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Abstract: This paper proposes a method to construct a one-dimensional discrete chaotic system. First,
we define a generalized distance function to control the boundedness of the one-dimensional discrete
system. Based on Marotto’s theorem, one-dimensional discrete systems are proven to be chaotic in
the sense of Li–Yorke, and the corresponding chaos criterion theorem is proposed. The system can be
distributed uniformly by adjusting the parameters. In this paper, we propose an image encryption
scheme based on a uniformly distributed discrete chaotic system and DNA encoding. DNA encoding
and decoding rules are determined by plain text. The experimental results demonstrate that our
encryption algorithm has a large key space, high key sensitivity, and fast encryption speed and can
resist differential and statistical attacks.

Keywords: chaotic image encryption; uniform distribution; chaotic system; DNA coding

1. Introduction

Chaos is a special type of complex dynamic behavior displayed in nonlinear systems
that commonly exists in nature, such as mathematics, physics, psychology, biology, and
other fields. Chaotic systems have many essential properties, such as ergodicity, extreme
sensitivity to initial conditions, and good pseudorandom behavior, which makes chaos
theory a popular research subject. In recent years, chaotic systems have been rapidly
developed and applied in many fields, especially electronic communications and cryptogra-
phy [1,2]. As one of the most important information carriers, the security of images is very
important and has drawn increasing attention from the public and researchers. However,
due to a variety of intrinsic characteristics of images, such as a strong correlation of adja-
cent pixels, data redundancy, and high computational complexity, traditional encryption
algorithms are unsuited to encrypt images. Therefore, researchers have proposed many
image encryption algorithms [3–5]. Chaos-based image cryptosystems have become one of
the most ideal encryption methods [6–8] because of the main features of chaotic systems,
such as sensitivity to initial conditions, ergodicity, and highly complex behavior in addition
to their mixing properties.

Researchers have been extensively attracted to constructing new chaotic systems in
terms of the existing theory [9,10], which involves the discrimination for the existence
of chaos in dynamical systems. In 1975, Li and Yorke first defined the term chaos from
a mathematical perspective and proposed a criterion for the existence of chaos in one-
dimensional discrete dynamical systems [11], which is well known as “period three implies
chaos”. Under the guidance of Li–Yorke’s criterion, Marotto generalized a high-dimensional
discrete dynamical system in 1978, which is known as Marotto’s theorem [12]. Shi and Chen
proposed a new modified version of Marotto’s theorem [13] in 2005. Based on Li–Yorke’s
criterion, a sufficient and necessary condition for the existence of the three periodic points
of a quadratic polynomial is obtained by decomposing the real coefficient polynomial in a
complex field [14]. A chaos criterion theorem on a cubic discrete system was established

Mathematics 2022, 10, 1027. https://doi.org/10.3390/math10071027 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10071027
https://doi.org/10.3390/math10071027
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-1137-3067
https://doi.org/10.3390/math10071027
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10071027?type=check_update&version=2


Mathematics 2022, 10, 1027 2 of 21

and proven to be chaotic in the sense of Li–Yorke [15]. Nevertheless, it is difficult to
construct chaotic systems in terms of this criterion. Thus far, only a small number of related
work has been reported. In contrast to Li–Yorke’s criterion, Marotto’s theorem appears
more instrumental in proposing a theoretical direction. Based on Marotto’s theorem, Chen
and Lai discussed an automatic control problem for discrete-time dynamical systems by
adding a control term and then proposed an algorithm to control Lyapunov exponents
for discrete-time dynamical systems, which is known as the Chen–Lai algorithm [16].
Moreover, several bounded functions containing modulus, sine, and saw-tooth functions
were applied to globally bind the discrete system in the Chen–Lai algorithm, and the
control term is a linear function [17]. To eliminate the linear control term in the Chen–Lai
algorithm, a chaos criterion theorem for a one-dimensional discrete system was provided,
in which a modulus function was used as a bounded function [18]. It is worth considering
whether other bounded functions could lead to a similar proposition while eliminating
linear control.

Low-dimensional chaotic maps have a simple structure and are easy to implement, but
they usually have a small key space. In this paper, the proposed chaotic system overcomes
the shortcomings of the traditional low-dimensional chaotic system with a small key space
by adjusting parameters; therefore, a uniform distribution can be achieved.

