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Abstract: The execution of smart contracts (SCs) relies on consensus algorithms that validate the
miner who executes the contract and gets a fee to cover her expenditure. In this sense, miners are
strategic agents who may focus on executing those contracts with the largest fee, to the detriment
of other SCs’ execution times, which also harms the blockchain’s reputation. This paper analyzes
the impact of miners’ competition on SCs’ execution times in a public blockchain. First, we explain
that the Proof-of-Work mechanism casts similarities with a time auction, where the one who first
adds blocks is the one who executes the contract and gets the fee. At equilibrium, costs negatively
affect execution times, while the opposite holds concerning fees. However, this result does not
capture the competition for other contracts; hence, we apply the Naïve Bayes method to classify
SCs by considering a simulated database that comprises miners’ competition for several contracts.
We observe that simultaneous competition generates patterns that differ from the ones expected by
the auction solution. For example, miners’ valuation does not accelerate contracts’ execution, and
high-cost smart contracts do not necessarily execute at last places.

Keywords: Naïve Bayes classification; smart contracts; execution times; sealed bid auction

MSC: 91B26

1. Introduction

Blockchain networks have boosted the implementation of smart contracts (SCs) since
they provide a decentralized process that self-activates such agreements when certain
conditions are satisfied. During this process, the network’s nodes (miners) create blocks
by solving mathematical puzzles, which is an activity that requires resources like hash
power in Ethereum [1]. Later, a ‘consensus algorithm’ determines the miner who adds the
block that the SC’s execution needs and this miner gets a fee as a reward [2]. So, consensus
mechanisms promote miners’ competition because miners only get fees by adding the
blocks that smart contracts need [3,4].

Consequently, miners follow an economic and strategic behavior since they choose
those SCs that provide them the largest benefit [5] and join pools to share resources, which
allows them to compete for a larger number of smart contracts [6]. So, public blockchain
platforms deal with the issues associated with peer-to-peer networks, such as lack of
security and coordination [7]. Nevertheless, SCs’ execution times also rely on miners’
decision-making. Specifically, miners may slow the activation of smart contracts because
puzzles are costly to solve [8] or there are simultaneous requisitions to execute contracts
due to an increasing number of SCs’ applications [9,10]. In general, it is not clear the impact
of miners’ interactions, mining costs, and contracts’ fees on the time that independent smart
contracts last to be executed [11]. In this sense, by considering that miners simultaneously
compete to add blocks in other contracts, this paper addresses the following research
question: How do costs, fees, and miners’ valuation impact SCs’ execution times? To
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answer this question, we first propose a game-theoretical model to determine the execution
time that miners last in executing a contract characterized by its cost and fee. Later, we
use the previous result to simulate the simultaneous execution of several smart contracts.
Finally, we use machine learning techniques to classify execution times by considering
costs, fees, and miners’ features.

It is worth recalling that consensus algorithms play a major role in activating smart
contracts since they determine the miner who adds a contract to the blockchain. To build
our game-theoretical model, we assume the blockchain uses the proof-of-work (PoW)
algorithm because it assigns a contract to the miner who first solves the contract’s puzzle
after spending her resources. Furthermore, we simplify the analysis by considering that
contracts are independent among, which means that contracts do not trigger other contracts’
variables [12].

By the previous discussion, miners’ competition resembles a sealed bid time auction
because the miner who sets the minimum time to create a node is the one who executes
the contract’s code. So, we model the miners’ competition as a simultaneous game of
incomplete information where miners observe each contract’s features but do not know
other miners’ valuations. The equilibrium analysis provides a closed-form solution con-
cerning the time each miner bids, which is described in terms of the miners’ and contracts’
features. At equilibrium, the comparative statics point out that execution times dimin-
ish as the number of miners and the fee increase, while the opposite happens when cost
increases. Nevertheless, this result ignores the fact that miners can compete to get other
contracts [9]. Although we can understand the previous interaction as a simultaneous
auction problem [13], this framework is not necessary since SCs’ are not interrelated, miners
independently value each smart contract, and the consensus algorithms serially allocate
contracts among miners. Thus, we propose a Naïve Bayes classification to determine how
competing for other contracts impacts execution times. The Naïve Bayes technique groups
SCs by considering the execution time as the independent variable. In contrast, miners’
and contracts’ features are the independent variables. Then, we simulate the competition
between 1000 miners and 10,000 contracts by considering the auction solution.

Surprisingly, our classification’s results differ from those we expected, given the
comparative statics analysis. First, miners’ valuation does not increase or decrease execution
times; specifically, we get that miners’ valuation induces an almost uniform conditional
probability distribution. Second, fees and costs modify how fast a smart contract is executed,
observing counter-intuitive results. For example, low cost and high fees slow the execution
of some contracts.

