
����������
�������

Citation: Zhang, J.; Luo, X.;

Gradient-Based Optimization

Algorithm for Solving Sylvester

Matrix Equation. Mathematics 2022,

10, 1040. https://doi.org/10.3390/

math10071040

Academic Editors: Maria Isabel

Berenguer and Manuel Ruiz Galán

Received: 14 February 2022

Accepted: 22 March 2022

Published: 24 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Gradient-Based Optimization Algorithm for Solving Sylvester
Matrix Equation
Juan Zhang 1,* and Xiao Luo 2

1 Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education,
Xiangtan University, Xiangtan 411105, China

2 Hunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan University,
Xiangtan 411105, China; lxxiangtandaxue@163.com

* Correspondence: zhangjuan@xtu.edu.cn; Tel.: +86-131-0722-4973

Abstract: In this paper, we transform the problem of solving the Sylvester matrix equation into an
optimization problem through the Kronecker product primarily. We utilize the adaptive accelerated
proximal gradient and Newton accelerated proximal gradient methods to solve the constrained
non-convex minimization problem. Their convergent properties are analyzed. Finally, we offer
numerical examples to illustrate the effectiveness of the derived algorithms.

Keywords: Sylvester matrix equation; Kronecker product; adaptive accelerated proximal gradient
method; Newton-accelerated proximal gradient method

MSC: 15A24; 65F45

1. Introduction

Matrix equations are ubiquitous in signal processing [1], control theory [2], and linear
systems [3]. Most time-dependent models accounting for the prediction, simulation, and
control of real-world phenomena may be represented as linear or nonlinear dynamical
systems. Therefore, the relevance of matrix equations within engineering applications
largely explains the great effort put forth by the scientific community into their numeri-
cal solution. Linear matrix equations have an important role in the stability analysis of
linear dynamical systems and the theoretical development of the nonlinear system. The
Sylvester matrix equation was first proposed by Sylvester and produced from the research
of relevant fields in applied mathematical cybernetics. It is a famous matrix equation that
occurs in linear and generalized eigenvalue problems for the computation of invariant
subspaces using Riccati equations [4–6]. The Sylvester matrix equation takes part in linear
algebra [7–9], image processing [10], model reduction [11], and numerical methods for
differential equations [12,13].

We consider the Sylvester matrix equation of the form

AX + XB = C, (1)

where A ∈ Rm×m, B ∈ Rn×n, C ∈ Rm×n are given matrices, and X ∈ Rm×n is an unknown
matrix to be solved. We discuss a special form of the Sylvester matrix equation, in which A
and B are symmetric positive definite.

Recently, there has been a lot of discussion on the solution and numerical calculation
of the Sylvester matrix equation. The standard methods for solving this equation are the
Bartels–Stewart method [14] and the Hessenberg–Schur method [15], which are efficient
for small and dense system matrices. When system matrices are small, the block Krylov
subspace methods [16,17] and global Krylov subspace methods [18] are proposed. These
methods use the global Arnoldi process, block Arnoldi process, or nonsymmetric block

Mathematics 2022, 10, 1040. https://doi.org/10.3390/math10071040 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071040
https://doi.org/10.3390/math10071040
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-8056-9082
https://doi.org/10.3390/math10071040
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071040?type=check_update&version=1

Mathematics 2022, 10, 1040 2 of 14

Lanczos process to produce low-dimensional Sylvester matrix equations. More feasible
methods for solving large and sparse problems are iterative methods. When system
matrices are large, there are some effective methods such as the alternating direction implicit
(ADI) method [19], global full orthogonalization method, global generalized minimum
residual method [20], gradient-based iterative method [21], and global Hessenberg and
changing minimal residual with Hessenberg process method [22]. When system matrices
are low-rank, the ADI method [23], block Arnoldi method [17], preconditioned block
Arnoldi method [24], and extended block Arnoldi method [25] and its variants [26,27],
including the global Arnoldi method [28,29] and extended global Arnoldi method [25], are
proposed to obtain the low-rank solution.

The adaptive accelerated proximal gradient (A-APG) method [30] is an efficient nu-
merical method for calculating the steady states of the minimization problem, motivated
by the accelerated proximal gradient (APG) method [31], which has wide applications in
image processing and machine learning. In each iteration, the A-APG method takes the step
size by using a line search initialized with the Barzilai–Borwein (BB) step [32] to accelerate
the numerical speed. Moreover, as the traditional APG method is proposed for the convex
problem and its oscillation phenomenon slows down the convergence, the restart scheme
has been used for speeding up the convergence. For more details, one can refer to [30] and
the references therein.

The main contribution is to study gradient-based optimization methods such as the
A-APG and Newton-APG methods for solving the Sylvester matrix equation through
transforming this equation into an optimization problem by using Kronecker product. The
A-APG and Newton-APG methods are theoretically guaranteed to converge to a global
solution from an arbitrary initial point and achieve high precision. These methods are
especially efficient for large and sparse coefficient matrices.

The rest of this paper is organized as follows. In Section 2, we transform this equation
into an optimization problem by using the Kronecker product. In Section 3, we apply
A-APG and Newton-APG algorithms to solve the optimization problem and compare
them with other methods. In Section 4, we focus on the convergence analysis of the A-
APG method. In Section 5, the computational complexity of these algorithms is analyzed
exhaustively. In Section 6, we offer corresponding numerical examples to illustrate the
effectiveness of the derived methods.

