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Abstract: Determining whether a distribution is bimodal is of great interest for many applications.
Several tests have been developed, but the only ones that can be run extremely fast, in constant time
on any variable-size signal window, are based on Sarle’s bimodality coefficient. We propose in this
paper a generalization of this coefficient, to prove its validity, and show how each coefficient can
be computed in a fast manner, in constant time, for random regions pertaining to a large dataset.
We present some of the caveats of these coefficients and potential ways to circumvent them. We
also propose a composite bimodality coefficient obtained as a product of the weighted generalized
coefficients. We determine the potential best set of weights to associate with our composite coefficient
when using up to three generalized coefficients. Finally, we prove that the composite coefficient
outperforms any individual generalized coefficient.

Keywords: bimodality coefficient; bimodality; distributions; image binarization; Sarle’s coefficient

MSC: 62-08

1. Introduction

Statistics represent an important part of dealing with everyday data, i.e., data that
follow a certain distribution. Determining the number of modes in a distribution can be a
crucial step in making further decisions based on said data. However, this can prove to be
rather difficult, in most cases, and many approaches simply rely on just assigning the best
number that fits, via trial and error.

Many have explored ways to test whether a distribution is bimodal and have found
better methods than the ones available before them. This field has been growing for a long
time and there seems to be no end in sight. An important application for these tests is the
binarization of an image, for which worldwide competitions are often held to encourage
finding an even better algorithm than the ones before it. Since these sorts of applications
just require finding a threshold, we only need to determine whether a distribution is either
bimodal or unimodal to find an optimal threshold. Thus, a metric that could ascertain this
characteristic would be beneficial. Such metrics have been proposed before, but none are
without flaws, so a more robust solution is needed.

The dip test of unimodality is a non-parametric test proposed by Hartigan and
Hartigan [1] that measures multimodality in an empirical distribution by computing, over
all points, the maximum difference between the empirical distribution and the unimodal
distribution that minimizes said maximum difference. However, this test only determines
if a distribution is multimodal or not and does not help with determining how many modes
a multimodal distribution has.

Silverman [2] uses kernel density estimates to investigate multimodality. His test
consists of finding the maximal window h for which the kernel density estimate has
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k modes or less. A large value for this window indicates that the distribution has k modes
or less and a small value indicates that it has more than k modes. This test is computationally
demanding and must be run for both the number of modes you want to test for, and that
number minus one.

Muller and Sawitzki [3] propose a test based on the excess mass functional, which
measures excessive empirical mass in comparison with multiples of uniform distributions.
Estimators for the excess mass functional are built iteratively and they converge uniformly
towards it.

The MAP test for multimodality proposed by Rozal and Hartigan [4] uses minimal
ascending path spanning trees to compute the MAPk statistic which indicates k-modality
if it has a large value. Computing the MAPk statistic is straightforward, but the trees are
created with Prim’s algorithm which has a complexity of log-linear order. Creating the
trees is time-consuming.

Ashman et al. [5] use the KMM algorithm to test for multimodality. They fit a user-
specified number of Gaussian distributions to the empirical distribution and iteratively
adjust the fit until the likelihood function converges to its maximum value. A good fit for a
k-modal model indicates k-modality, but multiple values for k must be tested. Fitting a
complex model is extremely cumbersome, especially for high values for k, and the test is
not reliable for distributions drastically different from the model.

Zhang et al. [6] present three measures for bimodality after fitting a bimodal normal
mixture to a distribution. The first one, bimodal amplitude, is calculated as AB = AM−AV

AM
,

with AV being the amplitude of the minimum PDF between the two peaks and AM the
amplitude of the smaller peak of the two. The second one, bimodal separation, is based
on the characteristics of the two normal distributions that form the mixture and has the
following formula S = µ2−µ1

2(σ1+σ2)
. The third one, bimodal ratio, is computed with R = AR

AL
,

where AR and AL are the amplitudes of the right and left peaks.
Wang et al. [7] also fit a bimodal normal mixture to a distribution, but with equal

variances, and define their bimodality index as BI = |µ1−µ2|
σ

√
π(1− π), where µ1,2 are the

means of the normal distributions, σ is their common variance, and π and 1− π are the
mixing weights of the normal distributions.

Bayramoglu [8] defines a bimodality degree δ = min
{

f (x1)
f (x2)

, f (x1)
f (x3)

}
, where f is the

probabilty density function of the distribution, x1 is a local minimum of f , and x2, x3 are
local maxima of f . This bimodality degree takes values from 0 to 1, with 1 indicating
unimodality and lower values indicating a more pronounced antimode. In practice, finding
local minima and maxima from samples of a distribution requires fitting a model f (x) over
the observed samples and solving f ′(x) = 0.

Jammalamadaka et al. [9] propose a Bayesian test for the number of modes in a Gaus-
sian mixture, and compute a Bayes factor for a mixture of two Gaussians B10 = P(H1|x)P(H0)

P(H0|x)P(H1)
,

where H0 is the hypothesis that the mixture is unimodal and H1 is the hypothesis that the
mixture is bimodal. Higher values for this Bayes factor indicate bimodality, but a suitable
threshold must be selected.