DNA computing technology has attracted more and more attention since Adleman
studied it [19]. Cryptography utilizes DNA as an information carrier in image encryption
and has shown promising results by taking advantage of excellent DNA properties, such as
massive parallelism, large storage, and ultralow power consumption. The authors of [20]
proposed a color image encryption scheme based on DNA operations and a spatiotemporal
chaotic system. The key stream of image encryption is associated with the key and plaintext
image, which improves the ability to resist known plaintext or selected plaintext attack.
Liu et al. [21] proposed color image encryption based on dynamic DNA and 4-D memris-
tive hyperchaos. The main feature of the algorithm is that the dynamic DNA mechanism
based on hyperchaos is performed on the processes of encoding, confusion, and diffusion,
improving the security of the algorithm. Liu et al. [22] combined DNA computing with
double-chaos systems composed of Lorenz chaotic mapping with variable parameters and
fourth-order Rossler hyperchaotic mapping and proposed an algorithm for color image en-
cryption at the bit level. The double-chaos system compensates for the pseudorandomness
of the two types of chaotic mappings, making chaotic sequences more difficult to predict.

In this paper, a generalized distance function is defined as bounded, and it is applied
to control the boundedness of a discrete system. In terms of Marotto’s theorem, a one-
dimensional discrete system is discussed, and the corresponding chaos criterion theorem
is set up to determine the existence of chaos in the discrete system. The system can be
distributed uniformly by adjusting the parameters. An image encryption scheme is proposed
based on this kind of uniformly distributed discrete chaotic system. First, the chaotic
sequence is used to scramble and XOR transform the image, and then DNA coding and DNA
operation are performed, the rules of which are determined by plain text. The remainder
of this paper is organized as follows. Section 2 presents a class of uniformly distributed
discrete chaotic systems and analyzes their dynamic behaviors. Image encryption based on
DNA coding is proposed in Section 3. Section 4 gives the simulation experiment results and
states security analyses. Finally, Section 5 concludes the paper.

2. A Class of Uniformly Distributed Chaotic Systems
2.1. Chen–Lai Algorithm

The Chen–Lai algorithm considers a nonlinear discrete system, not necessarily chaotic,
of the form:

xk+1 = fk(xk), xk ∈ Rn. (1)



Mathematics 2022, 10, 1027 3 of 21

Then, a control input sequence {uk}∞
k=0 is designed to investigate the automatic control

of system (1), and a new system is described as:

xk+1 = fk(xk) + uk, xk ∈ Rn, (2)

where uk = Bkxk is discussed for short.
Assume the sequence {Bk} is uniformly bounded:

sup
0≤k<∞

‖Bk‖ ≤ M < ∞

where M is a positive constant and ‖ · ‖ denotes the spectral norm of a finite-dimensional matrix.
Under the only assumption, it is proven that, in practice, the algorithm can provide

the required Lyapunov exponents and achieve the expected anti-control of system (2).
The Chen–Lai algorithm, based on the modulus, sine, and saw-tooth function, is

further discussed in detail in [17]. Based on the modulus operation, the one-dimensional
discrete system in the Chen–Lai algorithm has the form:

xk+1 = f (xk) + uk (mod1), (3)

where uk = (N + ec)xk is the control term and N and c are two constants.
A proposition is given on the one-dimensional discrete system (3) as follows.

Lemma 1. [17] If f (0) = 0, c > 0 and | f ′(x)|< 1 ≤ N are satisfied, then the controlled
system (3) is chaotic in the sense of Li–Yorke.

The chaotic systems constructed by proposition 1 appear limited in having a linear
control term; then, a one-dimensional system without a linear control term is considered
with the form [18]:

xk+1 = f (xk) (mod1), (4)

where xk ∈ R1, f (x) ∈ C1[0, 1] and f (0) = 0.
The chaos criterion theorem for system (4) is also provided.

Lemma 2. [18] If | f ′(x)|> 1 and x ∈ [0, 1) are satisfied, then system (4) is chaotic in the sense
of Li–Yorke.