Throughout this paper, let Rn×m be the set of all n×m real matrices. In is the identity
matrix of order n. If A ∈ Rn×n, the symbols AT , A−1, ‖A‖ and tr(A) express the transpose,
the inverse, the 2-norm, and the trace of A, respectively. The inner product in matrix space
E is 〈x, y〉 = tr(x, y), ∀x, y ∈ E.

2. The Variant of an Optimization Problem

In this section, we transform the Sylvester equation into an optimization problem. We
recall some definitions and lemmas.

Definition 1. Let Y = (yij) ∈ Rm×n, Z ∈ Rp×q, the Kronecker product of Y and Z be defined by

Y⊗ Z =


y11Z y12Z · · · y1nZ
y21Z y22Z · · · y2nZ

...
...

...
...

ym1Z ym2Z · · · ymnZ

.

Definition 2. If Y ∈ Rm×n, then the straightening operator vec : Rm×n −→ Rmn of Y is

vec(Y) = (yT
1 , yT

2 , . . . , yT
n)

T .

Mathematics 2022, 10, 1040 3 of 14

Lemma 1. Let Y ∈ Rl×m, Z ∈ Rm×n, W ∈ Rn×k, then

vec(YZW) = (WT ⊗Y)vec(Z).

From Lemma 1, the Sylvester Equation (1) can be rewritten as

(In ⊗ A + BT ⊗ Im)vec(X) = vec(C). (2)

Lemma 2. Let A be a symmetric positive matrix; solving the equation Ax = b is equivalent to
obtaining the minimum of ϕ(x) = xT Ax− 2bTx.

According to Lemma 2 and Equation (2), define

Ā = (In ⊗ A + BT ⊗ Im), x̄ = vec(X), b̄ = vec(C).

Therefore, Equation (2) should be Āx̄ = b̄. Obviously, if A and B are symmetric
positive, then Ā is symmetric positive. The variant of the Sylvester Equation (2) reduces to
the optimization problem:

min ϕ(x) = min
{

x̄T Āx̄− 2b̄T x̄
}

= min
{

vec(X)T(In ⊗ A + BT ⊗ Im)vec(X)− 2vec(X)Tvec(C)
}

= min
{

vec(X)T · vec(AX) + vec(X)T · vec(XB)− 2vec(X)T · vec(C)
}

= min
{

tr(XT AX) + tr(XTXB)− 2tr(XTC)
}

.

(3)

Using the calculation of the matrix differential from [33], we have the following
propositions immediately.

Proposition 1. If A = (aij) ∈ Rm×n, X = (xij) ∈ Rm×n, then ∂tr(AT X)
∂X = ∂tr(XT A)

∂X = A.

Proposition 2. If A = (aij) ∈ Rm×m, X = (xij) ∈ Rm×n, then ∂tr(XT AX)
∂X = AX + ATX.

Proposition 3. If B = (bij) ∈ Rn×n, X = (xij) ∈ Rm×n, then ∂tr(XXT B)
∂X = XB + XBT .

Using Propositions 2 and 3, the gradient of the objective function (3) is

5 ϕ(X) = AX + XB + ATX + XBT − 2C. (4)

By (4), the Hessian matrix is

52 ϕ(X) = A + AT + B + BT . (5)

3. Iterative Methods

In this section, we will introduce the adaptive accelerated proximal gradient (A-APG)
method and the Newton-APG method to solve the Sylvester equation. Moreover, we
compare the A-APG and Newton-APG methods with other existing methods.

3.1. APG Method

The traditional APG method [31] is designed for solving the composite convex problem:

min
x∈H

H(x) = g(x) + f (x),

Mathematics 2022, 10, 1040 4 of 14

where H is the finite-dimensional Hilbert space equipped with the inner product < ·, · >, g
and f are both continuously convex, and5 f has a Lipschitz constant L. Given initializa-
tions x1 = x0 and t0 = 1, the APG method is

tk = (
√

4(t− k− 1)2 + 1)/2,

Yk = Xk +
tk−1 − 1

tk
(Xk − Xk−1),

Xk+1 = Proxα
g(Yk − αO f (Yk)),

where α ∈ (0, L] and the mapping Proxα
g(·) : Rn 7→ Rn is defined as

Proxα
g(x) = argmin

y

{
g(y) +

1
2α
‖y− x‖2

}
.

Since our minimization problem is linear, we choose the explicit scheme. The explicit
scheme is a simple but effective approach for the minimization problem. Given an initial
value Y0 and the step αk, the explicit scheme is

Yk+1 = Yk − αk5 ϕ(Yk), (6)

where Yk is the approximation solution. The explicit scheme satisfies the sufficient decrease
property using the gradient descent (GD) method.

Let Xk and Xk−1 be the current and previous states and the extrapolation weight be
wk. Using the explicit method (6), the APG iterative scheme is

wk = k− 2/k + 1,

Yk = (1 + wk)Xk − wXk−1,

Yk+1 = Yk − αk5 ϕ(Yk).

(7)

Together with the standard backtracking, we adopt the step size αk when the following
condition holds:

ϕ(Yk)− ϕ(Yk+1) ≥ η‖Yk+1 −Yk‖2, (8)

for some η > 0.
Combining (7) and (8), the APG algorithm is summarized in Algorithm 1.