Chaudhuri and Agrawal [10] measure the bimodality of a distribution after applying

a threshold k with the following function W(k) = n1σ
2
1+n2σ

2
2

nσ2 , where n1 is the number of
samples with values ≤ k, σ2

1 is their variance, n2,σ2
2 are the analogs for the samples with

values > k and n,σ2 for all the samples. Low values for this function indicate bimodality.
Van Der Eijk [11] presents a way to measure agreement in a discrete distribution with a

finite range of possible values. The formula for this agreement is A = U
(

1− S−1
K−1

)
, where

U is a measure of unimodality, S is the number of distinct values present in the sample,
and K is the total number of possible values for the distribution. This formula takes values
between −1 and 1, with 1 indicating unimodality and -1 indicating multimodality.



Mathematics 2022, 10, 1042 3 of 17

Wilcock [12] defines a bimodality parameter based on the amplitudes and probabilities

of the modes. The formula is B =
√

Ar
Al
(Pl + Pr), where Al , Ar are the amplitudes of the

left and right mode and Pl , Pr are the probabilities. High values for B indicate bimodality.
Smith et al. [13] propose an alternative bimodality index with the formula

B∗ = |φ2 −φ1| P2
P1

, where φ1,2 are the modal sizes in phi units, subscript 1 refers to the
primary mode, and subscript 2 to the secondary mode. If the modes have equal amplitudes,
then 1 refers to the right mode and 2 to the left one. The two indices are numerically similar
in the range of 3 < Ar/Al < 30, which covers most of the bimodal distributions presented
in [13], but the index presented in [13] has an asymptotic behavior of tending to zero as the
separation of modes vanishes.

Contreras-Reyes [14] constructs an asymptotic test for bimodality for a bimodal skew-
symmetric normal (BSSN) distribution from the Kullback–Leibler divergence. For the
δ parameter of the BSSN distribution, he selects a threshold δ0 and tests the hypothesis
H0 : δ ≤ δ0 versus the alternative H1 : δ > δ0. H0 indicates bimodality and H1 unimodality.

Highly specialized tests are much more accurate than the more general ones; how-
ever, they should only be used for the specific distributions they are specialized for. For
example, Vichitlimaporn et al. [15] present highly specialized bimodality criterions for the
molecular weight distributions in copolymers. Hassanian-Moghaddam et al. [16] present a
similar criterion for the bivariate distribution of chain length and chemical composition of
copolymers. Voříšek [17] uses Cardan’s discriminant to determine whether or not a cusp
distribution is bimodal.

Sarle’s bimodality coefficient [18] uses a formula based on skewness and kurtosis that
takes values between 0 and 1, with the value of 1 corresponding only to the perfect bimodal
distribution. Values closer to 1 usually indicate bimodality, but not necessarily. Hilde-
brand [19] shows that kurtosis can be used as a bimodality indicator for some distributions
but says that using it uncritically is hazardous and proves that for some distributions it
cannot be used as such. Even though this test is not reliable enough to prove that a certain
distribution is bimodal, it is quite easy to compute, especially when using summed-area
tables to quickly compute the values of skewness and kurtosis.

In this paper, we discuss the strengths and weaknesses of Sarle’s bimodality coefficient
and improve upon it by proposing generalized bimodality coefficients and combining
several of them to create and fine-tune a composite bimodality coefficient that offers better
results on the datasets we tested, while still being able to run in constant time on variable-
sized datasets.

In Section 2 we present Sarle’s bimodality coefficient in greater detail, the summed-
area table technique and how we use it to compute the coefficient in constant time, a
generalization of Sarle’s bimodality coefficient, and how we combine multiple generalized
bimodality coefficients to create a composite bimodality coefficient. In Section 3, we describe
the testing methodology, and in Section 4 we present the numerical results. In Section 5,
we discuss the benefits and risks of using the generalized bimodality coefficients and the
composite bimodality coefficient. In Section 6, we conclude that the composite bimodality
coefficient can be a step-up from Sarle’s bimodality coefficient with the correct ratios.

2. Materials and Methods
2.1. Sarle’s Bimodality Coefficient (BC)

Sarle’s bimodality coefficient is a straightforward method to test for bimodality. It
is calculated according to the formula BC = skewness2+1

kurtosis , where skewness is the third
standardized moment of the distribution and kurtosis is the fourth one. Pearson, in an
editorial note to Shohat [20], proved that skewness2—kurtosis is greater than or equal to 1,
with equality only for the two-point Bernoulli distribution [21]. Because the two-point
Bernoulli distribution is the “most” bimodal distribution, the BC tends to take values closer
to 1 for “more” bimodal distributions and closer to 0 for “less” bimodal ones.