Evidently, Lemma 1 is a special case of Lemma 2. In short, the form of system (3) is
generalized to the form of system (4), while the bounded function is a modulus function.
Naturally, under the guidance of the Chen–Lai algorithm and the work of proposition 2, a
new bounded function can be defined to replace the modulus function and propose the
corresponding chaos criterion theorem. This work is described in Section 2.2.

2.2. A One-Dimensional Discrete Chaotic System

This definition begins without describing the modified Marotto’s theorem, which is
used later.

Lemma 3. [13] Let f : R→ R be a map with a fixed point z ∈ Rn. Assume that

(1) f is continuously differentiable in a neighborhood of z and all the eigenvalues of D f (z) have
absolute values larger than 1, which implies that there exists a positive constant r and a
norm‖ · ‖ in Rn such that f is expanding in Br(z) in ‖ · ‖ , where Br(z) is the closed ball of
radius centered at z in (Rn, ‖ · ‖);

(2) z is a snap-back repeller of f with f m(x0) = z, x0 6= z, for some x0 ∈ Br(z) and some positive
integer m, where Br(z) is the open ball of radius centered at z in (Rn, ‖ · ‖). Furthermore, f is
continuously differentiable in some neighborhoods of x0, x1, · · · , xm−1, and detD f (xj) 6= 0
for 0 ≤ j ≤ m− 1, where xj = f (xj−1) and 0 ≤ j ≤ m− 1.
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2.2.1. A Generalized Distance Function

First, a distance function is defined.

Definition 1. Let x ∈ R; then, there exists an integer N ∈ R such that x ∈ [N, N + 1]. A
distance function as f (x) = min{x− N, N + 1− x} is defined. For simplicity, it is denoted as
f (x) , (x).

Absolutely, the function f (x) , (x) is an even function. Then, a generalized distance
function is further defined by adding a scale parameter into the distance function in
Definition 1.

Definition 2. A generalized distance function is defined as Disε(x) = ε · (x), where parameter ε
is a positive constant.

The image of function Disε(x) is displayed in Figure 1. Note that Disε(x) ∈ [0, ε/2]
and it is also an even function.
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2.2.2. Two Chaos Criterion Theorems

Theorem 1. Consider a one-dimensional linear discrete system.

xk+1 = Disε(axk), a 6= 0. (5)

If |a|ε ≥ 2 is satisfied, then system (5) is a chaotic system in sense of Li–Yorke.

Proof of Theorem 1. If a < 0 is satisfied, then xk+1 = Disε(axk) = Disε(−axk), which is
actually a > 0. Therefore, only a > 0 is proved for simplicity.�

Denote g(x) = Disε(ax). Then, while 0 ≤ x ≤ 1/a, g(x) can be expressed as:

g(x) =
{

aεx, 0 ≤ x < 1/(2a)
ε(1− ax), 1/(2a) ≤ x ≤ 1/a

The derivative of map g(x) satisfies |g′(x)|=|a|ε > 1 , where 0 ≤ x ≤ 1/a and
x 6= 1/(2a). In addition, condition |a|ε = aε ≥ 2 gives 1/a ≤ ε/2.

Denote J1 = (0, 1/(2a)), J2 = (1/(2a), 1/2a).
In interval J2, g(x) = ε(1− ax) = x gives a fixed point:

x∗ =
ε

1 + aε

Next, the fixed point x∗ is proven as a snap-back repeller.
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A sequence {x−m|m = 0, 1, 2, · · · } is defined as:

x0 =
1

a(1 + aε)
∈ J1, x−m =

ε− x−m+1

aε
∈ J2, m = 1, 2, · · ·

Then, x∗ = g(x0) = g2(x−1) = · · · = gm(x−m+1).
By the Lagrange mean value theorem, there exists a point ξ ∈ (x−m+1, x∗) or ξ ∈ (x∗, x−m+1)

such that:∣∣x−m+2 − x∗
∣∣=∣∣g(x−m+1)− g(x∗)

∣∣=∣∣g′(ξ)(x−m+1 − x∗)
∣∣>∣∣x−m+1 − x∗

∣∣
Hence, let the positive integer m be large enough; then, there exists a constant r > 0

such that:
x−m+1 ∈ Br(x∗) ⊂ J2, x−m+k /∈ Br(x∗), k = 2, 3, · · · , m

where Br(x∗) = [x∗ − r, x∗ + r] is a closed ball and g(x) is continuously differentiable
in Br(x∗).