Our paper is closely related to the literature that analyzes how miners impact the
execution of smart contracts [14]. For example, miners pool resources as the contracts’
complexity increases [15] to maximize their benefits [16]. Moreover, consensus algorithms
are coordination mechanisms that transparently determine who has the right to execute
a smart contract without interfering in how miners pick contracts, which also may cause
dishonest behavior from them [17]. So, miners can manipulate the consensus mechanism
by centralizing resources in mining pools [18], which tends to happen in those platforms
that use algorithms that do not require the explicit use of resources for mining blocks, such
as the Proof-of-Stake (PoS) and the Proof-of-Authority (PoA) algorithms [19,20]. In this
sense, our contributions unfold in two streams. First, we describe the PoW mechanism
as a time auction that allows us to find a closed-form solution that echoes empirical
findings: the execution time of a contract increases as the contracts need more resources
to be executed (costs) [21], and large fees reduce execution times [22]. This shows that
game-theoretical models serve for designing consensus algorithms, which is of growing
interest to avoid manipulation and safeguard users’ welfare [23,24]. Second, we extend the
applications of the Naïves Bayes technique to classify smart contracts based on the features
that characterize their time of execution.

Typically, classification techniques have widely used to determine if a SC is not
legal or duplicates a transaction [25,26] because not all smart contracts are secure [27]
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or well-defined [28]. Furthermore, we can classify miners to identify pools that try to
prioritize the execution of certain contracts over others [14]. Our classification shows that
the probability of being executed with a certain priority is independent of miners’ valuation,
while economic variables (fee and costs) are the ones that change this probability. This
result supports the necessity of designing consensus mechanisms based on auctions to
prevent miners’ collusion [29] and reduce the use of resources [30].

The paper is organized as follows. The next section presents the auction game in
which miners interact to set execution times. Later, in Section 3, we describe the game´s
solution, which we use to build the dataset. The theoretical model allows us to create a
Naïve Bayes classifier, in Section 4, such that dependent variables are the contracts’ features.
Section 5 discusses the main results concerning Naïve Bayes evaluation and classification.
The last section presents the paper’s conclusions.

2. Model

In a public blockchain platform, miners compete to execute a SC. Specifically, we
focus on a public blockchain that uses the proof-of-work consensus mechanism. To model
miners’ competition in such a structure, we first consider a market where agents a and p
exogenously establish a smart contract x with a fee fx. To simplify the notation, we refer to
the previous smart contract as x( fx). The fee is a reward expressed as a positive amount of
the digital coin used in the public blockchain P where the SC stands. Miners can use fx to
get resources exchanged in P .

We assume the existence of a trustworthy oracle that points out the necessity to execute
x( fx). For instance, we say that the oracle is not strategic. Moreover, all miners observe the
need of adding nodes to P .

2.1. Basic Elements

Let M = {1, 2, . . . , m} be the set of all miners in the digital platform; we use i to denote
a generic miner in M. The time that miner i lasts to pick x( fx) is denoted by ti, where
ti ∈ Ti = [0, ∞). Given that smart contracts execution requires miners’ resources as
time passes, miner i faces a cost function ci (ti ) for picking the contract in a time ti. We
consider that ci is a function from Ti to R such that dci/dti < 0, which captures the fact
that miners can get better resources to solve puzzles with more time [31]. We characterize
miners by a valuation vi about picking the contract x( fx) to get fx coins. Let Vi be the set of
all valuations of miner i.

The state of the market is a vector v = (v1, v2, . . . , vm) that is an element of V =
V1 × · · · ×Vm ⊂ Rm. We consider that miners’ valuation is private information, i.e., each
miner i knows their valuation vi but does not know other miners’ valuations. Furthermore,
agents p and a do not observe v. So, the market state v is the realization of a random vector
V = (V1, V2, . . . , Vm) that is drawn from a probability density function f : V → R, which
we assume common knowledge.

2.2. The Game

Regardless of digital platforms’ architecture, they have similar rules concerning their
application on smart contracts. Specifically, digital platforms establish that miners should
compete among them to execute the smart contract, i.e., the miner who solves the puzzle as
soon as possible is the one who adds the block to the blockchain and gets the associated fee.
Thus, we model the competition between miners as a time auction where the winner is the
one that sets the minimum time to pick x( fx).

The interaction between miners starts when all of them observe the request to execute
x( fx). Hence, the game proceeds in the following two stages:

Stage 1. Nature draws the market state v = (v1, v2, . . . , vm) by following the probability
density function f .

Stage 2. Each miner i observes their valuation vi, but no other miners’ valuations. Simulta-
neously, each miner sets the time ti to pick x( fx).
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All nodes in the platform P observe the profile of picking times t = (t1, t2, . . . , tm).
Since picking times represent how fast miners mine a block, the miner who sets the lowest
picking time is the one who executes x( fx). If two or more miners set the lowest picking
time, the tie is randomly broken, i.e., the probability of executing the code is the same for
all these miners. The game finishes with the execution of the smart contract, and the miner
who runs it gets fx.

Let ui be the payoff function of i that depends on σ, and the amount of (digital) money
µi that miner i gets when the game finishes.

2.3. The Solution Concept

The set of all possible actions of miner i is Ti. Recalling that miners’ valuation are
private information, a pure strategy is a decision rule σi that maps i’s valuation into a
picking time ti, i.e., σi is a function from Vi to Ti. So, Σi = {σi|σi : Vi → Ti} is the set of all
possible decision rules of miner i.

A profile of strategies is a vector of decision rules σ = (σ1, σ2, . . . , σm) ∈ Σ, where
Σ = Σ1 × Σ2 × · · · × Σm. As usual, σ−i is the decision rules’ profile of all miners that are
different to i.

