909] [3.9745] [4.2321]

Table 6. Interval and prediction interval estimates using the lung cancer survival data (8).

µ t0.1 R(4) r(4)

FGCI (0.4890, 2.5751) (0.5505, 4.7870) (0.0001, 0.0402) (0.1849, 1.0414)
[2.0861] [4.2365] [0.0401] [0.8565]

CGCI (0.5286, 4.3892) (5.8381, 10.5965) (0.0249, 0.7472) (0.1555, 1.1315)
[3.8606] [4.7584] [0.7223] [0.9760]

ACI (5.4830, 10.3288) (7.8962, 12.8412) (0.2134, 1.0803) (0.2830, 2.5722)
[4.8458] [4.9450] [0.8669] [2.2892]

Based on results in Tables 5 and 6, we observe that the exact confidence intervals per-
form better than the corresponding generalized interval estimates for the parameters λ, and
the CGCIs have relatively longer interval lengths than FGCIs, but shorter interval lengths
than ACIs for each parameters λ, θ, R6 and reliability indices µ, t0.1, R(4), r(4), respectively.

4. Discussions and Remarks

In this paper, inference of interval estimation is discussed for the unknown parameters
as well as the reliability indices of generalized inverted exponential distribution. When
upper record values are available, different pivotal quantities are proposed and associ-
ated exact and generalized confidence intervals are constructed for the model parameters.
Moreover, generalized prediction intervals are also proposed for the future record values.
Simulation studies and real-life examples show that the performance of the proposed exact
and generalized confidence interval estimates provide better performance than conven-
tional likelihood based approximate confidence intervals even in small sample sizes.

Based on the pivotal quantities proposed in this paper, there are several areas in
which these methods have potential applications in statistical inference. For instance, an
equal-tailed confidence region for parameters (λ, θ) could be constructed from Theorems 1
and 3 as

CRγ
1 =

{
(λ, θ) : ρ1

(
n− 1

F(1−
√

1−γ)/2
[2,2(n−1)]

+ 1
)
< λ < ρ1

(
n− 1

F1+
√

1−γ/2
[2,2(n−1)]

+ 1
)

,

χ
1+
√

1−γ/2
2n

−2 ln[1− e−λ/Rn ]
< θ <

χ
1−
√

1−γ/2
2n

−2 ln[1− e−λ/Rn ]

}
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and

CRγ
2 =

{
(λ, θ) : ρ2

(
χ
(1+
√

1−γ)/2
2(n−1)

)
< λ < ρ2

(
χ

1−
√

1−γ/2
2(n−1)

)
,

χ
1+
√

1−γ/2
2n

−2 ln[1− e−λ/Rn ]
< θ <

χ
1−
√

1−γ/2
2n

−2 ln[1− e−λ/Rn ]

}
,

respectively, which further provide simultaneous confidence band for the GIED CDF
F(t; λ, θ) at mission time t and is defined as

CDRγ
i =

{
(t, F(t; λ, θ)) : (λ, θ) ∈ CRγ

i

}
, i = 1, 2.

In this cases, we need to minimize and maximize F(t; λ, θ) with (λ, θ) ∈ CRγ
i , i = 1, 2.

Moreover, pivotal inferential procedures proposed here can also be used for other
problems. For example, the pivotal quantity approach can be employed to find one-sided
confidence limits for reliability indices such as quantile and mean time to failure, among
others. The regression model based on the generalized inverted exponential distribution is
an interesting work that needs different approaches. It will be a future work.
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Appendix A. Proof of Theorem 1

Denote Xi = −θ ln[1− e−λ/Ri ], i = 1, 2, . . . , n; it can be observed that X1, X2, . . . , Xn
are common records statistics from the standard exponential distribution with mean 1.
According to [23], the exponential distribution has the lack of memory property. Conse-
quently, the differences between successive records will be i.i.d. samples from the standard
exponential distribution. Let Z1 = X1 and Zi = Xi − Xi−1, i = 1, 2, . . . , n; it is observed
that Zi, i = 1, 2, . . . , n are independent and identically distributed and follows standard
exponential distribution with mean 1.

Furthermore, denoting

U1 = 2Z1 = −2θ ln[1− e−λ/R1 ]

and

V1 = 2
n

∑
i=2

Zi = 2θ{ln[1− e−λ/R1 ]− ln[1− e−λ/Rn ]},

one can observe that quantities U1 and V1 follow chi-square distribution with 2 and 2(n− 1)
degrees of freedom respectively and are statistical independent.
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Furthermore, let pivotal quantities be

P1 =
U1/2

V1/2(n− 1)
= (n− 1)

[
ln[1− e−λ/Rn ]

ln[1− e−λ/R1 ]
− 1

]−1

and

Q1 = U1 + V1 = −2θ ln[1− e−λ/Rn ].