In summary, the fixed point x∗ satisfies the following conditions:
(a) There exists a positive constant r > 0 such that for any point x ∈ Br(x∗) ⊂ J2,

det{Dg(x)} =
∣∣g′(x)

∣∣=∣∣a∣∣ε = aε > 1,

where Dg(x) = g′(x) denotes the Jacobi matrix of g(x).
That is, the eigenvalue of Dg(x) is λ = g′(x), and it satisfies |λ|=|g′(x)|= aε > 1 .
(b) There exists a point x−m+1 ∈ Br(x∗) ⊂ J2 and a positive integer m ≥ 2 such that

gm(x−m+1) = x∗, and

|det{Dgm(x−m+1)}| =
∣∣∣∣∣ m

∏
i=1

det{Dg(x−i+1)}
∣∣∣∣∣ = (aε)m 6= 0

In summary, x∗ is a snap-back repeller of system (5). This completes the proof.
In the proof of Theorem 1, the derivative of map g(x) = Disε(ax) satisfies |g′(x)|=|aε|> 2 ,

which shows that the Lyapunov exponent of system (5) is λ = ln|aε|> 0 .

Theorem 2. Consider a one-dimensional nonlinear discrete system

xk+1 = Disε( f (xk)), (6)

where f (x) ∈ C1[0, ε/2] and f (0) = 0.
If | f ′(x)|> 1 , x ∈ [0, ε/2] and ε ≥ 2, then system (6) is chaotic in the sense of Li–Yorke.

Proof of Theorem 2. Assume | f ′(x)|> 1 gives f ′(x) > 1 or f ′(x) < −1.�

If f ′(x) < −1 is satisfied, then xk+1 = Disε( f (xk)) = Disε(− f (xk)), which is actually
f ′(x) > 1. Therefore, only f ′(x) > 1 is proved for simplicity.

Denote g(x) = Disε( f (x)), then its derivative satisfies |g′(x)|=|Disε
′(x) f ′(x)|= ε f ′(x) > 1 .

By the Lagrange mean value theorem, there exists a point ξ ∈ [0, x] such that

f (x) = f (x)− f (0) = f ′(ξ)x > x

which gives f (1/2) > 1/2 and f (1) > 1.
Since f (1/2) > 1/2 > 0 = f (0), there exists a point t0 ∈ (0, 1/2) such that f (t0) = 1/2.
Since f (1) > 1 > 1/2 = f (t0), there exists a point t1 ∈ (t0, 1) such that f (t1) = 1.
The monotonicity of map f (x) ensures the uniqueness of points t0 and t1.
Then, g(t0) = Disε( f (t0)) = ε/2 and g(t1) = Disε( f (t1)) = 0.
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Denote h(x) = g(x)− x, and ε ≥ 2 gives

h(t0) = g(t0)− t0 = ε/2− t0 > 0, h(t1) = g(t1)− t1 = −t1 < 0

which indicates there exists a point x∗ ∈ (t0, t1) such that h(x∗) = 0. Moreover, h′(x) = g′(x)− 1 > 0.
Absolutely, point x∗ is a fixed point of map g(x) in interval (t0, t1).
Next, the fixed point x∗ is proven to be a snap-back repeller.
Since g(0) = 0 < x∗ < ε/2 = g(t0), there exists a point x0 ∈ (0, t0) such that

g(x0) = x∗.
Since g(t1) = 0 < x0 < x∗ = g(x∗), there exists a point x−1 ∈ (x∗, t1) such that

g(x−1) = x0.
Since g(x∗) = x∗ < x−1 < ε/2 = g(t0), there exists a point x−2 ∈ (t0, x∗) such that

g(x−2) = x−1.
Since g(t1) = 0 < x−2 < x∗ = g(x∗), there exists a point x−3 ∈ (x∗, t1) such that

g(x−3) = x−1.
Therefore, it can be proven that there exists a point x−m+1 ∈ (t0, x∗) or x−m+1 ∈ (x∗, t1)

such that g(x−m+1) = x−m+2.
Then, x∗ = g(x0) = g2(x−1) = · · · = gm(x−m+1).
By the Lagrange mean value theorem, there exists a point ξ ∈ (x−m+1, x∗) or ξ ∈ (x∗, x−m+1)

such that∣∣x−m+2 − x∗
∣∣=∣∣g(x−m+1)− g(x∗)