Remembering that miners’ valuation is private information, miners have no certainty
concerning the payoff that they get when the game finishes with a profile of decision rules
σ(v) = (σ1(v1), σ2(v2)..., σm(vm)). We denote by E[ui(σ)] the expected payoff of miner i
at the end of the game; and we consider the Bayesian Nash equilibrium as the solution
concept for the game described in Section 2.2.

Definition 1. We say that σ∗ = (σ1, σ2, . . . , σm) is a Bayesian Nash equilibrium if

E[ui(σ
∗
i , σ∗−i)] ≥ E[ui(σi, σ∗−i)]

for all i ∈ M and σi ∈ Σi.

In other words, a Bayesian Nash equilibrium is a profile of decision rules under which
all miners do not have incentives to deviate from the action that they choose concerning
the state of the market v.

3. Picking Times at Equilibrium

This section searches for the Bayesian Nash equilibria of the game described in the
previous section. To simplify the analysis, we assume that miners follow symmetric
behavior, and later we perform some comparative statics by considering that random
variables Vi are independent and uniformly distributed.

3.1. Solving the Game

The game described in Section 2.2 establishes that miners simultaneously set the time
to pick x( fx) whereas each miner’s valuation is private information. Furthermore, each
miner i knows that other miners picking times depend on valuations vj, for all j ∈ M−{j},
i.e., i knows that others decision rules profile σ−i(v−i) = (tj(vj))j 6=i depends on the market
state. Then, at the end of the game, i faces three possible scenarios: (a) i executes the smart
contract because he sets the lowest picking time, (b) i ties with other miners in setting the
lowest time to pick the contract, or (c) i does not set the lowest picking time which means
that i does not execute the code.

If i gets the right to execute the contract’s code, i gets the fee associated with x( fx),
and he also spends resources to mine blocks that guarantee x( fx) execution. For example,
in Ethereum, these resources are gas and ether. In the opposite case, miners do not get fx
and do not spend resources to execute the code. Hence, the payoff function of miner i is
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ui(ti, t−i; vi) =


fx + vi − ci(ti) if ti < minj 6=i{tj},
fx+vi−ci(ti)

k if |{j ∈ M|tj = ti = min{tk|k ∈ M}}| = k,
0 if ti > minj 6=i{tj}.

Thus, the expected payoff function of miner i is

E[ui(σi, σ−i); v] = Pr[W]( fx + vi − ci(ti)) + Pr[T]
(

fx + vi − ci(ti)

k

)
+ Pr[L]0,

where W, T, and L are the probability events associated with scenarios (a), (b) and (c),
respectively.

Note that σ(v)−i = (tj(vj))j 6=i is the realization of the random vector σ(V)−i =
(tj(Vj))j 6=i, i.e., each decision rule tj is a transformation of the random variable Vj for all
j ∈ M− {j}. By assuming that Vj is a continuous random variable for all j ∈ M, we have
that

Pr[T] = Pr[|{j ∈ M|tj = ti = min{tk|k ∈ M}}| = k]

= Pr[|{j ∈ M|tj(vj) = ti = min{tk(vk)|k ∈ M}}| = k] = 0.

Consequently, we can rewrite the expected payoff function of i as follows

E[ui(σi, σ−i); v] = ( fx + vi − k)Pr[W], (1)

where

Pr[W] = Pr
[

ti < min
j 6=i
{tj(vj)}

]
.

To search for the best decision rules of miner i to σ(v)−i, we maximize their expected
payoff. By expression (1), we first compute the probability Pr[W]of winning the right
to execute x( fx). Note that Pr[W] depends on the profile σ−i(v−i); as in Auction theory,
we assume that all miners behave symmetrically picking x( fx) in a time that is inversely
proportional to their valuation, i.e., all miners j 6= i choose the decision rule

tj =
α

vj
, (2)

where α is a positive constant.
Intuitively, expression (2) captures the fact that miners pick the contracts as soon as

their valuation on x( fx) increases. For example, the previous case arises when miners need
money to acquire resources in P .

Now, given that tj(vj) = α/vj is the realization of the random variable α/Vj, the
probability of winning the right to execute x( fx) is

Pr

[
ti < min

j 6=i

{
α

vj

}]
.

By assuming that V = (V1, . . . , Vm) is a random vector of independent and identically
distributed random variables, the definition of the minimum order statistic implies that

Pr

[
ti < min

j 6=i

{
α

vj

}]
=

(
Pr

[
ti <

α

vj

])m−1

.
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Finally, we consider that Vj follows a uniform distribution on the interval [0, 1], which
means that

Pr[W] =

(
Pr

[
ti <

α

vj

])m−1

=

(
Pr
[

vj <
α

ti

])m−1

=

(
α

ti

)m−1
. (3)

To simplify the calculation of miners’ best decision rules, we consider that ci(ti) =
1/ti + κ, where κ is a fixed cost to mine x( fx), and 1/ti are the variables costs, in accordance
with the assumption that ∂ci/∂ti < 0. The previous cost function, together with expression
(3), implies that the expected payoff function in (1) can be rewritten as follows

E[ui] =
αm−1

tm−1
i

(
fx + vi −

1
ti
− κ

)
. (4)

Then, we compute the best response of i to σ−i by considering that other miners
decision rules profile is σ−i = (α/vj)j∈M−{i}.