Algorithm 1 APG algorithm.

Require: X0, tol, α0, η > 0, β ∈ (0, 1), and k = 1.
1: while the stop condition is not satisfied do
2: Update Yk via Equation (7);
3: if Equation (8) holds then
4: break
5: else
6: αk = βαk;
7: Calculate Yk+1 via (7);
8: k = k + 1.

3.2. Restart APG Method

Recently, an efficient and convergent numerical algorithm has been developed for
solving a discretized phase-field model by combining the APG method with the restart tech-
nique [30]. Unlike the APG method, the restart technique involves choosing Xk+1 = Yk+1
whenever the following condition holds:

ϕ(Xk)− ϕ(Yk+1) > γ‖Xk −Yk+1‖2, (9)

Mathematics 2022, 10, 1040 5 of 14

for some γ > 0. If the condition is not met, we restart the APG by setting wk = 0.
The restart APG method (RAPG) is summarized in Algorithm 2.

Algorithm 2 RAPG algorithm.

Require: X0, tol, α0, η > 0, γ > 0, β ∈ (0, 1), and k = 1.
1: while the stop condition is not satisfied do
2: Calculate Yk+1 by APG Algorithm 1;
3: if Equation (9) holds then
4: Xk+1 = Yk+1 and update ωk+1;
5: else
6: Xk+1 = Xk and reset ωk+1 = 0;
7: k = k + 1.

3.3. A-APG Method

In RAPG Algorithm 2, we can adaptively estimate the step size αk by using the line
search technique. Define

sk := Xk − Xk−1, gk := 5ϕ(Xk)−5ϕ(Xk−1).

We initialize the search step by the Barzilai–Borwein (BB) method, i.e.,

αk =
tr(sT

k sk)

tr(sT
k gk)

or
tr(gT

k sk)

tr(gT
k gk)

. (10)

Therefore, we obtain the A-APG algorithm summarized in Algorithm 3.

Algorithm 3 A-APG algorithm.

Require: X0, tol, α0, η > 0, γ > 0, β ∈ (0, 1), and k = 1.
1: while the stop condition is not satisfied do
2: Initialize αk by BB step Equation (10);
3: Update Xk+1 by RAPG Algorithm 2.

3.4. Newton-APG Method

Despite the fast initial convergence speed of the gradient-based methods, the tail
convergence speed becomes slow. Therefore, we use a practical Newton method to solve
the minimization problem. We obtain the initial value from A-APG Algorithm 3, and then
choose the Newton direction as the gradient in the explicit scheme in RAPG Algorithm 2.
Then we have the Newton-APG method shown in Algorithm 4.

Algorithm 4 Newton-APG algorithm.

Require: X0, α0, γ > 0, η > 0, β ∈ (0, 1), ε, tol and k = 1.
1: Obtain the initial value from A-APG Algorithm 3 by the precision ε;
2: while the stop condition is not satisfied do
3: Initialize αk by BB step Equation (10);
4: Update Xk+1 by RAPG Algorithm 2 using Newton direction.

3.5. Gradient Descent (GD) and Line Search (LGD) Methods

Moreover, we show gradient descent (GD) and line search (LGD) methods for compar-
ing with the A-APG and Newton-APG methods. The GD and line search LGD methods are
summarized in Algorithm 5.

Mathematics 2022, 10, 1040 6 of 14

Algorithm 5 GD and LGD algorithms.

Require: X0, tol, α0, η > 0, β ∈ (0, 1), and k = 1.
1: while the stop condition is not satisfied do
2: if the step size is fixed then
3: Calculate Xk+1 via Xk+1 = Xk − α5 ϕ(Xk) using GD;
4: else
5: Initialize αk by BB step Equation (10);
6: if Equation (8) holds then
7: break
8: else
9: αk = βαk;

10: Calculate Xk+1 via Xk+1 via Xk+1 = Xk − α5 ϕ(Xk) using LGD;
11: k = k + 1.

3.6. Computational Complexity Analysis

Further, we analyze the computational complexity of each iteration of the derived al-
gorithms.

The computation of APG is mainly controlled by matrix multiplication and addition oper-
ations in three main parts. The iterative scheme needs 4m2n + 4mn2 + O(mn) computational
complexity. The backtracking linear search needs 14m2n + 20n2m + 6n3 + O(mn) + O(n2)
computational complexity defined by Equation (8). The extrapolation needs O(mn) com-
putational complexity defined by the Equation (7). The total computational complexity is
18m2n + 24n2m + 6n3 + O(mn) + O(n2) in Algorithm 1.

The computation of RAPG is mainly controlled by matrix multiplication and addi-
tion operations in four main parts. The iterative scheme needs 4m2n + 4mn2 + O(mn)
computational complexity. The backtracking linear search defined by Equation (8) needs
14m2n + 20n2m + 6n3 + O(mn) + O(n2) computational complexity. The extrapolation de-
fined by Equation (7) needs O(mn) computational complexity. The restart defined by
Equation (9) needs 4m2n + 14n2m + 4n3 + O(mn) + O(n2) computational complexity. The
total computational complexity is 22m2n + 38n2m + 10n3 +O(mn) +O(n2) in Algorithm 2.