However, this test is not perfect. High values do not always indicate bimodality and
low values do not always indicate non-bimodality. Figure 1 showcases this caveat with the
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unimodal beta distribution with probability density function (PDF) f (x|α = 25, β = 1) =
Γ(26)

Γ(25)Γ(1) x24, x ∈ [0, 1], and the bimodal binormal distribution with PDF g(x|µ1 = 0,µ2 = 1,

σ1 = σ2 = 0.25, ω = 0.5) = 2√
2π

(
e−8x2

+ e−8(x−1)2
)

, x ∈ [0, 1], where ω and 1−ω are the
mixing weights. In practice, a common threshold for this coefficient is 0.555. Distributions
with values greater than this are considered bimodal, and the ones with values lower than
this are not. Knapp [18] compares the performance of this BC with the performance of
other tests and shows a unimodal distribution for which the BC takes a very high value
(0.78) compared to the actual bimodal distributions (0.56–0.66).
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2.2. Fast Generation of Moments

The reason we are interested in bimodality tests that can be run in constant time is
the development of applications that are dealing with large amounts of data and must
partition or classify portions of data as fast as possible. Such an application may be one
that binarizes a sample from an unknown n-dimensional signal by identifying, for each
sample point, the best window for which to apply a specific threshold-based binarization
algorithm (e.g., Otsu’s [22] method).

Sarle’s bimodality coefficient requires the computation of standardized moments
3 and 4 (skewness and kurtosis), which in turn require the computation of raw moment 1
and central moment 2 (mean and variance). However, the brute-force approach for these
computations is of a linear order (Θ(n)), and the number of windows in the sample space
is of a squared order (Θ

(
n2)), resulting in the complexity of a cubed order (Θ

(
n3)). Luckily,

a constant order (Θ(1)) approach for the in-window computations exists and is presented
in the following subsections.

2.2.1. Summed-Area Table Technique

The mean of a window can be computed in constant time using a technique called
the summed-area table [23]. The idea behind this is that by pre-computing the sums of
the samples, the sum of a certain window can be computed as a function of the sums of
the extremity points of the window. For a one-dimensional signal, the sum of a window
would simply be the sum up to the point at the end of the window, minus the sum up to
the point before the beginning of the window. Figure 2 shows how to compute the sum
of a window for a two-dimensional signal. The sum of the window of interest (red) is
equal to the sum of the orange window, whose value is stored in the summed-area table
at the coordinates of the bottom right corner, plus the sum of the purple window (top left
corner), minus the sum of the blue window (top right corner), minus the sum of the green
window (bottom left corner). This technique can be applied to an n-dimensional signal for
any natural number n.
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2.2.2. Generation of Moments Using Sums of Power

However, these sums divided by the number of samples in the window only yield the
raw moments. Luckily, central, and standardized moments can be expressed as a function
of raw moments of rank lower or equal to theirs as follows [24]:

Mn =
n

∑
j=0

Cj
n(−1)n−jµ′jµ

n−j, (1)

where µn is the central moment of order n, and µ′j is the raw moment of order j and is the
mean value of the distribution. Denoting µ̃n = µn

σn as the standardized moment of order n,
with σ representing the standard deviation of the distribution, we have the formula for
Sarle’s BC as:

BC =
µ̃2

3 + 1
µ̃4

=
σ4 + σ

(
2µ3 − 3µ′2µ+ µ′3

)
−3µ4 + 6µ′2µ

2 − 4µ′3µ+ µ′4
(2)

where σ =
√
−µ2 + µ′2. Applying the technique described in the previous section on the

matrix in Figure 2, we can obtain the summed-area tables for higher powers, as illustrated
in Figure 3.
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2.3. Generalized Bimodality Coefficient (GBC)

Theorem 1. Let X be a distribution, µ its central moments, and µ̃ its standardized moments. Let

GBCk =

{
0, for distributions concentrated on one point

(
to avoid 0

0
)

µ2
2k+1+µ2k+1

2
µ2k+2µ2k

=
µ̃2

2k+1+1
µ̃2k+2µ̃2k

, otherwise
(3)

Then, the inequality GBCk ≤ 1 holds for any distribution, with equality only for distributions
concentrated on two points.

Proof. Let
zk = µ̃2k+2µ̃2k − µ̃2

2k+1 − 1.

zk ≥ 0⇔ GBCk ≤ 1

Since zk is concave and all finite distributions with zero mean are (convex) mixtures of
distributions concentrated on at most two points [25], the theorem will be proven if we can
show that zk = 0 for all two-point distributions.
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A two-point distribution takes the form X =

(
x y

p(x) p(y)