We use the criterion of the first derivative to search for the best response of i; that is to
say, we need to solve the equation ∂E[ui]/∂ti = 0 where

E[ui]

∂ti
= − (m− 1)αm−1(vi + fx − κ)

tm
i

+
mαm−1

tm+1
i

.

So, the critical points of the expected payoff function of i are the solutions of

− (m− 1)αm−1(vi + fx − κ)

tm
i

+
mαm−1

tm+1
i

= 0.

Note that the previous expression is equivalent to

(m− 1)αm−1(vi + fx − κ)

tm
i

=
mαm−1

tm+1
i

(m− 1)(vi + fx − κ)

tm
i

=
m

tm+1
i

ti(vi + fx − κ)(m− 1) = m,

which is a linear equation on ti. Consequently, the unique solution of the first order
condition ∂E[ui]/∂ti = 0 is

ti =
m

(m− 1)(vi + fx − κ)
. (5)

In other words, E[ui] has a unique critical point ti that depends on vi. The next theorem
demonstrates that ti(vi), as in expression (5), maximizes the expected payoff function of i
when other miners set a picking time that is inversely proportional to their valuation.

Theorem 1. Consider that |M| > 2 and vi + fx > κ. The best response of miner i to σ−i =
(α/vj)j 6=i is

σ∗i (vi) = ti(vi) =
m

(m− 1)(vi + fx − κ)
.

Proof. By expression (5), ti = m/[(m − 1)(vi + fx − κ)] is a critical point of E[ui]; to
guarantee that such decision rule is best response of i to σ−i, we need to verify that such
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rule induces the maximum expected payoff for i. For this end, we follow the second order
condition. Thus, we first compute the second derivative of E[ui]

∂2E[ui]

∂t2
i

=
m(m− 1)αm−1(vi + fx − κ)

tm+1
i

− m(m + 1)αm−1

tm+2
i

.

By performing some algebraic simplifications on the previous expression, we have
that

∂2E[ui]

∂t2
i

=
mαm−1

tm+2
i

[(m− 1)(vi + fx − κ)ti − (m + 1)]. (6)

Notice that ti(vi)
m+2 > 0 because vi + fx > κ. Furthermore, mαm−1 is a positive

constant. So, to verify if the expected payoff function reaches a maximum, or a minimum,
on ti, we focus on identifying the sign of

∆(ti) = (m− 1)(vi + fx − κ)ti − (m + 1)

when ∆(ti) is evaluated on ti(vi).

∆(ti(vi)) = (m− 1)(vi + fx − κ)
m

(m− 1)(vi + fx − κ)
− (m + 1),

where m− 1 and vi + fx − κ are greater than zero. So

∆(ti(vi)) = m− (m + 1) = −1.

Consequently, we have that

∂2E[ui]

∂t2
i

∣∣∣∣∣
ti=ti(vi)

=
mαm−1

ti(vi)m+2 (−1) < 0.

In other words, miner i maximizes their expected utility function by picking x( fx) in a
time

ti(vi) =
m

(m− 1)(vi + fx − κ)
.

Corollary 1. If vi + fx − κ > 0, the game described in Section 2.1 has a unique symmetric
Bayesian Nash equilibrium σ∗(v) = (σ∗1 (v1), . . . , σ∗m) where

σ∗i =
m

(m− 1)(vi + fx − κ)

for all i ∈ M.

Proof. It follows from Theorem 1.

Expression (5) establishes a closed-form solution for miners’ decision rule at the
symmetric Bayesian Nash equilibrium (SBNE). Aside from the fact that such an equilibrium
decision rule is unique and single-value, we observe that picking times are inversely
proportional to the net revenue that each miner gets, after covering fixed costs, when they
get the right to execute the smart contract. The following corollary shows that picking
times tend to be such net revenue as the number of miners increases to infinity.

Corollary 2. As m→ ∞, the equilibrium decision rule of i tends to 1
vi+ fx−κ .
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Proof. From Theorem 1, the equilibrium decision rule of miner i is σ∗i (vi) = m/(m −
1)(vi + fx − κ). Then, we have that

lim
m→∞

σ∗i (vi) = lim
m

(m− 1)(vi + fx − κ)

= lim
m→∞

m
m− 1

1
vi + fx − κ

=

(
1

vi + fx − κ

)
lim

m→∞

m
m− 1

.

Since lim
m→∞

m/(m− 1) = 1, we conclude that

lim
m→∞

σi(vi)
∗ =

1
vi + fx − κ

.

3.2. Comparative Statics

As we mentioned before, one of the main advantages of establishing smart contracts
relies on the fact that agents p and a do not need the intervention of a third party agent to
guarantee the fulfillment of all agreements in x( fx). By an almost immediate execution,
smart contracts provide security and transparency to agents p and a. However, there
exogenous factors that may slow or accelerate the execution of smart contracts.

Specifically, expression (5) points out that picking times at equilibrium depend on
the number of miners m, the fee fx provided by x( fx), and the fixed cost κ that miners
face by belonging to P . Moreover, Theorem 1 and Corollary 1 imply that the equilibrium
decision rule σ∗i is single-value, which allow us to perform some comparative statics with
respect to the exogenous variables m, fx and κ. The following propositions summarizes the
relationship between equilibrium picking times and exogenous variables.