The computation of A-APG is mainly controlled by matrix multiplication and ad-
dition operations in four main parts. The iterative scheme needs 4m2n + 4mn2 + O(mn)
computational complexity. The BB step and the backtracking linear search defined by
Equations (8) and (10) need mn, 4m2n + 4mn2 + 6mn, 2n2(2m − 1) + 2n, and 14m2n +
20n2m + 6n3 + O(mn) + O(n2) computational complexity. The extrapolation defined by
Equation (7) needs O(mn) computational complexity. The restart defined by Equation (9)
needs 4m2n + 14n2m + 4n3 + O(mn) + O(n2) computational complexity. The total compu-
tational complexity is 26m2n + 46n2m + 10n3 + O(mn) + O(n2) in Algorithm 3.

The computation of Newton-APG is mainly controlled by matrix multiplication and
addition operations in four main parts, different from the A-APG method. The itera-
tive scheme needs 8n3 + 3n2 + O(n2) + O(n3) computational complexity. The BB step
and the backtracking linear search defined by Equations (8) and (10) need n2, 8n3 + 6n2,
2n2(2n− 1) + 2n, and 10n2(2n− 1) + 8n3 + 3n2 + O(n3) + O(n2) computational complex-
ity. The extrapolation defined by Equation (7) needs O(n2) computational complexity. The
restart defined by Equation (9) needs 5n2(2n− 1) + n2 + O(n3) computational complexity.
The total computational complexity is 50n3 − 10n2 + 2n + O(n2) + O(n3) in Algorithm 4.

The computation of GD is mainly controlled by matrix multiplication and addition
operations in Equations (4) and (6). It requires mn(2m − 1), mn(2n − 1), mn(2m − 1),
mn(2n− 1) computational complexity to compute AX, XB, ATX, XBT . The total computa-
tional complexity is 4m2n + 4mn2 + O(mn) in Algorithm 5 using GD.

The computation of LGD is mainly controlled by matrix multiplication and addition
operations in the calculation of s, g defined by Equation (8) and (10), and the calcula-
tion of GD, which require mn, 4m2n + 4mn2 + 6mn, 2n2(2m− 1) + 2n, 14m2n + 20n2m +

Mathematics 2022, 10, 1040 7 of 14

6n3 + O(mn) + O(n2), and 4m2n + 4mn2 + O(mn), respectively. The total computational
complexity is 22m2n + 32n2m + 6n3 + O(mn) + O(n2) in Algorithm 5 using GD.

4. Convergent Analysis

In this section, we focus on the convergence analysis of A-APG Algorithm 3. The
following proposition is required.

Proposition 4. Let M be a bounded region that contains {ϕ 6 ϕ(X0)} in Rn×n, then Oϕ(X)
satisfies the Lipschitz condition in M, i.e., there exists LM > 0 such that

‖Oϕ(X)−Oϕ(Y)‖ 6 LM‖X−Y‖ f or X, Y ∈ M.

Proof. Using the continuity of Oϕ(X), note that∥∥∥O2 ϕ(X)
∥∥∥ =

∥∥∥(A + AT) + (B + BT)
∥∥∥

defined by (5) is bounded. Then Oϕ(X) satisfies the Lipschitz condition in M.

In recent years, the proximal method based on the Bregman distance has been applied
for solving optimization problems. The proximal operator is

Proxα
ϕ(y) := argmin

y
{ϕ(y) +

1
2α
‖X− Xk‖2}.

Basically, given the current estimation Xk and step size αk > 0, update Xk+1 via

Xk+1 = Proxα
0(Xk − αkOϕ(Xk)) = argmin

X
{ 1

2αk
‖X− (Xk − αkOϕ(Xk)‖2}. (11)

Thus we obtain
1

2αk
(Xk+1 − (Xk − αkOϕ(Xk))) = 0,

which implies that
Xk+1 = Xk − αkOϕ(Xk).

This is exactly the explicit scheme in our algorithm.

4.1. Linear Search Is Well-Defined

Using the optimization from Equation (11), it is evident that

Xk+1 = argmin
X
{ 1

2αk
‖X− (Xk − αkOϕ(Xk)‖2}

= argmin
X
{ 1

2αk
‖X− Xk‖2 + 〈X− Xk,Oϕ(Xk)〉}

= argmin
X
{ 1

2αk
‖X− Xk‖2 + 〈X− Xk,Oϕ(Xk)〉+ ϕ(Xk)}.

Then we obtain

ϕ(Xk) >
1

2αk
‖Xk+1 − Xk‖2 + 〈Xk+1 − Xk,Oϕ(Xk)〉+ ϕ(Xk)

> ϕ(Xk+1) +
1

2αk
‖Xk − Xk+1‖2 −

∥∥O2 ϕ(X)
∥∥

2
‖Xk − Xk+1‖2

> ϕ(Xk+1) + (
1

2αk
− LM

2
)‖Xk − Xk+1‖2,

(12)

Mathematics 2022, 10, 1040 8 of 14

where the second inequality follows from Taylor expansion of ϕ(Xk+1). By Equation (12), set

0 < αk < α := min{ 1
LM + 2η

,
1

LM + 2γ
}, (13)

the conditions in linear search Equation (8) and non-restart Equation (9) are both satisfied.
Therefore, the backtracking linear search is well-defined.