∣∣=∣∣g′(ξ)(x−m+1 − x∗)
∣∣>∣∣x−m+1 − x∗

∣∣.
Hence, let the positive integer m be large enough; then, there exists a constant r > 0

such that
x−m+1 ∈ Br(x∗) ⊂ (t0, t1), x−m+1 /∈ Br(x∗), k = 2, 3, · · · , m

where Br(x∗) = [x∗ − r, x∗ + r] is a closed ball and g(x) is continuously differentiable
in Br(x∗).

In summary, the fixed point x∗ satisfies the following conditions:
(a) There exists a positive constant r > 0 such that for any point

x ∈ Br(x∗) ⊂ (t0, t1) , det{Dg(x)} =
∣∣g′(x)

∣∣= ε f ′(x) > 1,

where Dg(x) = g′(x) denotes the Jacobi matrix of g(x).
That is, the eigenvalue of Dg(x) is λ = g′(x), and it satisfies |λ|=|g′(x)|= ε f ′(x) > 1 .
(b) There exists a point x−m+1 ∈ Br(x∗) ⊂ (t0, t1) and a positive integer m ≥ 2 such

that gm(x−m+1) = x∗, and

|det{Dgm(x−m+1)}| =
∣∣∣∣∣ m

∏
i=1

det{Dg(x−i+1)}
∣∣∣∣∣ = (ε f ′(x))m 6= 0.

In summary, x∗ is a snap-back repeller of system (6). This completes the proof.
Theorem 2 cannot contain Theorem 1 while setting f (x) = ax in Theorem 2.

2.2.3. Three Specific Propositions

To explain the application of Theorem 2, three propositions, based on Theorem 2, are
proposed by designing the form of f (x) in system (6).

Proposition 1. Consider a one-dimensional discrete system

xk+1 = Disε(xk
2 + axk) = Disε( f (xk)), (7)

where f (x) = x2 + ax and ε ≥ 2 . If a > 1 or a < −ε− 1 , then system (7) is chaotic.
Note that | f ′(x)|=|2x + a|> 1 and x ∈ [0, ε/2] give a > 1 or a < −ε− 1.
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Proposition 2. Consider a one-dimensional discrete system

xk+1 = Disε(anxn
k + an−1xn−1

k + · · ·+ a1xk) = Disε( f (xk)), (8)

where f (x) = anxn + an−1xn−1 + · · · + a1x and ε ≥ 2. If | f ′(x)|> 1 , x ∈ [0, ε/2], then
system (8) is chaotic.

Especially, if set ai > 0, i = 2, 3, · · · , n and a1 > 1, then f ′(x) = anxn−1 + · · ·+ a2x + a1 > 1,
x ∈ [0, ε/2]. That is, system (8) is chaotic.

Proposition 3. Consider a one-dimensional discrete system

xk+1 = Disε

(∫ xk

0
g(t)dt + axk

)
= Disε( f (xk)), (9)

where f (x) =
∫ x

0 g(t)dt + ax, g(x) ∈ C1[0, ε/2] and ε ≥ 2. If g(x) > 0, x ∈ [0, ε/2] and a > 1,
then system (9) is chaotic. Note that f ′(x) = g(x) + a > 0 + 1 = 1, x ∈ [0, ε/2] and f (0) = 0.

2.3. Dynamical Properties Analysis

In this section, the dynamic properties of chaotic systems in Theorems 1 and 2 will be
analyzed by means of numerical simulations, such as bifurcation diagrams, and Lyapunov
exponent spectra. Bifurcation diagrams describe the process in which states of nonlinear
systems change when one parameter changes. An examination of Lyapunov exponents
and bifurcation diagram together proved the existence of the chaotic behavior feature.