First, picking times reduce as the number of miners increases. Intuitively, a larger
number of miners promote competition among them since the consensus algorithm drive a
strategic behavior.

Proposition 1. At equilibrium, if vi + fx − κ > 0, then picking times diminish as the number of
miners increases.

Proof. To demonstrate this proposition, we take the partial derivative of expression (5)
concerning m. So, we have that

∂σ∗i
∂m

=

(
1

vi + fx − k

)
m− 1−m
(m− 1)2

=

(
1

vi + fx − k

)
−1

(m− 1)2 .

Since vi + fx − κ > 0, we have that

∂σ∗i
∂m

< 0.

In words, there is negative relationship between the time that i lasts to pick x( fx) and
the number of miners in P .

As a consequence of Corollary 2 and Proposition 1, we have that picking times mono-
tonically decreases to 1/(vi + fx − κ) as the number of miners m increases to infinity. In
other words, after covering fixed costs, the inverse of the net revenue represents a lower
bound for the time that miners last to pick the smart contract x( fx). Consequently, smart
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contracts do not immediately execute. Thus, a large number of miners does not guarantee
the execution of a smart contract despite that picking times diminish as there are more
miners in the public blockchain.

The existence of a lower bound for picking a contract, different from zero, implies that
the need for resources plays a major role in the execution of a smart contract x( fx). The
following proposition shows the relationship between the equilibrium decision rule and
the economic variables that characterize the contract.

Proposition 2. Consider σ∗i , the equilibrium decision rule of miner i. The relationship between σ∗i
and fx is negative, and the relationship with respect to κ is positive.

Proof. First, we compute the partial derivative of σ∗i with respect to κ. So, we have that

∂σ∗i
∂κ

=
m

m− 1
−1(−1)

(vi + fk − κ)2

=
m

m− 1
1

(vi + fk − κ)2 .

Since vi + fk − κ > 0, we conclude that ∂σ∗i /∂κ > 0.
Now, the partial derivative of σ∗i with respect to fk is

∂σ∗i
∂ fx

=
m

m− 1
−1

(vi + fk − κ)2

= − m
m− 1

1
(vi + fk − κ)2 .

Given that vi + fk − κ > 0, the relationship between σ∗i and fx is negative.

The previous proposition establishes that higher costs of belonging to P may discour-
age miners from picking a contract in case of not having enough resources. So, picking
times increase as the fixed cost increases. Moreover, the relationship between the equilib-
rium picking time and the fee is negative, which means execution times reduce as p and a
provide a larger reward for executing x( fx).

4. Contracts Classification

Blockchain platforms provide a decentralized environment for executing smart con-
tracts. The decision rule in Corollary 1 shows the equilibrium picking time that each miner
spends to execute contract x( fx); hence, the minimum picking time is the execution time of
x( fx). So, Corollary 1 allows us to analyze the relationship between the execution time and
the exogenous variables vi, fx and k. However, the equilibrium decision rule σ∗i does not
indicate how the simultaneous competition to execute other contracts y( fy) 6= x( fx) impact
the execution time. This section analyzes the implications of simultaneous competition on
the SCs’ execution times.

It is worth recalling that we consider independent smart contracts, which means
that x( fx)’s features and execution does not depend on other contract y( fy) features and
execution. So, if miner i gets a set of contracts {x1( fx1), x2( fx2), . . . , xK( fxK )}, her benefit is

E[ui(x1( fx1), x2( fx2), . . . , xK( fxK ))] =
K

∑
k=1

E[ui(xk( fk))].

Consequently, we do not follow a simultaneous auction approach to analyze how the
competition for getting other contracts impacts execution times since such an interaction
is different from classical simultaneous auctions [13]. Hence, we use machine learning
techniques to analyze execution times when miners simultaneously compete to get other
contracts.
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First, we simulate the game in Section 2.2. The previous simulation provides a database
that comprises execution times, fee, cost, and miner’s valuations. Then, we classify execu-
tion times in terms of the contracts and miners’ features.

4.1. Building the Data

At equilibrium, miners pick smart contracts by considering the decision rule in
Corollary 1. Such a closed-form solution is appealing for classifying smart contracts since
it summarizes the SCs’ features and the equilibrium behavior of miners. By using the
software R, we build a database that comprises the interaction of 1000 miners to execute
10,000 smart contracts. The simulation considers as basis values maximum and minimum
costs and fees from the Ethereum platform [32]. Below, we present the code we use to create
such a database; it is divided into sections describing the platform, miners, and contracts’
features.