4.2. Sufficient Decrease Property

In this section, we show the sufficient decrease property of the sequence generated by
A-APG Algorithm 3. If αk satisfies the condition Equation (13), then

ϕ(Xk)− ϕ(Yk+1) > ρ1‖Xk −Yk+1‖2,

where ρ1 = min{η, γ} > 0. Since ϕ is a bounded function, then there exists ϕ∗ such that
ϕ(Xk) > ϕ∗ and ϕ(Xk)→ ϕ∗ as k→ +∞. This implies

ρ1

∞

∑
k=0
‖Xk+1 − Xk‖2 6 ϕ(X0)− ϕ∗ < +∞,

which shows that
lim

k→+∞
‖Xk+1 − Xk‖ = 0.

4.3. Bounded Gradient

Define two sets Ω2 = {k : k = 2} and Ω1 = N \Ω2. Let wk = k− 2/k + 1, for any
k ∈ Ω2, then Xk+1 = Yk+1 when wk = 0. There exists w = kmax − 2/kmax + 1 ∈ [0, 1) such
that wk 6 w as k increases. If k ∈ Ω1, since

Yk+1 = argmin
X
{ 1

2αk
‖X− (Yk − αkOϕ(Yk))‖2},

we have
0 = Oϕ(Yk) +

1
αk

(Yk+1 −Yk).

Thus,

Oϕ(Yk) =
1
αk

(Yk − Xk+1).

Note that Yk = (1 + wk)Xk − wkXk−1, then

‖Oϕ(Yk)‖ =
1
αk
‖(1 + wk)Xk − wkXk−1 − Xk+1‖

=
1
αk
‖wk(Xk − Xk−1) + (Xk − Xk+1)‖

6
1

αmin
(w‖Xk − Xk−1‖+ ‖Xk − Xk+1‖)

= c1(‖Xk+1 − Xk‖+ w‖Xk − Xk−1‖),

(14)

where c1 = 1
αmin

> 0.
If k ∈ Ω2, then

Xk+1 = argmin
X
{ 1

2αk
‖X− (Xk − αkOϕ(Xk))‖2},

which implies that

0 = Oϕ(Xk) +
1
αk

(Xk+1 − Xk).

Mathematics 2022, 10, 1040 9 of 14

Thus

‖Oϕ(Xk)‖ =
1
αk
‖Xk − Xk+1‖ 6

1
αmin
‖Xk − Xk+1‖ = c1(‖Xk − Xk+1‖), (15)

Combining Equations (14) and (15), it follows that

‖Oϕ(Xk)‖ 6 c1(‖Xk+1 − Xk‖+ w‖Xk − Xk−1‖).

4.4. Subsequence Convergence

As {Xk} ∈ M is compact, there exists a subsequence {Xkj
} ⊂ M and X∗ ∈ M such

that lim
j→+∞

Xkj
= X∗. Then ϕ is bounded, i.e., ϕ(X) > −∞ and ϕ keeps decreasing. Hence,

there exists ϕ∗ such that lim
k→+∞

ϕ(Xk) = ϕ∗. Note that

ϕ(Xk)− ϕ(Xk+1) > c0‖Xk − Xk+1‖2, k = 1, 2, . . . (16)

Summation over k yields

c0

∞

∑
k=0
‖Xk − Xk+1‖2 6 ϕ(X0)− ϕ∗ < +∞.

Therefore,
lim

k→+∞
‖Xk − Xk+1‖ = 0.

Due to the property of the gradient, thus

lim
j→+∞

∥∥∥Oϕ(Xkj
)
∥∥∥ = 0.

Considering the continuity of ϕ and Oϕ, we have

lim
j→+∞

ϕ(Xkj
) = ϕ(X∗), lim

j→+∞
Oϕ(Xkj

) = Oϕ(X∗) = 0,

which implies that Oϕ(X∗) = 0.

4.5. Sequence Convergence

In this section, the subsequence convergence can be strengthened by using the Kurdyka–
Lojasiewicz property.

Proposition 5. For x ∈ dom ∂ϕ := {x : ∂ϕ(x) 6= ∅}, there exists η > 0, an ε neighborhood of
x, and ψ ∈ Ψη = {ψ ∈ C[0, η) ∩ C′(0, η), where ψ is concave, ψ(0) = 0, ψ′ > 0 on (0, η)} such
that for all x ∈ Γη(x, ε) : U ∩ {x : ϕ(x) < ϕ(x) < ϕ(x) + η}, we have

ψ′(ϕ(x)− ϕ(x))‖Oϕ(x)‖ > 1.

Then we say ϕ(x) satisfies the Kurdyka–Lojasiewicz property.

Theorem 1. Assume that Propositions 4 and 5 are met. Let {Xk} be the sequence generated by
A-APG Algorithm 3. Then, there exists a point X∗ ∈ M so that lim

k→+∞
Xk = X∗ and Oϕ(X∗) = 0.

Proof. Let ω(X0) be the set of limiting points of the sequence {Xk}. Based on the bound-
edness of {Xk} and the fact that ω(X0) = ∩q∈N ∪k>q {Xk}, it follows that ω(X0) is a
non-empty and compact set. In addition, by Equation (16), we know that ϕ(X) is a con-
stant on ω(X0), denoted by ϕ∗. If there exists some k0 such that ϕ(Xk0) = ϕ∗, then for
∀k > k0, we have ϕ(Xk) = ϕ∗. Next, we assume that ∀k, ϕ(Xk) > ϕ∗. Therefore, for

Mathematics 2022, 10, 1040 10 of 14

∀ε, η > 0, ∃l > 0, for ∀k > l we have dist(ω(X0), Xk) 6 ε and ϕ∗ < ϕ(Xk) < ϕ∗ + η i.e.,
for ∀X∗ ∈ ω(X0), X ∈ Γη(X∗, ε). Applying Proposition 5, for ∀k > l, we have

ψ′(ϕ(Xk)− ϕ∗)‖Oϕ(Xk)‖ > 1.