2.3.1. Bifurcation Diagrams and Lyapunov Exponent Spectra

In Theorem 1, let ε = 2; then, if |a|≥ 1 , system (5) is chaotic in the sense of Li–Yorke.
Let a = 1; then, if ε ≥ 2, system (5) is chaotic in the sense of Li–Yorke.

Figure 2a,b show the bifurcation diagram and Lyapunov exponent spectrum of pa-
rameterin system (5) respectively, where. Figure 2c,d show the bifurcation diagram and
Lyapunov exponent spectrum of parameterin system (5) respectively, where. As shown in
Figure 2, system (5) displays its chaotic characteristics as theorem 1 expects.

In Proposition 1, let ε = 2; then, if or, system (7) is chaotic. The bifurcation diagram
and Lyapunov exponent spectrum of the parameter in system (7) are shown in Figure 3a,b,
respectively. Figure 3 shows that system (7) displays chaotic characteristics as expected
by Proposition 1.

In Proposition 3, set g(x) = sin(x) + 1; then, if a > 1, system (9) is chaotic. The bifur-
cation diagram and Lyapunov exponent spectrum of parameter a in system (9) are shown
in Figure 4a,b, respectively. Figure 4 shows that system (9) displays chaotic characteristics
expected by Proposition 3.

2.3.2. Correlation Analysis

In this subsection, we set a = 1, ε = 3, x0 = 0.2759 in system (5).
We set a = 2, ε = 2, x0 = 0.2759 in system (7).
The evolution of the state variable k− x(k) in systems (5) and (7) for the first 3000 iter-

ations is shown in Figure 5a,b, respectively. The dynamic behaviors of chaotic systems (5)
and (7) all demonstrate chaotic attractors.

Autocorrelation and cross-correlation are two main methods to measure the pseu-
dorandomness of chaotic systems. For a truly random series such as white noise, the
autocorrelation and cross-correlation are the δ function and zero, respectively.

The autocorrelation coefficient at lag k of a series {x(n)} of length N is normally
given as:

autocorr(k) =

N
∑

i=1
(x(i)− x)(x(i + k)− x)

N
∑

i=1
(x(i)− x)2

,
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where x is the mean of the series {x(n)}.
The cross-correlation of two series {x(n)} and {y(n)} of length N at lag k is defined as:

crosscorr(k) =

N
∑

i=1
(x(i)− x)(y(i− k)− y)√

N
∑

i=1
(x(i)− x)2

√
N
∑

i=1
(y(i)− y)2

.

For system (5), the autocorrelation function of the chaotic sequence generated with
the initial parameters a = 1, ε = 3, and x0 = 0.2759 is shown in Figure 6a, and its cross-
correlation with another chaotic system generated with a = 1, ε = 3, and x0 = 0.3257 is
shown in Figure 6b.
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For system (7), the autocorrelation function of chaotic sequence generated with initial
parameter a = 2, ε = 2, x0 = 0.2759 is shown in Figure 6c and its cross-correlation with
another chaotic system generated with a = 2, ε = 2, x0 = 0.3257 is shown in Figure 6d.

Figure 6 shows that the autocorrelation and cross-correlation functions of the chaotic
systems generated by systems (5) and (7) are all ideal, as expected, which means that their
pseudorandomness is very close to that of a truly random sequence.

2.3.3. Distribution Density Analysis

In practical applications, the distribution density of chaotic systems is usually required
to be uniform or nearly uniform. In this section, the distribution density of chaotic systems
based on Theorems 1 and 2 is investigated by means of histograms. First, the simulation
method of the chaotic system distribution density is described as follows.

Step 1 First, {x(n)} is denoted as a chaotic sequence of length N generated by a
chaotic system. Assume the value range {x(n)} of is ∆ = [α, β]. In fact, α = min{x{n}},
β = max{x{n}}.

Step 2 The interval ∆ is divided into M subintervals equally, and the length of each
subinterval is h = (β− α)/M.

Step 3 The number of samples that fall into each subinterval is counted and denoted
as ni, i = 1, 2, · · · , M.