Then P1 follows F distribution with 2 and 2(n− 1) degrees of freedom, Q1 has a chi-
square distribution with 2n degrees of freedom and P1 and Q1 are statistical independent
(see [24]).

Appendix B. Proof of Lemma 1

Taking the derivative for G(t) with respect to t, one has that

dG(t)
dt

=
1
t

ln[1− e−t/b]

ln[1− e−t/a]

[
t
b

e−t/b

(1− e−t/b) ln[1− e−t/b]
− t

a
e−t/a

(1− e−t/a) ln[1− e−t/a]

]
.

Therefore, showing that G(t) increases in t is equivalent to proving that function g(y) =
y ln y

(1−y) ln(1−y) with y = e−t ∈ (0, 1) decreases in t.
According Cauchy’s mean-value theorem, for arbitrary 0 < y < 1, there exist y1 and

y2 with 0 < y1 < y < y2 < 1 satisfying

ln(1− y)− ln(1− 0) = − y
1− y1

and ln 1− ln y =
1− y

y2
,

which can be rewritten as

ln(1− y) = − y
1− y1

and − ln y =
1− y

y2
, 0 < y1 < y < y2 < 1.

Taking the derivative of g(y) with respect to y, one has

dg(y)
dy

=
y ln y + (ln y + 1− y) ln(1− y)

(1− y)2 ln2(1− y)
=

y(1− y)(y1 − y2)

(1− y)2 ln2(1− y)y2(1− y1)
< 0.

Therefore, function g(y) decreases in y and the proof of the first result is done.
Furthermore, by using the L’Hospital’s rule, given 0 < a < b

lim
t→0

G(t) = lim
t→0

a
b
· 1− e−t/a

1− e−t/b = 1

and

lim
t→∞

G(t) = lim
t→∞

a
b
· e−t/b

e−t/a = ∞.

Therefore, the assertion is proved.

Appendix C. Proof of Theorem 2

From Theorem 1, P1(λ) is F distributed with 2 and 2(n− 1) degrees of freedom. Hence,
for arbitrary 0 < γ < 1,

P
(

F1−γ/2
[2,2(n−1)] < P1(λ) < Fγ/2

[2,2(n−1)]

)
= 1− γ,
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which is equivalent to

P

 n− 1

Fγ/2
[2,2(n−1)]

+ 1 <
ln[1− e−λ/Rn ]

ln[1− e−λ/R1 ]
<

n− 1

F1−γ/2
[2,2(n−1)]

+ 1

 = 1− γ,

where P
(

P1(λ) < F1−γ/2
[2,2(n−1)]

)
= P

(
P1(λ) > Fγ/2

[2,2(n−1)]

)
= γ/2.

Based on Lemma 1 and Corollary 1, quantity ln[1−e−λ/Rn:k ]

ln[1−e
−λ/Rj:k ]

increases in λ with range

(1, ∞), one further has

P

ρ1

 n− 1

Fγ/2
[2,2(n−1)]

+ 1

 < λ < ρ1

 n− 1

F1−γ/2
[2,2(n−1)]

+ 1

 = 1− γ.

Therefore, the assertion is proved.

Appendix D. Proof of Theorem 3

Following the same notations as in Theorem 1, it is noted that

Z1 = −θ ln[1− e−λ/R1 ],

Z2 = −θ(ln[1− e−λ/R2 ]− ln[1− e−λ/R1 ]),

. . .

Zn = −θ(ln[1− e−λ/Rn ]− ln[1− e−λ/Rn−1 ])

are independent and identically distributed standard exponential distribution with mean
1. Let Wi = ∑i

j=1 Zi = −θ ln[1− e−λ/Ri ], i = 1, 2, . . . , n. According to Stephens [25] and
Viveros and Balakrishnan [26],

U1 =

(
W1

W2

)1
=

(
ln[1− e−λ/R1 ]

ln[1− e−λ/R2 ]

)1

,

U2 =

(
W2

W3

)2
=

(
ln[1− e−λ/R2 ]

ln[1− e−λ/R3 ]

)2

,

. . .

Un−1 =

(
Wn−1

Wn

)n−1
=

(
ln[1− e−λ/Rn−1 ]

ln[1− e−λ/Rn ]

)n−1

,

are independent and identically distributed by standard uniform distribution U(0, 1) with
sample size n− 1. Moreover, U1, U2, . . . , Un−1 are also independent of Wn = −2θ ln[1−
e−λ/Rn ].