#PLATFORM DESCRIPTION
#General features of the platform where the SCs stand.
#Minimum payoff
feeMin= 0.95
#Maximum payoff
feeMax= 7.56

#PLAYERS DESCRIPTION
#Number of miners
miners = 1000
#Miner’s valuation
vs. = c(runif(miners, min=0, max=2*feeMax))

#SMART CONTRACTS DESCRIPTION
#Total of miners' interactions
#Number of contracts
sc =10000
#The fixed cost of running each SC
cost = runif(sc, min=feeMin/3, max=3*feeMax)
#The fee that offers each contract
fee = c(runif(sc, min=feeMin, max=feeMax))

#MINERS INTERACTION
#Each miner sets the time to pick a contract
#Matrix of execution times initialization
Ex_times = matrix(0,nrow=10000, ncol=miners)
#Each entry Ex_times[i, j] should represent the time
#that miner i spends for executing the SC j (see Corollary 1)
for (j in 1:10000) {
for (i in 1:miners){
Ex_times[i,j]
= miners/((miners-1)*(v[i] + fee[j] - cost[j]))
}
}

#THE SCs EXECUTION
#The minimum picking time
winner_time = apply(Ex_times, 1, FUN=min)

#WINNERS
#Those miners that execute a contract
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#Initialization of the vector of miners who get a SC
winner = matrix(0, nrow = sc, ncol=1)
#We search for the miner who executes the contract in the minimum time
for (i in 1:10000){
winner[i] = which(Ex_times[i,]
== min(Ex_times[i,]), arr.ind=TRUE)
}

#SMART CONTRACTS DATABASE
#We summarize smart contracts features and miners interaction
#contracts’ fee, execution cost, miners’ valuation, winning time
Contracts_ex = data.frame(cbind(fee,cost,v,winner_time))

Note that all variables in the database Contracts_ex are continuous. By applying
the classification technique, we get back the mean and standard deviation of the random
numbers we used to create the database. So, we need to transform fee, cost, valuation, and
picking time into categorical variables to classify contracts.

The transformation of variables is based on quantiles of five levels, and each of them
represents a qualitative feature. In the case of fee and cost, each level refers to magnitude,
that is to say, how large fees and costs are. Specifically, the fee or cost of a smart contract
can be considered as Low, Medium-Low, Medium, Medium-High, and High. Concerning
valuation, each level represents preference. Then, we can say that the SC x is the Top,
Second-best, Third-best, Fourth-best, or Bottom for a miner i depending on her valuation
vi. Finally, the picking time categories refer to how fast a smart contract is executed; in
this sense, a smart contract can be executed in First, Second, Third, Fourth, and Fifth place.
Table 1 shows the labels of each quantile with respect to variables fx, cx, v and tx.

Table 1. Categorical values of the smart contracts execution main features.

Quantiles fx cx v tx

1 Low Low Bottom First
2 Medium-Low Medium-Low Fourth-best Second
3 Medium Medium Third-best Third
4 Medium-High Medium-High Second-best Fourth
5 High High Top Fifth

Below, we explain the code that we use to perform the previous transformation in R.

#FEE TRANSFORMATION
#Fee is divided into quartiles
q_fee = as.numeric(quantile (fee, prob = c(0.2, 0.4, 0.6, 0.8)))
#Naming fee's quartiles as low, medium-low, medium-high, high
c_fee = cut(fee, breaks = c(min(fee),q_fee,max(fee)),
labels = c("Low","Medium-Low","Medium","Medium-High", "High"))

#COST TRANSFORMATION
#Cost is divided into quartiles
q_cost = as.numeric(quantile (cost, prob = c(0.2, 0.4, 0.6, 0.8)))
#Naming cost's quartiles as low, medium-los, medium-high, high
c_cost = cut(cost, breaks = c(min(cost),q_cost,max(cost)), labels =
c("Low","Medium-Low","Medium","Medium-High", "High"))

#VALUATION TRANSFORMATION
#Miners' valuation is divided into quintiles
q_v = as.numeric(quantile (v, prob = c(0.2, 0.4, 0.6, 0.8)))
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#Naming miners' valuations as Top, Second-best, Third-best,
#Fourth-best, Bottom
c_v = cut(v, breaks = c(min(v),q_v,max(v)),
labels = c("Top", "Second-best", "Third-best",
"Fourth-best", "Bottom"))

#TIME TRANSFORMATION
#Execution times are divided into quartiles
q_winner_time = as.numeric(quantile (winner_time,
prob = c(0.2, 0.4, 0.6, 0.8)))
#Naming execution times as first, second, third, fourth, fifth
c_winner_time = cut(winner_time,
breaks =c(min(winner_time),q_winner_time,max(winner_time)),
labels = c("First", "Second", "Third", "Fourth", "Fifth"))

#QUALITATIVE DATABASE
Contracts_ex =
data.frame(lapply(Contracts_ex_b, as.character),
stringsAsFactors=FALSE)

4.2. The Näive Bayes Classifier

To analyze the impact of cost, fee and valuation on the simultaneous execution of smart
contracts, we classify them through the Naïve Bayes (NB) technique. We also consider NB’s
variations to check the classification’s accuracy since the database Contracts_ex is the result
of a qualitative transformation of continuous variables. Table 1 summarizes the categorical
values that each variable can take. We consider that execution time (tx) is the independent
variable, while fee ( fx), fixed cost (k) and valuation (v) are the dependent variables. In other
words, we classify execution times through the main features of contracts and miners.

Note that our database satisfies the naïve assumption since its variables are indepen-
dent by construction. Then, the Naïve Bayes method classifies smart contracts through the
Bayes’ theorem. Mathematically, this technique computes

Pr(tx = t| fx, cx, v) =
Pr( fx, cx, vs.|tx = t)Pr(tx = t)

Pr( fx, cx)
,

which refers to the conditional probability of being executed at place t ∈ {First, Second, Third,
Fourth, Fi f th}, given the features that characterize the contract (fee, cost) and miners’ val-
uation.