Then
ψ′(ϕ(Xk)− ϕ∗) >

1
c1(‖Xk − Xk−1‖+ w‖Xk−1 − Xk−2‖)

. (17)

By the convexity of ψ, it is obvious that

ψ(ϕ(Xk)− ϕ∗)− ψ(ϕ(Xk+1)− ϕ∗) > ψ′(ϕ(Xk)− ϕ∗)(ϕ(Xk)− ϕ(Xk+1)). (18)

Define

4p,q = ψ(ϕ(Xp)− ϕ∗)− ψ(ϕ(Xq)− ϕ∗), c = (1 + w)c1/c0 > 0.

Combining with Equations (16)–(18), for ∀k > l, we obtain

4k,k+1 >
c0‖Xk+1 − Xk‖2

c1(‖Xk − Xk−1‖+ w‖Xk−1 − Xk−2‖)

>
‖Xk+1 − Xk‖2

c(‖Xk − Xk−1‖+ ‖Xk−1 − Xk−2‖)
.

(19)

Applying the geometric inequality to Equation (19), thus

2‖Xk+1 − Xk‖ 6
1
2
(‖Xk − Xk−1‖+ ‖Xk−1 − Xk−2‖) + 2c4k,k+1.

Therefore, for ∀k > l, summing up the above inequality for i = l + 1, . . . , k, we obtain

2
k

∑
i=l+1

‖Xi+1 − Xi‖ 6
1
2

k

∑
i=l+1

(‖Xi − Xi−1‖+ ‖Xi−1 − Xi−2‖) + 2c
k

∑
i=l+1

4i,i+1

6
k

∑
i=l+1

‖Xi+1 − Xi‖+ ‖Xl+1 − Xl‖+
1
2
‖Xl − Xl−1‖

+ 2c4l+1,k+1.

For ∀k > l, ψ > 0, it is evident that

k

∑
i=l+1

‖Xi+1 − Xi‖ 6 ‖Xl+1 − Xl‖+
1
2
‖Xl − Xl−1‖+ 2cψ(ϕ(Xl)− ϕ∗),

which implies that
∞

∑
k=1
‖Xk+1 − Xk‖ < ∞.

In the end, we have lim
k→+∞

Xk = X∗.

5. Numerical Results

In this section, we offer two corresponding numerical examples to illustrate the
efficiency of the derived algorithms. All code is written in Python language. Denote
iteration and error by the iteration step and error of the objective function. We take the
matrix order “n” as 128, 1024, 2048, and 4096.

Mathematics 2022, 10, 1040 11 of 14

Example 1. Let

A1 =



2 −1
−1 2 −1

.
. −1

−1 2

, B1 =



1 0.5
0.5 1 0.5

.
. 0.5

0.5 1


be tridiagonal matrices in the Sylvester Equation (1). Set the matrix C1 as the identity matrix. The
initial step size is 0.01, which is small enough to iterate. The parameters are η1 = 0.25, ω1 = 0.2
taken from (0,1) randomly. Table 1 and Figure 1 show the numerical results of Algorithms 1–5.
It can be seen that the LGD, A-APG, and Newton-APG Algorithms are more efficient than other
methods. Moreover, the iteration step does not increase when the matrix order increases due to the
same initial value. The A-APG method has higher error accuracy compared with other methods.
The Newton-APG method takes more CPU time and fewer iteration steps than the A-APG method.
The Newton method needs to calculate the inverse of the matrix, while it has quadratic convergence.
From Figure 1, the error curves of the LGD, A-APG, and Newton-APG algorithms are hard to
distinguish. We offer another example below.

Table 1. Numerical results for Example 1.

Algorithm n Iteration Error Time(s)

GD 128 356 1.13687 × 10−13 3.30
LGD 128 15 1.26477 × 10−12 0.27
APG 128 374 1.4353 × 10−12 4.31

RAPG 128 69 1.4353 × 10−12 1.45
A-APG 128 19 3.55271 × 10−14 0.38

Newton-APG 128 18 9.47438 × 10−11 0.48
CG 128 19 3.49364 × 10−14 0.42

GD 1024 356 1.02318 × 10−12 806
LGD 1024 15 1.06866 × 10−11 69
APG 1024 374 1.18803 × 10−11 1261

RAPG 1024 69 2.59774 × 10−11 367
A-APG 1024 19 2.84217 × 10−13 113

Newton-APG 1024 18 8.95682 × 10−10 144
CG 1024 19 3.37046 × 10−14 71

GD 2048 356 2.04636 × 10−12 6315
LGD 2048 15 2.13731 × 10−11 569
APG 2048 374 2.38742 × 10−11 9752

RAPG 2048 69 5.20686 × 10−11 2994
A-APG 2048 19 6.82121 × 10−13 926

Newton-APG 2048 18 8.95682 × 10−10 1015
CG 2048 19 3.34616 × 10−14 521

GD 4096 356 4.09273 × 10−12 66,155
LGD 4096 15 4.27463 × 10−11 4199
APG 4096 374 4.77485 × 10−11 71,636

RAPG 4096 69 1.04365 × 10−10 21,596
A-APG 4096 19 1.81899 × 10−12 6829

Newton-APG 4096 18 3.64571 × 10−9 7037
CG 4096 19 3.33322 × 10−14 3553

Mathematics 2022, 10, 1040 12 of 14

Figure 1. The error curves when n = 128, 1024, 2048, 4096 for Example 1.