)
. Then µk =

akb−abk

b−a =

−ab
b−a

(
bk−1 − ak−1

)
, where a = x− E(X), b = y− E(X). We can substitute this value in the

equation we want to prove and find that:

zk = (−ab)−k

b−a

(
b2k+1 − a2k+1

)
(−ab)−k

b−a

(
b2k−1 − a2k−1

)
−
(

(−ab)1− 2k+1
2

b−a

(
b2k − a2k

))2

− 1

= (−ab)1−2k

(b−a)2

((
b2k+1 − a2k+1

)(
b2k−1 − a2k−1

)
−
(

b2k − a2k
)2
)
− 1

= (−ab)1−2k

(b−a)2

(
b4k − a2k+1b2k−1 − a2k−1b2k+1 + a4k − b4k + 2a2kb2k − a4k

)
− 1

= (−ab)1−2k

(b−a)2

(
−a2k+1b2k+1 − a2k−1b2k−1 + 2a2kb2k − (b− a)2(−ab)2k−1

)
= (−ab)1−2k

(b−a)2

(
−a2k+1b2k+1 − a2k−1b2k−1 + 2a2kb2k + a2k−1b2k+1 − 2a2kb2k + a2k+1b2k−1

)
= 0,

(4)

which is equivalent to GBCk = 1 for all distributions concentrated on at most two points. �

2.4. Composite Bimodality Coefficient (CBC)

As previously shown, comparing a bimodality coefficient’s value to a set threshold is
a weak test on its own. To have a strong test, we consider different formulas to mix our
GBCs and obtain a CBC (see Appendix A). After running different tests with said formulas,
we define our CBC according to a mixed power law, in the form seen in Equation (5):

GBCn =
n

∏
k=1

GBCpk
k . (5)

This formula ensures that each GBC contributes to the test, and their respective powers
represent the weight with which they do.

Since the problem at hand deals with a variety of possible distributions, potential
mixtures of them, and imperfect data pertaining to said distributions, finding a set of
powers that can be considered optimal in terms of general approximation is a difficult
challenge. With that in mind, we found no way to analytically determine the best set of
powers and thus resorted to the empirical method. We decided that a good way to establish
the veracity of the CBC is by testing its performance in an image binarization application.

There are multiple ways to go about finding a set of powers that can fit a generic
CBC. One that we tried initially was doing a simple grid-search using an image dataset, by
starting around a series of points representing the powers of each GBC and shifting around
them to increase the accuracy of our results. However, this method proved to be both
lengthy and inefficient, as determining the accuracy of a set of powers in the image dataset
took a while to compute (~10–20 min); given the thousands of possible combinations, the
time to test them would increase to days. Subsequently, another factor that was an issue
was that each new image that was added would change the order of the sets around, with
the same one almost never being at the top again, whilst the accuracy of all sets was very
similar to one another and within the margin of error. The third issue with this approach
was that we do not know ahead of time whether a distribution is bimodal or not.

Thus, we needed a different approach that we could run on a dataset of known
distributions in a fast time, obtain a set of powers on said dataset, and then run the CBC
obtained by combining those powers against the original image dataset. For this purpose,
we chose to train and use a very simple neural network, as the process for finding the
desired values using one is very similar to that of a grid-search.

Our approach consisted of training a neural network to predict a potential set of
powers that can be used in our composite coefficient. Since we were interested in obtaining
a simple formula that can be applied in a fast, straightforward manner to compute values in
real-time, we aimed to build a very rudimentary network configuration, more specifically
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that of a perceptron [26]. To determine a proper configuration for our network, we also
considered the way the value of a node is computed, and the one-to-one relationship
between the set of values that we wanted to find and our bimodality coefficients. Thus, we
could build a straightforward network where our only output was represented by our CBC,
and the inputs, associated with our GBCs, were directly connected to it.

Theorem 2. Let In = {x1, . . . , xn} represent the inputs of our network, Wn = {w1, . . . , wn} the
associated weights, and y the output of our network to which all the inputs are connected directly,
with f(x) as its activation function and b as its activation bias. If

y = f

(
n

∑
k=1

wkxk

)
+ b, ∃g(x), In = {g(GBC1), . . . , g(GBCn)} ⇒ y =

n

∏
k=1

GBCwk
k . (6)

Proof. Let

g(x) = ln(x), f (x) = ex, b = 0⇒ y =
n

∏
j=1

GBC
wj
j

Something to be noted is that we chose to use only the first 3 GBCs in our approach,
due to two reasons. First, as previously discussed, higher-order GBCs tend to be more
error-prone to noise; thus, using them with a variety of distributions can potentially lead
to poorer results. Secondly, computing higher-order GBCs requires a lot of resources to
guarantee the precision necessary to store the values which can also take a lot of time, and
is not the intended use for our coefficient that is meant to be fast and reliable. �

3. Preparing the Dataset for Training and Testing

For our training dataset, we chose to generate it from a variety of distributions, for
two simple reasons. First, since we know the distributions involved in generating the data,
we know ahead of time if a sample should follow a one or two-point focused distribution.
Second, due to controlling the distributions involved in generating our samples, we can
limit some of the caveats that were previously mentioned that negatively impact our GBC.
For this purpose, we chose to generate random data points using twelve different distri-
butions (see Appendix B), respectively a mixture of them, aimed at a variety of potential
unimodal and bimodal results, generating a total of approximately 25,000 distributions. In
a similar fashion, to vary the potential values of the GBCs pertaining to each distribution,
we generated sets with a varying number of points, between 500 and 10,000. Because
we wanted to test the veracity of the CBC in a binarization application, all values were
generated in the interval [0, 1], for an easier overall approach; however, this does not alter
the result, as any distribution could be shifted and scaled to any other interval of choice,
and the standardized central moments would not change.