4.3. Naïve Bayes Implementation

Remember, the Contracts_ex summarizes a simulated interaction between 1000 miners
that compete for executing 10,000 contracts. Thus, contracts’ classification identifies those
features that accelerate or slow the execution of SCHence, we use the Contracts_ex database
that comprises categorical values related to miners’ preferences, magnitude, and velocity
(see Table 1).

We build the classification model by splitting the database into two databases for train-
ing and testing. We use the NaïveBayes and e1072 packages of R to verify the robustness
of our results. Furthermore, we apply the Kernel and Laplace correction methods.

First, note that execution times classes (First, Second, Third, Fourth, and Fifth) are
(almost) perfectly balanced. In other words, each class has an a priori probability of around
20% (see Table 2).
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Table 2. A priori probabilities.

Class First Second Third Fourth Fifth

A priori
probability 0.195 0.204 0.20 0.201 0.197

Second, Table 3 illustrates the accuracy, for the training and the testing database,
concerning the different packages and the correction methods that we use. We observe
that accuracy is the same regardless of the package or the correction method. Although
accuracy is lower than 50%, this is not surprising since the five classes are almost perfectly
balanced. In other words, random guessing provides an accuracy of around 50% for each
execution time, which is relatively high by considering that the smart contracts variables
take five values.

Table 3. Techniques’ accuracy.

Accuracy (Train) Accuracy (Test)

Naïve Bayes 43.21% 42.58%
Naïve Bayes (e1072) 43.21% 42.58%
Naïve Bayes Laplace 43.21% 42.58%

Naïve Bayes 43.21% 42.58%

Finally, in Table 4, we present the statistics concerning the execution time classes.
Contracts executed at fifth place, the slowest category, have the highest sensitivity. Then, the
classifier correctly predicts those contracts that have a slow execution. In other words, the
simultaneous competition for getting SCs makes it difficult to predict which contracts are
executed as far as possible. In contrast, the correct identification of false cases concerning
how fast an SC is executed is around 80% or more for each execution time level. Thus,
the classifier correctly identifies those contracts that do not cope with the features to be
executed almost immediately.

Table 4. Sensitivity, Specificity, PPV, and NPV concerning SCs’ execution times classification.

Sensitivity Specificity Pos Pred Value Neg Pred Value

First 0.275 0.845 0.303 0.827
Second 0.348 0.798 0.308 0.826
Third 0.248 0.825 0.265 0.813

Fourth 0.557 0.887 0.555 0.88
Fifth 0.732 0.932 0.725 0.934

Even though high sensitivity is desirable, the trust and credibility of Blockchain
networks rely on preventing execution times manipulation, which holds when we look
out for the Positive Predicted Value (PPV) and the Negative Predicted Value (NPV). So,
the NPV is larger than the PPV for all execution time categories, which means that miners’
interaction is trustworthy. Even more, the auction mechanism does not execute those
contracts incorrectly identified as first class. This is important since most results are false
positive according to the sensitivity measure. In other words, the Naïve Bayes classifier
identifies those contracts that do not cope with the features for being executed in first,
second, third, or fourth place. Hence, a large specificity contributes to identifying miners
who try to cheat the blockchain. In this sense, the classification may prevent the blockchain
platform’s loss of trust and credibility.
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4.4. Conditional Probabilities

The Naïve Bayes classifier computes the conditional probabilities of how fast a SC
is executed, given the features of a smart contract. Table 5 shows the features of some
contracts and the execution time that the NB classifier predicts.

Table 5. Predicted execution time given the features of some contracts.

Fee Cost Valuation Execution Place

Low Medium Second-best Second
Medium-Low Medium-High Bottom First

Medium Medium-High Third-best First
High Medium-High Bottom First

Table 6 presents the conditional probabilities concerning smart contracts features. This
table provides some interesting insights concerning how fast SCs are executed during
the simultaneous competition to execute several contracts. First, we observe that miners’
valuation induce a uniform distribution, reflecting the simulation’s features (see Figure 1).
Specifically, results are balanced around a probability of 0.20, which means that the miners’
valuation balances the conditional probability. In other words, such a variable does not
accelerate or slow the miners’ intervention to execute a contract.

Table 6. Conditional probabilities of time execution given the smart contracts features and miners’
valuation.

CF Label First Second Third Fourth Fifth

v Bottom 0.196 0.199 0.199 0.205 0.194
Fourth-best 0.212 0.189 0.194 0.191 0.195
Third-best 0.207 0.205 0.198 0.21 0.207

Second-best 0.185 0.202 0.213 0.202 0.211
Top 0.198 0.202 0.194 0.19 0.19

fx High 0.21 0.196 0.209 0.107 0.275
Medium-High 0.206 0.205 0.182 0.161 0.227

Medium 0.211 0.196 0.182 0.229 0.187
Medium-Low 0.196 0.191 0.208 0.241 0.152

Low 0.175 0.21 0.217 0.258 0.158

cx High 0.111 0.099 0.097 0.557 0.14
Medium-High 0.283 0.265 0.265 0.182 0

Medium 0.274 0.315 0.285 0.112 0
Medium-Low 0.252 0.247 0.27 0.105 0.126

Low 0.076 0.072 0.08 0.042 0.732

Given the economic variables (cost and fee) that characterize smart contracts, condi-
tional probabilities are not balanced as it happens with the miners valuation. In both cases,
we observe different patterns that contrast with the relationships in Proposition 2.