Step 4 The probability of every point in the subinterval is denoted as pi, i = 1, 2, · · · , M.
Then, probability pi can be approximated by:

pi =
ni

N∆i
.

Thus,
N
∑

i=1
pi∆i = 1.

Then, the distribution density of a chaotic system can be simulated by the correspond-
ing probability histogram in terms of the above method. In the following simulation,
without specific declaration, N = 106, M = 500.

In Theorem 1, let a = 1; then, ε = 3, ε = 3.3, ε = 3.8, and ε = 3.99 are set, and
histograms of the chaotic sequences generated by system (5) are shown in Figure 7a–d.
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Figure 7. Histogram of system (5) with a = 1: (a) ε = 3; (b) ε = 3.3; (c) ε = 3.8; and (d) ε = 3.99.
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In each histogram, the simulation represents the approximate value of probability pi,
and the curve p(x) = 2/ε is used to fit the simulation of the distribution density of chaotic
systems. Figure 7 shows that the distribution density of system (5) can be close to a uniform
distribution by varying the system parameters, as shown in Figure 5a,d.

In fact, if set a = 1 and ε = 2, the linear system (5) is a tent map that follows a
uniform distribution. It can be verified that if |aε|≥ 2 is an integer, system (5) follows a
uniform distribution in terms of the proof of the tent map. Now, the distribution density of
nonlinear system (6) is studied, and for simplicity, system (7) is utilized as an example to
study this problem.

Without loss of generality, we set ε = 2 in system (7) and then set a = 1, a = 1.5,
a = 1.8, and a = 2, respectively, and histograms of the chaotic sequences generated by
system (7) are shown in Figure 8a–d. As shown in Figure 8, the distribution density of
system (7) can also be close to the uniform distribution by varying the system parameters.
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Figure 8. Histogram of system (7) where ε = 2: (a) a = 1; (b) a = 1.5; (c) a = 1.8; and (d) a = 2.

3. The Proposed Image Encryption Scheme
3.1. DNA Encoding and Computing Rules

A DNA sequence consists of four basic nucleic acids: A (adenine), C (cytosine), G
(guanine), and T (thymine). According to the pair rules, A and T are complementary, as
are C and G. In the binary system, 0 and 1 are complementary. Therefore, binary numbers
00 and 11, and 10 and 01 are also complementary. If we use the four basic nucleic acids
(i.e., A, C, G, T) to denote the four binary numbers 00, 01, 10, and 11, there are in total
4! = 24 kinds of encoding rules. However, only eight rules which satisfy the Watson–Crick
complementary requirement are valid. The rules are shown in Table 1.

According to the rules of DNA encoding and decoding, DNA sequences can be
computed using algebraic calculation, such as addition, subtraction, and XOR operations.
Table 2 lists the three operations for DNA sequences according to Rule 1.
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Table 1. DNA encoding rules.

Rule Rule 1 Rule 2 Rule 3 Rule 4 Rule 5 Rule 6 Rule 7 Rule 8

00 A A T T C C G G
01 G C C G A T A T
10 C G G C T A T A
11 T T A A G G C C

Table 2. DNA computing rules.

+ A G C T

A A G C T

G G C T A

C C T A G

T T A G C

- A G C T

A A T C G

G G A T C

C C G A T

T T C G A

XOR A G C T

A A G C T

G G A T C

C C T A G

T T C G A

3.2. Iterations of Chaotic Systems

For chaotic system (5), we take three group parameters {a1, x01}, {a2, x02}, and
{a3, x03}, and iterate N0 + MN times. In order to avoid the harmful effect of the tran-
sition procedure, we discard the previous N0 sequence value and we obtain three chaotic
sequences of length M× N:

X1 = {x1(i), i = 1, 2, . . . , M× N}
X2 = {x2(i), i = 1, 2, . . . , M× N}
X3 = {x3(i), i = 1, 2, . . . , M× N}

The sequence values of the first group of chaotic sequences X1 are sorted from small
to large, and the corresponding subscript sequences are recorded to obtain an ordered
subscript sequence XP1 = {xp1(i), i = 1, 2 . . . M× N}. For example, the sequence value of
xp1(3) in XP1 is 18, which means that the sequence number x1(3) of the sequence value in
the chaotic sequence X1 in the whole sequence X1 is 18.