After we generated the data, we computed the following for each set of points pertain-
ing to a distribution: the moments, respectively the GBC from them, as well as a value that
we would like our CBC to tend to for that set of points. We denoted these values as CBC’
and they will be used as the output of the network during the training step. Since we know
the original distributions that generated our sets of points, we can compute CBC′ in two
ways, depending on whether or not the original distribution was unimodal or bimodal:

CBC′( f (x)) =
{

CBC′u( f (x)), i f f (x) is unimodal
CBC′b( f (x)), i f f (x) is bimodal

(7)

CBC′u( f (x)) =
min( f (x))
max( f (x))

|argmax( f (x))− argmin( f (x))| (8)
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For a bimodal distribution f (x), we denote with xm1, xm2, xm1 ≤ xm2 the position of
the two modes of the distribution.

dm = (xm2 − xm1)
( 1

n f (xm2−xm1)
)

(9)

CBC′b( f (x)) =


dm

(
max( f (x))−min( f (x))

max( f (x))

)dm
, i f f (xm1) = f (xm2)

dm

(
f (xm1)
f (xm2)

)1−dm
, i f f (xm1) < f (xm2)

dm

(
f (xm2)
f (xm1)

)1−dm
, otherwise

(10)

Theorem 3. Let Codomain(CBC′) = {CBC′( f (x))|∀x ∈ [0, 1], ∀ f (x) : [0, 1]→ [0,+∞)}.
Then Codomain(CBC′) ⊆ [0, 1].

Proof.
min( f (x))
max( f (x)) ∈ [0, 1], |argmax( f (x))− argmin( f (x))| ∈ [0, 1]

⇒ Codomain(CBC′u) ⊆ [0, 1]
(11)

(xm2 − xm1) ∈ (0, 1]⇒ (xm2 − xm1)
u ∈ [0, 1], ∀u ∈ R⇒ dm ∈ (0, 1] (12)

If f (xm1) = f (xm2),
max( f (x))−min( f (x))

max( f (x))
∈ (0, 1]⇒ Codomain

(
CBC′b

)
⊆ (0, 1] (13)

f (xm1)

f (xm2)
∈ [0, 1), if f (xm1) < f (xm2),⇒ Codomain

(
CBC′b

)
⊆ [0, 1) (14)

The last case for CBC′b is similar to (14). From (11)–(14) we can see that
Codomain(CBC′) ⊆ [0, 1]. �

In the above equations, dm ∈ (0, 1] represents a correction factor based on the distance
between the two modes of the distribution, such that two close modes do not give a high
value for the CBC’. Similarly, n f is a normalization factor, typically chosen in the interval
[100, 300] to ensure we always raise to subunit powers, and that dm can raise exponentially
closer to 1 when the modes start spreading apart. The reason for using a correction factor is
because a set of points generated by a bimodal distribution with two close modes would
be almost indistinguishable from one generated by a unimodal distribution with a similar
shape and with its mode lying somewhere between the two modes of the bimodal one. In a
similar fashion, we used 1− dm when the value of the PDF differs between the two nodes
so that modes that are very spread vertically, but not horizontally, do not result in high
CBC’ values.

3.1. Training the Network

Based on the previously computed values, we could train our network using the
natural logarithms of GBCs as inputs and CBC’ as the output. However, before training our
network, we also considered a second potential remap of our inputs, before applying our
logarithmic function on the GBCs, one based on polynomial fitting (see Appendix C). This
approach did lead to increased overall accuracy; thus, it was kept both for later training
and testing purposes.

Since the training of the network was based on gradient descent, and we used a very
simple network configuration, we had no certainty that our search would hit a global
optimum, and, even if it did, we could not be sure of the general applicability of such an
optimum. Consequently, since we did not know which set of powers might behave best in
practice, we needed to obtain multiple sets and compare them. Thus, we trained different
networks, with different constraints, such as using a different dataset when training, or
constraining the weights, either to a set interval or simply making them strictly positive, to
obtain our possible CBC parameters.
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3.2. Testing the CBC

Tests were conducted against an image dataset generated by combining the following
datasets: the DIBCO datasets [27–35], the PHIBD 2012 [36] dataset, the Nabuco dataset [37],
and the Rahul Sharma dataset [38], the combination of which will be further denoted
simply as the Images dataset. On this dataset, we ran a binarization algorithm starting
from multiple possible choices, with various window sizes. We decided to settle on one
based on Otsu’s method with a fixed 8 × 8 window size centered on each pixel. There
were also separate tests conducted against a synthetic dataset obtained from random data
pertaining to multiple distributions and mixtures of them.