Example 2. Let A2 = A1 AT
1 , B2 = B1BT

1 be positive semi-definite matrices in the Sylvester
Equation (1). Set the matrix C2 as the identity matrix. The initial step size is 0.009. The parameters
are η2 = 0.28, ω2 = 0.25 taken from (0,1) randomly. Table 2 and Figure 2 show the numerical
results of Algorithms 1–5. It can be seen that the LGD, A-APG, and Newton-APG algorithms take
less CPU time compared with other methods. Additionally, we can observe the different error curves
of the LGD, A-APG, and Newton-APG algorithms from Figure 2.

Remark 1. The difference of the iteration step in Examples 1 and 2 emerges due to the given
different initial values. It can be seen that the LGD, A-APG, and Newton-APG algorithms have
fewer iteration steps. Whether the A-APG method or Newton-APG yields fewer iteration steps
varies from problem to problem. From Examples 1 and 2, we observe that the A-APG method has
higher accuracy, although it takes more time and more iteration steps than the LGD method.

Remark 2. Moreover, we compare the performance of our methods with other methods such as the
conjugate gradient method (CG) in Tables 1 and 2. We take the same initial values and set the error
to 1 × 10−14. From Tables 1 and 2, it can be seen that the LGD and A-APG methods are more
efficient for solving the Sylvester matrix equation when the order n is small. When n is large, the
LGD and A-APG methods nearly have a convergence rate with the CG method.

Figure 2. The error curves when n = 128, 1024, 2048, 4096 for Example 2.

Mathematics 2022, 10, 1040 13 of 14

Table 2. Numerical results for Example 2.

Algorithm n Iteration Error Time(s)

GD 128 243 1.63425 × 10−13 2.38
LGD 128 20 2.45137 × 10−12 0.47
APG 128 260 1.58096 × 10−12 4.51

RAPG 128 53 1.90781 × 10−12 1.46
A-APG 128 32 3.55271 × 10−15 0.78

Newton-APG 128 36 2.30926 × 10−13 1.26
CG 128 34 4.13025 × 10−14 0.79

GD 1024 243 1.3074 × 10−12 516
LGD 1024 20 1.89573 × 10−11 95
APG 1024 260 1.25056 × 10−11 835

RAPG 1024 53 1.51772 × 10−11 267
A-APG 1024 32 4.61569 × 10−14 181

Newton-APG 1024 36 4.20641 × 10−12 214
CG 1024 34 4.29936 × 10−14 92

GD 2048 243 2.6148 × 10−12 4129
LGD 2048 20 3.78577 × 10−11 814
APG 2048 260 2.48974 × 10−11 6507

RAPG 2048 53 3.03544 × 10−11 2193
A-APG 2048 32 2.27374 × 10−13 1622

Newton-APG 2048 36 8.52651 × 10−12 2125
CG 2048 34 4.22694 × 10−14 797

GD 4096 243 5.22959 × 10−12 29,859
LGD 4096 20 7.54881 × 10−11 6023
APG 4096 260 4.97948 × 10−11 48,238

RAPG 4096 53 6.07088 × 10−11 16,482
A-APG 4096 32 2.27374 × 10−13 12,896

Newton-APG 4096 36 7.95808 × 10−12 14,901
CG 4096 34 4.18275 × 10−14 5337

6. Conclusions

In this paper, we have introduced the A-APG and Newton-APG methods for solving
the Sylvester matrix equation. The key idea is to change the Sylvester matrix equation to
an optimization problem by using the Kronecker product. Moreover, we have analyzed the
computation complexity and proved the convergence of the A-APG method. Convergence
results and preliminary numerical examples have shown that the schemes are promising in
solving the Sylvester matrix equation.

Author Contributions: J.Z. (methodology, review, and editing); X.L. (software, visualization, data
curation). All authors have read and agreed to the published version of the manuscript.

Funding: The work was supported in part by the National Natural Science Foundation of China
(12171412, 11771370), Natural Science Foundation for Distinguished Young Scholars of Hunan
Province (2021JJ10037), Hunan Youth Science and Technology Innovation Talents Project (2021RC3110),
the Key Project of the Education Department of Hunan Province (19A500, 21A0116).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Mathematics 2022, 10, 1040 14 of 14

References
1. Dooren, P.M.V. Structured Linear Algebra Problems in Digital Signal Processing; Springer: Berlin/Heidelberg, Germany, 1991.
2. Gajic, Z.; Qureshi, M.T.J. Lyapunov Matrix Equation in System Stability and Control; Courier Corporation: Chicago, IL, USA, 2008.
3. Corless, M.J.; Frazho, A. Linear Systems and Control: An Operator Perspective; CRC Press: Boca Raton, FL, USA, 2003.
4. Stewart, G.W.; Sun, J. Matrix Perturbation Theory; Academic Press: London, UK, 1990.
5. Simoncini, V.; Sadkane, M. Arnoldi-Riccati method for large eigenvalue problems. BIT Numer. Math. 1996, 36, 579–594.
6. Demmel, J.W. Three methods for refining estimates of invariant subspaces. Computing 1987, 38, 43–57.
7. Chen, T.W.; Francis, B.A. Optimal Sampled-Data Control Systems; Springer: London, UK, 1995.
8. Datta, B. Numerical Methods for Linear Control Systems; Elsevier Inc.: Amsterdam, The Netherlands, 2004.
9. Lord, N. Matrix computations. Math. Gaz. 1999, 83, 556–557.
10. Zhao, X.L.; Wang, F.; Huang, T.Z. Deblurring and sparse unmixing for hyperspectral images. IEEE Trans. Geosci. Remote Sens.