Furthermore, using the theory of sampling distribution, it is observed directly that

P2 = −2
n−1

∑
i=1

ln(Ui) = −2
n−1

∑
i=1

i ln

(
ln[1− e−λ/Ri ]

ln[1− e−λ/Ri+1 ]

)
= 2

n−1

∑
i=1

ln

(
ln[1− e−λ/Rn ]

ln[1− e−λ/Ri ]

)

is chi-square distributed with 2(n− 1) degrees of freedom, which is also independent with

Q1 = Wn = −2θ ln[1− e−λ/Rn ].

Therefore, the assertion is completed.
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Appendix E. Proof of Theorem 4

Since P2 = P2(λ) is chi-square distributed with 2(n − 1) degrees of freedom, for
arbitrary 0 < γ < 1,

P
(

χ
1−γ/2
2(n−1) < P2(λ) < χ

γ/2
2(n−1)

)
= 1− γ,

where P
(

P2(λ) > χ
γ/2
2(n−1)

)
= P

(
P2(λ) < χ

1−γ/2
2(n−1)

)
= γ/2. From Corollary 2, quantity

P2(λ) increases in λ with range (0, ∞), thus above expression is equivalent to

P
(

ρ2(χ
1−γ/2
2(n−1)) < λ < ρ2(χ

γ/2
2(n−1))

)
= 1− γ.

Therefore, the proof is done.

Appendix F. Proof of Theorem 6

Let α = (λ, θ), K(α̂) can be expressed as

K(α̂) = K(α) + [OK(α)]T(α̂− α) +
1
2
(α̂− α)T [O2K(α∗)](α̂− α) (A1)

by using Taylor series expansion and the differential mean value theorem, where OK(α)
and O2K(α) denotes the matrices of the first and second derivatives for K(α) with respect to
α, and α∗ is some proper value between α and α̂. The expression (A1) implies K(α̂)→ K(α)
when n→ ∞ by using α̂→ α from Theorem 5.

Based on delta method [27], the expression (A1) can be rewritten as

K(α̂)− K(α) ≈ [OK(α)]T(α̂− α),

Moreover, the variance of K(α̂) can be written as

Var[K(α̂)] ≈ Var[[OK(α)]T α̂]

= [OK(α)]TVar[α̂][OK(α)]

Therefore, using the central limit theory and Theorem 5, one has

K(α̂)− K(α)→ N(0, [OK(α)]TVar[α̂][OK(α)]),

and the assertion is shown.

References
1. Chandler, K.N. The distribution and frequency of record values. J. R. Stat. Soc. Ser. B. 1952, 14, 220–228. [CrossRef]
2. Dey, S.; Dey, T.; Luckett, D.J. Statistical inference for the generalized inverted exponential distribution based on upper record

values. Math. Comput. Sim. 2016, 120, 64–78. [CrossRef]
3. Raqab, M.Z. Inferences for generalized exponential distribution based on record statistics. J. Stat. Plann. Infer. 2002, 104, 339–350.

[CrossRef]
4. Singh, S.; Tripathi, Y.M.; Wu, S. Bayesian estimation and prediction based on lognormal record values. J. Appl. Stat. 2017, 44,

916–940. [CrossRef]
5. Soliman, A.A.; Al-Aboud, F.M. Bayesian inference using record values from Rayleigh model with application. Eur. J. Oper. Res.

2008, 185, 659–672. [CrossRef]
6. Wang, B.X.; Ye, Z. Inference on the Weibull distribution based on record values. Comput. Stat. Data Anal. 2015, 83, 26–36.

[CrossRef]
7. Ahsanullah, M. Introduction to Record Statistics; NOVA Science: New York, NY, USA, 1995.
8. Arnold, B.C.; Balakrishnan, N.; Nagaraja, H.N. Records; Wiley: New York, NY, USA, 1998.
9. Fernandez, A.J. Minimizing the area of a Pareto confidence region. Eur. J. Oper. Res. 2012, 221, 205–212. [CrossRef]
10. Fernandez, A.J. Smallest Pareto confidence regions and applications. Comput. Stat. Data Anal. 2013, 63, 11–25. [CrossRef]
11. Wu, S.F. Interval estimation for a Pareto distribution based on a doubly Type-II censored sample. Comput. Stat. Data Anal. 2008,