4. Numerical Results
4.1. Accuracy of GBC

To quantify the accuracy, we used the F-measure (FM) defined as follows:

FM =
2·TP

2·TP + FP + FN
, (15)

where TP stands for true positives, FP for false positives, and FN for false negatives. In
Table 1, we can see the different F-measures associated with each GBC on both datasets.
One thing to note is that higher-order GBCs tend to decrease in accuracy when trying to
identify whether a distribution is bimodal or not, a point which will be discussed later as
well as why higher-order GBCs might still be valuable, given certain scenarios.

Table 1. F-measures of the first three GBCs.

GBC F-Measure (%) Dataset

GBC1
76.829 Images

64.193 Synthetic

GBC2
76.714 Images

47.688 Synthetic

GBC3
74.934 Images

46.546 Synthetic

Figure 4 shows the class separation corresponding to each GBC, showing how higher-
order GBCs tend to have their values more spread out, thus making it harder to pick a
threshold. The peaks close to 1, for the unimodal cases, in all GBCs, are indicative of
distributions with high skewness and low kurtosis, for the synthetic dataset.

Table 2 shows the behaviors of the GBCs on a binormal distribution with varying
means and variances. All of them decrease in values as the means get closer to each
other and increase in value as the variances decrease, which indicates that they encourage
bimodal distributions with more distinct peaks, with the higher-order GBCs being increas-
ingly more sensitive. We compensated for the lower values of the higher-order GBCs by
raising the powers of the lower-order GBCs.

Table 3 shows the behaviors of the GBCs on a binormal distribution with fixed means
and varying variances. The table is symmetrical, which indicates that they are insensitive
to flipping transformations on the dataset.
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Table 2. Values for GBC1, GBC2, and GBC3 for a binormal distribution with means µ1, µ2 and
variances σ2

1, σ2
2.

µ1, µ2

σ1, σ2 5, 5 2.5, 2.5 1, 1

25, 75 0.8689, 0.5842, 0.3168 0.9621, 0.8586, 0.7136 0.9937, 0.9749, 0.9446

33, 66 0.7563, 0.3556, 0.1177 0.9185, 0.7186, 0.4872 0.9856, 0.9439, 0.8790

40, 60 0.5814, 0.1456, 0.0218 0.8141, 0.4613, 0.1965 0.9621, 0.8586, 0.7136

Table 3. Values for GBC1, GBC2, and GBC3 for a binormal distribution with means µ1 = 33, µ2 = 66
and variances σ2

1, σ2
2.

σ1

σ2 5 2.5 1

5 0.7563, 0.3556, 0.1177 0.8309, 0.5287, 0.3728 0.8578, 0.6105, 0.5198

2.5 0.8309, 0.5287, 0.3728 0.9185, 0.7186, 0.4872 0.9509, 0.8234, 0.6625

1 0.8578, 0.6105, 0.5198 0.9509, 0.8234, 0.6625 0.9621, 0.8586, 0.7136
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4.2. Accuracy of CBC

Table 4 shows some of the coefficients we ended up testing and their corresponding
F-measures for both datasets. As we can see, just because a set of powers gives a good
result for one dataset, does not necessarily mean it would do the same for the other, mostly
due to the specific nature of the distributions that exist in each dataset. However, based on
the overall performance, we would recommend the set of powers of either 3:2:1 or 3:0:1.

Table 4. Mean values for F-measures for different power ratios.

p1 p2 p3 F-Measure (%) Dataset

1 1 1
76.976 Images

47.138 Synthetic

3.051 0 1
76.855 Images

66.294 Synthetic

14.92 −1 1.806
76.841 Images

66.227 Synthetic

16.5 −1 1.414
76.83 Images

64.389 Synthetic

2.98 1.92 1
76.901 Images

65.996 Synthetic

1.535 −1 1.064
74.687 Images

65.251 Synthetic

5. Discussion
5.1. GBC Comparison with BC

As we could see from our results, higher order GBCs tend to be less accurate and less
reliable as indices when identifying whether a distribution is bimodal or not. This is in
part because of two reasons, the first being that higher order GBCs are more error-prone
to noise, specifically because they require values that use higher powers for computation.
The second thing to note is that it is harder to set a specific threshold at which to decide
whether a distribution is bimodal or not, which could also be seen in our results.

However, this does not necessarily mean that using them in a composite coefficient is a
bad thing. As we could see from the results pertaining to our CBC, it just means that using
them individually can lead to worse results. However, for “well-behaved” distributions
(low skewness, high kurtosis, and their respective higher-order moments), GBCs tend to
have some benefits, when considering bimodal distributions:

• the higher the value of the two modes in a distribution, the higher the value of the
GBC, with higher-order GBCs being more sensitive to this property;

• the more spread apart the two modes are, on the x-axis, the higher the value of the
GBC, again, with higher-order GBCs being more sensitive;

• the closer the value of the two modes, on the y-axis, the higher the value of the GBC,
where GBCs of higher-order behave better once again.