First, we discuss the probability of execution times given a fee (see Figure 2). Table 6
shows that the probability of being executed in first or second place weakly increases as the
SCs’ fee increases, in line with the positive relationship between picking times and fee that
we find in Proposition 2. Furthermore, contracts with a low fee have a higher probability of
being executed in fourth place. However, the probability of being executed at fifth place
calls our attention since such a probability increases as the fee also increases; in other words,
simultaneous competition. Even more, this probability is larger (0.275) in comparison with
the execution of contracts at first (0.21) or second places (0.19). Finally, those contracts in
the third category present a balanced probability distribution (0.20).



Mathematics 2022, 10, 1033 15 of 18

Figure 1. Graphical representation of the probability of executing a SC given the preference of a miner.

Figure 2. Graphical representation of the probability of executing a SC given the SCs fees.

Finally, conditional probabilities related to costs present the most drastic results (see
Figure 3). For example, given a low cost, the probability of being executed at fifth place
is greater than 0.7, which is surprising since we expect the opposite; that is to say, the
prioritization of cheap contracts. Furthermore, we observe that low cost (cheap contracts)
do not guarantee the immediate execution of smart contracts. A medium cost induces
the highest probability of being executed at second (0.315) and third place (0.285), while
smart contracts with medium-high costs have priority one to be executed; a probability
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equal to 0.283. Nevertheless, we get zero probability of being executed in fifth place, given
medium and medium-high costs; consequently, no smart contracts are classified in fifth
place with such costs. We attribute the previous result to the low accuracy since variables
take five values.

Figure 3. Graphical representation of the probability of executing a SC given the SCs’ cost.

By the above discussion, the simultaneous competition to get several contracts modi-
fies how fast a smart contract is executed. Particularly, given some combinations of qualita-
tive features, we observe the opposite relationship that we expect from Proposition 2.

5. Conclusions

In this paper, we study the execution times of smart contracts by considering that
miners simultaneously compete to get the right to execute more than one contract. Our
analysis focuses on independent contracts that stand in a public blockchain that uses
the Proof-of-Work mechanism since this consensus mechanism is secure and guarantees
coordination among the blockchain’s members [16]. Given that PoW induces a direct
use of resources, we model miners’ competition for a single contract as a time auction.
In other words, the miner who first solves the contract’s puzzle is the one who gets the
associated fee. The analysis of this game-theoretical framework provides a closed-form
solution concerning each miner’s time to pick a single contract, which also echoes empirical
findings. For example, the comparative statistics point out that picking times reduce as fee
increases, while mining costs induce the opposite relationship [21,22].

The previous solution does not capture the fact that miners can compete to pick other
contracts at the same time, an interaction that we analyze by classifying contracts. Given
that contracts are independent, a simultaneous auction does not interrelate the miners’
interaction in multiple executions, while the Naïve Bayes classifier allows us to predict
execution times based on the smart contracts and miners’ features.

Based on equilibrium picking times, we simulate the interaction of 1000 miners that
compete for 10,000 contracts. Unsurprisingly, accuracy and sensitivity are below the
standards since the independent variables are not dichotomous (we transform continuous
variables into qualitative variables with five levels). However, the classification results show
some interesting patterns that do not correspond with those expected from the comparative
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statics analysis. For example, miners’ valuation does not accelerate execution times, while
costs induce counter-intuitive patterns (the probability of being executed in the last place
increases as cost increases). Concerning the variable fee, there is no clear patron of their
impact on execution times.

It is worth recalling that the Naïve Bayes classifier provides interesting insights con-
cerning the possibility that miners manipulate the consensus mechanism when multiple
contracts are executed. Although the classification results are not good for identifying
those contracts that should be executed in a certain order (low sensitivity and positive
predicted value), the opposite happens with the identification of contracts that should not
be executed by considering a certain priority (high specificity and negative predicted value).
We pretend to verify the previous results in future works by considering real data from
public blockchains such as Ethereum.

Finally, our main contribution relies on providing a theoretical framework to analyze
concurrent operations, whose efficient performance in public blockchains is of interest
given the increasing popularity of smart contracts [9,33]. Particularly, the auction model
points out the possibility of designing transparent consensus mechanisms that allow the
monitoring of dishonest behavior of miners. Such a game-theoretical framework is suitable
for including regulatory agents (such as time oracles) to take care of SC users’ welfare, which
is also a research topic of growing interest [23]. Moreover, smart contracts classification may
predict the features that drive miners to follow dishonest behavior, such as manipulating the
consensus algorithm. Avoiding dishonest behavior from miners is crucial for blockchains
since it compromises their reputation. In this sense, we explain how the Naïve Bayes
method is able to identify if miners’ interactions modify the execution order of a smart
contract and consequently prevent miners’ misbehavior.
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