52, 3779–3788. [CrossRef]

http://doi.org/10.1111/j.2517-6161.1952.tb00115.x
http://dx.doi.org/10.1016/j.matcom.2015.06.012
http://dx.doi.org/10.1016/S0378-3758(01)00246-4
http://dx.doi.org/10.1080/02664763.2016.1189520
http://dx.doi.org/10.1016/j.ejor.2007.01.023
http://dx.doi.org/10.1016/j.csda.2014.09.005
http://dx.doi.org/10.1016/j.ejor.2012.03.007
http://dx.doi.org/10.1016/j.csda.2012.12.016
http://dx.doi.org/10.1016/j.csda.2007.12.015


Mathematics 2022, 10, 1047 20 of 20

12. Wu, S.J. Estimation of the parameters of the Weibull distribution with progressively censored data. J. Japan Stat. Soc. 2002, 32,
155–163. [CrossRef]

13. Zhang, J. Minimum volume confidence sets for two-parameter exponential distributions. Am. Stat. 2018, 72, 213–218. [CrossRef]
14. Kinaci, I.; Wu, S.-J.; Kus, C. Confidence intervals and regions for the generalized inverted exponential distribution based on

progressively censored and upper records data. Revstat 2019, 17, 429–448.
15. Marques, J.M.E. Confidence intervals for the expected damage in random loadings: Application to measured time-history records

from a Mountain-bike. In IOP Conference Series: Materials Science and Engineering, Proceedings of the 49th AIAS Conference (AIAS
2020), Genova, Italy, 2–5 September 2020; IOP Publishing: Bristol, UK, 2020; Volume 1038, p. 012025.

16. Abouammoh, A.M.; Alshingiti, A. Reliability estimation of generalized inverted exponential distribution. J. Stat. Comput. Sim.
2009, 79, 1301–1315. [CrossRef]

17. Nadarajah, S.; Kotz, S. Extreme Value Distributions: Theory and Applications; Imperial College Press: London, UK, 2000.
18. Dey, S.; Dey, T. On progressively censored generalized inverted exponential distribution. J. Appl. Stat. 2014, 41, 2557–2576.

[CrossRef]
19. Dey, S.; Pradhan, B. Generalized inverted exponential distribution under hybrid censoring. Stat. Methodol. 2014, 18, 101–114.

[CrossRef]
20. Krishna, H.; Kumar, K. Reliability estimation in generalized inverted exponential distribution with progressively Type-II censored

sample. J. Stat. Comput. Sim. 2012, 83, 1–13. [CrossRef]
21. Weerahandi, S. Generalized Inference in Repeated Measures: Exact Methods in MANOVA and Mixed Models; Wiley: New York, NY,

USA, 2004.
22. Lawless, J.F. Statistical Models and Methods for Lifetime Data; Wiley: New York, NY, USA, 2003.
23. Nagaraja, H.N. Record values and related statistics-a review. Commun. Stat. Theor. M 1998, 17, 2223–2238. [CrossRef]
24. Johnson, N.L.; Kotz, S.; Balakrishnan, N. Continuous Univeriate Distributions, 2nd ed.; Wiley: New York, NY, USA, 1994; Volume 1,
25. Stephens, M. Tests for the exponential distribution. In Goodness-of-Fit Techniques; D’Agostino, R.B., Stephens, M., Eds.; Marcel

Dekker: New York, NY, USA, 1986; pp. 421–459.
26. Viveros, R.; Balakrishnan, N. Interval estimation of parameters of life from progressively censored data. Technometrics 1994, 36,

84–91. [CrossRef]
27. Xu, J.; Long, J.S. Using the delta method tonconstruct confidence intervals for predicted probabilities, rates, and discrete changes.

In Lecture Notes; Indiana University: Bloomington, IN, USA, 2005.

http://dx.doi.org/10.14490/jjss.32.155
http://dx.doi.org/10.1080/00031305.2016.1264315
http://dx.doi.org/10.1080/00949650802261095
http://dx.doi.org/10.1080/02664763.2014.922165
http://dx.doi.org/10.1016/j.stamet.2013.07.007
http://dx.doi.org/10.1080/00949655.2011.647027
http://dx.doi.org/10.1080/03610928808829743
http://dx.doi.org/10.1080/00401706.1994.10485403

	Introduction
	Confidence Interval Estimation
	F Pivotal Based Interval Estimation for  and 
	Chi-Square Pivotal Based Interval Estimation for  and 
	Approximate Confidence Interval Estimation
	Prediction Interval of Future Records
	Pivotal Quantity Based Prediction
	Likelihood Based Plugging Prediction


	Numerical Illustration
	Simulation Studies
	Real-Life Examples

	Discussions and Remarks
	Appendix A
	Appendix B
	Appendix C
	Appendix D
	Appendix E
	Appendix F
	References