Something else to be noted is the fact that there is a huge jump when computing the
F-measure for GBCs one and two on the Synthetic dataset, one of about 15; meanwhile,
these values on the Images dataset tend to be very close together. This might be because
the Synthetic dataset contains a lot of distributions with high skewness and low kurtosis,
which, while they might make the dataset more generic, also have a negative influence
on the results. Similarly, there is no guarantee that the set of synthetic distributions, or
something close in nature to it, might exist in the real world. Thus, for future work, using
sets that pertain to a more specific subset of distributions and mixtures of them, rather than
such a large one, might be more beneficial.
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5.2. CBC as a Bimodality Coefficient

As we could see from our results, the formula we used to compute our CBC gives
better results, on both datasets we tested on, when compared to [18]. This does not mean
that our coefficient is without issues, since distributions with high skewness and low
kurtosis can still lead to misidentifying a unimodal distribution as a bimodal one.

A multitude of indices that were proposed [5–9] needs to make assumptions that the
data they analyze fit a mixture of two normal distributions, which, often, is not necessarily
the case. In this regard, from a generic point of view, our proposed coefficient can be
more robust in some situations. A more significant advantage of our coefficient is its
computational efficiency, especially when compared with the indices previously mentioned.
Since we can compute the moments in a fast manner and we do not require to make
assumptions or try to fit certain distributions to our data, we can determine in a fast and
accurate manner whether some data fit a bimodal distribution or not. Table 5 shows the
performance of our proposed coefficient, when using the powers 3:0:1, which compared
with other indices, ran against a subsample of 4000 distributions of the Synthetic dataset.
All tests were performed on an AMD Ryzen 9 5900HS processor. The times were averaged
across 15 different runs of the program to address potential biases, whilst also looking for
the best potential threshold for all indices, in order to maximize their F-measure, with the
latter being a potential reason why a multitude of the indices shares the same F-measure.

Table 5. Performance of different indices and methods on the Synthetic dataset.

Index/Method Runtime (s) F-Measure (%)

Ashman et al. [5] 37.179 44.294
Zhang et al. [6] 37.286 44.77
Wang et al. [7] 36.986 44.77

Chaudhuri et al. [10] 14.338 44.77
Eijk [11] 2.881 46.976

Wilcock et al. [12] 1.772 44.113
CBC (3:0:1) 0.272 54.104

Similarly, the computational efficiency of our coefficient can be seen when comparing
it with the multitude of bimodality/multimodality tests proposed by [5–10]. Since most
of these work directly on the histogram pertaining to a data sample, they tend to be slow,
whilst also working with an uncertain stop condition, due to trying to find the best fit for
said data. The indices proposed by the authors of [11,12] also work on the histogram, since
they need to make approximations regarding the modes of the distribution. This can be
both slow and can lead to poor results for bimodal distributions which have modes that are
close together. Whilst our coefficient is not impervious to the closeness of the two modes,
the fact that it is easier and faster to compute makes it more desirable.

Due to the fact that the image binarization test scenario is extremely complex, and
running it on the Images dataset will result in an astonishing number of calls to any
benchmarked bimodality coefficient (we counted about 300 million calls per sample from
the Images dataset), it is unfeasible to run on the aforementioned dataset other coefficients
that may be employed in Table 5 besides CBC, simply because they cannot be computed in
constant time (O(1) complexity).

6. Conclusions

Determining whether some data follow a unimodal or bimodal distribution is an
important step in figuring out a proper approach, in order to deal with said data, in a
variety of situations. Thus, a proper way to ascertain this property is desired. A bimodality
coefficient is a good starting point if it is robust.

In our case, the CBC performs better than any GBC on its own, for most of the com-
position ratios we tested, on average obtaining F-measure increases of 1.5–2%. However,
finding an optimal ratio is no easy task, and even then, we have no certainty on how a CBC
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based on such a ratio might behave in more generic scenarios. For this reason, we also
recommend two possible ratios to be considered: 3:2:1 and 3:0:1.

A certain downside of using the bimodality coefficient on its own is the fact that we
do not know how data that follow a multimodal distribution with more than two modes
behave. Thus, a multimodality coefficient could be considered for a better approach, and in
future works, we could investigate ways to compute one.
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Appendix A

It is unreasonable to consider that a CBC comprised of a product of GBCs would yield
the best results in practice. Thus, various other formulas were also considered as potential
approaches for the problem at hand; however, none seemed to give many more beneficial
results when considering both the results on the synthetic dataset of generated distributions
or the image binarization dataset. Moreover, even when they did, it was very situational
and only for a subset of the entire dataset. The F-measures for some of these formulas can
be seen in Table A1, once again considering just the first three GBCs for practical reasons.
These are not all the formulas we tested, but just some of those that we considered being
more relevant in our case. The formulas are also presented without additional coefficients
attached to our GBCs for simplicity. In practice, we tested both GBCs raised to different
powers or multiplied with different coefficients.

Table A1. Results for different formulas we experimented with.