2013, 51, 4045–4058.
11. Obinata, G.; Anderson, B.D.O. Model Reduction for Control System Design; Springer Science & Business Media: London, UK, 2001.
12. Bouhamidi, A.; Jbilou, K. A note on the numerical approximate solutions for generalized Sylvester matrix equations with

applications. Appl. Math. Comput. 2008, 206, 687–694.
13. Bai, Z.Z.; Benzi, M.; Chen, F. Modified HSS iteration methods for a class of complex symmetric linear systems. Computing 2010,

87, 93–111.
14. Bartels, R.H.; Stewart, G.W. Solution of the matrix equation AX + XB = C. Commun. ACM 1972, 15, 820–826.
15. Golub, G.H. A Hessenberg-Schur Method for the Problem AX + XB = C; Cornell University: Ithaca, NY, USA, 1978.
16. Robbé, M.; Sadkane, M. A convergence analysis of GMRES and FOM methods for Sylvester equations. Numer. Algorithms 2002,

30, 71–89.
17. Guennouni, A.E.; Jbilou, K.; Riquet, A.J. Block Krylov subspace methods for solving large Sylvester equations. Numer. Algorithms

2002, 29, 75–96.
18. Salkuyeh, D.K.; Toutounian, F. New approaches for solving large Sylvester equations. Appl. Math. Comput. 2005, 173, 9–18.
19. Wachspress, E.L. Iterative solution of the Lyapunov matrix equation. Appl. Math. Lett. 1988, 1, 87–90.
20. Jbilou, K.; Messaoudi, A.; Sadok, H. Global FOM and GMRES algorithms for matrix equations. Appl. Numer. Math. 1999,

31, 49–63.
21. Feng, D.; Chen, T. Gradient Based Iterative Algorithms for Solving a Class of Matrix Equations. IEEE Trans. Autom. Control 2005,

50, 1216–1221.
22. Heyouni, M.; Movahed, F.S.; Tajaddini, A. On global Hessenberg based methods for solving Sylvester matrix equations. Comput.

Math. Appl. 2019, 77, 77–92.
23. Benner, P.; Kürschner, P. Computing real low-rank solutions of Sylvester equations by the factored ADI method. Comput. Math.

Appl. 2014, 67, 1656–1672.
24. Bouhamidi, A.; Hached, M.; Heyouni, M.J.; Bilou, K. A preconditioned block Arnoldi method for large Sylvester matrix equations.

Numer. Linear Algebra Appl. 2013, 20, 208–219.
25. Heyouni, M. Extended Arnoldi methods for large low-rank Sylvester matrix equations. Appl. Numer. Math. 2010, 60, 1171–1182.
26. Agoujil, S.; Bentbib, A.H.; Jbilou, K.; Sadek, E.M. A minimal residual norm method for large-scale Sylvester matrix equations.

Electron. Trans. Numer. Anal. Etna 2014, 43, 45–59.
27. Abdaoui, I.; Elbouyahyaoui, L.; Heyouni, M. An alternative extended block Arnoldi method for solving low-rank Sylvester

equations. Comput. Math. Appl. 2019, 78, 2817–2830.
28. Jbilou, K. Low rank approximate solutions to large Sylvester matrix equations. Appl. Math. Comput. 2005, 177, 365–376.
29. Liang, B.; Lin, Y.Q.; Wei, Y.M. A new projection method for solving large Sylvester equations. Appl. Numer. Math. 2006,

57, 521–532.
30. Jiang, K.; Si, W.; Chen, C.; Bao, C. Efficient numerical methods for computing the stationary states of phase-field crystal models.

SIAM J. Sci. Comput. 2020, 42, B1350–B1377.
31. Beck, A.; Teboulle, M. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems. SIAM J. Imaging Sci. 2009,

2, 183–202.
32. Bao, C.; Barbastathis, G.; Ji, H.; Shen, Z.; Zhang, Z. Coherence retrieval using trace regularization. SIAM J. Imaging Sci. 2018,

11, 679–706.
33. Magnus, J.R.; Neudecker, H. Matrix Differential Calculus; John Willey & Sons: Hoboken, NJ, USA, 1999.

	Introduction
	The Variant of an Optimization Problem
	Iterative Methods
	APG Method
	Restart APG Method
	A-APG Method
	Newton-APG Method
	Gradient Descent (GD) and Line Search (LGD) Methods
	Computational Complexity Analysis

	Convergent Analysis
	Linear Search Is Well-Defined
	Sufficient Decrease Property
	Bounded Gradient
	Subsequence Convergence
	Sequence Convergence

	Numerical Results
	Conclusions
	References