General Formula Tested Formula F-Measure (%) Dataset

1
n

n
∑

k=1
pkGBCk 1

3 (GBC1 + GBC2 + GBC3)
76.953 Images

47.845 Synthetic
n
∏

k=1
GBCpk

k GBC1GBC2GBC3
76.976 Images

47.138 Synthetic
n

∑n
k=1

1
GBC

pk
k

3
1

GBC1
+ 1

GBC2
+ 1

GBC3

65.513 Images

44.366 Synthetic

n

√
n
∏

k=1
GBCk

3
√

GBC1GBC2GBC3
58.98 Images

64.69 Synthetic√
n
∑

k=1
GBC2

k

√
GBC2

1 + GBC2
2 + GBC2

3
58.98 Images

62.788 Synthetic

Appendix B

In order to generate a dataset both for training and testing our network, we chose
to combine the following distributions: Beta [39,40], Burr [41,42], Exponential [43–45],
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Frechet [46–48], Gumbel [49,50], Laplace [51,52], Logistic [53,54], Log-Logistic [55–57],
Log-Normal [58–60], Normal [61,62], Pareto [63,64], and Weibull [65,66]. Obviously, there
are a lot more distributions that we could have used, but we considered these to be
representative enough for our purposes. As can be seen, we chose to use only continuous
distributions, as discrete ones would lead to similar results, with no additional benefits
when generating the data itself.

Each distribution has a different set of parameters associated with it, that determines
its shape. For non-mixed distributions, we simply chose these parameters randomly and
generated the distribution and the random set of points based on it. For mixtures of
distribution, in a similar fashion, we chose the two sets of parameters randomly, whilst also
picking a scaling coefficient for each distribution that determined how much it contributed
to the result. The sum of these scaling coefficients was one. Table A2 shows the set of these
distributions as well as the parameters associated with each of them, and the values we
considered for them, with x ∈ [0, 1]. For some of these distributions, we skewed the selection
of the parameters to certain intervals to obtain more representative distributions, with the
probability of selecting the skewed interval for the parameters being denoted with p.

Table A2. Distributions used in creating the Synthetic dataset.

Distribution PDF Parameters

Beta
f (x;α,β) = Γ(α+β)

Γ(α)Γ(β)
xα−1(1− x)β−1

Γ(z) =
∫ ∞

0 xz−1e−xdx

α,β ∈ (0, 1), p = 0.3
α,β ∈ (1, 10], p = 0.7

Burr f (x; c, k) = ck xc−1

(1+xc)k+1

c ∈ (1, 10]
k ∈ (0, 10]

Exponential f (x; λ) = λe−λx λ ∈ (0, 0.2]

Frechet f (x;α,µ,σ) = α
σ

(
x−µ
σ

)−1−α
e−(

x−µ
σ

)
−α

α ∈ (0, 10]
µ ∈ [0, 1]
σ ∈ (0, 0.2]

Gumbel f (x;µ,σ) = 1
σ e−

x−µ
σ

+e−z µ ∈ [0, 1]
σ ∈ (0, 0.2]

Laplace f (x;µ,σ) = 1
2σ e−

|x−µ|
σ

µ ∈ [0, 1]
σ ∈ (0, 0.2]

Logistic f (x;µ,σ) = e
x−µ
σ

σ
(

1+e−(
x−µ
σ )

)2

µ ∈ [0, 1]
σ ∈ (0, 0.2]

Log-Logistic f (x;α,σ) = ( σ
α )(

x
α )

σ−1

(1+( x
α )

σ
)

2

α ∈ (0, 10]
σ ∈ (0, 0.2]

Log-Normal f (x;α,σ) = 1
xσ
√

2π
e(

(lnx−α)2

2σ2 )
α ∈ (0, 100]
σ ∈ (0, 0.2]

Normal f (x;µ,σ) = 1
σ
√

2π
e−

1
2 (

x−µ
σ

)
2 µ ∈ [0, 1]

σ ∈ (0, 0.2]

Pareto f (x;α,µ) = αµα

xα+1

µ ∈ [0, 1]
α ∈ (0, 100]

Weibull f (x;α,σ) = σ
α

(
π
α

)σ−1e−(
x
α
)σ α ∈ (0, 100]

σ ∈ (0, 0.2]

Appendix C

Something we also considered was using a function that could remap the value of
our GBCs to better fit what we considered the “ideal” coefficient, CBC’, as described
in Section 3. For these, we considered using a polynomial approximation. We tried
polynomials of different degrees; however, polynomials of degrees higher than 3 would
give values outside of the interval [0, 1], for some GBCs in [0, 1]. Thus, even though they
were fitting the data better at some points, since they were not robust for our purpose they
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were discarded and only degree 3 polynomials were considered. The formulas for the three
polynomials used can be seen in Equations (A1)–(A3), where fi(x) corresponds to GBCi.

f1(x) = −2.81x3 + 5.91x2 − 2.77x + 0.42 (A1)

f2(x) = 2.97x3 − 5.19x2 + 2.56x (A2)

f3(x) = 1.3x3 − 2.97x2 + 1.68x + 0.17 (A3)

Applying this conversion on the GBCs yielded better overall results, obtaining an
F-measure of 65.025 on the 1:1:1 ratio, which was much higher than the initial 47.138, on
the Synthetic dataset alone.
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