Similarly, the ordered subscript sequence XP2 of chaotic sequence X2 can be obtained.
The third group of chaotic sequences X3 is transformed into an integer column r

between [0, 255].
r = mod

(
ceil
(

x3 × 108
)

, 256
)

The integer column r is arranged in rows into a matrix with size M × N, which is
recorded as R;
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For chaotic system (8), two sets of parameters {b1, b2, b3, b4, b5, b6, x04}, {c1, c2, c3, c4, c5, c6, x05,}
are taken and iterated N0 + MN times. Discarding the previous N0 sequence value, we
obtain two chaotic sequences of length M× N:

X4 = {x4(i), i = 1, 2, . . . , M× N}
X5 = {x5(i), i = 1, 2, . . . , M× N}

The chaotic sequences X4 and X5 are transformed into two pseudorandom sequences
between [0, 255]:

x4(i) = mod
(

f loor
(

L(x4(i)−min(x4))
max(x4)−min(x4)

)
, 256

)
x5(i) = mod

(
f loor

(
L(x5(i)−min(x5))
max(x5)−min(x5)

)
, 256

)
where L = 255

√
2× 108 is a constant.

3.3. Proposed Image Encryption Scheme

Suppose the plain image is P = (p(i, j))M×N , i = 1, 2 . . . M, j = 1, 2 . . . N.
Step 1: Convert the image matrix P into a one-dimensional array and the pixel position

of the image P is transformed by using the ordered subscript sequence XP1 to obtain the
image P1.

Step 2: The image P1 is divided into blocks and N pixels are taken in turn as a group
to obtain M subimage PRi = {pri(j), j = 1, 2, . . . , N}, i = 1, 2, . . . , M.

Step 3: Combined with chaotic sequence X4, the pixel value of each subimage PRi
is transformed forward to obtain the subimage PRNi = {prni(j), j = 1, 2, . . . , N}. The
specific transformation is:

prni(j) = pri(j)⊕ x4((i− 1)N + j)⊕ ki−1, j = 1, 2, . . . , N, i = 1, 2 . . . M,
ki = prni(1)⊕ prni(2)⊕ . . .⊕ prni(N), i = 1, 2 . . . M− 1,

where ⊕ represents XOR operation, k0 = mod

(
M
∑
i

N
∑
j

pri(j) + i + j, 256

)
as a key.

Step 4: All pixel values in each subimage PRNi are shifted to the left circularly in bits, and
the moving bit is d ∈ {1, 2, . . . , 8} to obtain the subimage PRBi = {prbi(j), j = 1, 2, . . . , N}.
The specific transformation is:

prbi(j) = mod
(

prni(j)× 2d, 256
)
+ f loor

(
prni(j)/28−d

)
Step 5: Combined with chaotic sequence X5, the pixel value of each subimage PRBi is

inversely transformed to obtain a new subimage PRCi. The specific transformation is:

prci(j) = prbi(j)⊕ x5((i− 1)N + j)⊕ li−1, j = N, N − 1, . . . , 1, i = M, M− 1...1,
li−2 = prci(1)⊕ prci(2)⊕ . . .⊕ prci(N), i = M, M− 1...2,

where lM−1 = mod

(
M
∑
i

N
∑
j

prbi(j) + i + j, 256

)
as a key.

Step 6: The PRCi subimages are spliced to obtain the image P2, and the pixel position
of the image P2 is transformed by the ordered subscript sequence XP2. The transformed
image P3 is rearranged into an image of size M× N.

Step 7: The image P3 is encoded as a DNA matrix, and the matrix R in Section 3.2 is
also encoded as a DNA matrix. The two DNA matrices are operated, the calculated DNA
matrix is decoded to obtain a binary matrix, and finally, it is converted into a decimal matrix,
that is, the last ciphertext image. The encoding and decoding rules and operation rules
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in the step are determined by the plaintext image. The calculation formula of encoding,
decoding, and operation rules is as follows:

rb = mod( f loor(sum(P) ∗ 0.68), 8) + 1
rr = mod((sum(P) + i + j), 8) + 1
ry = mod(sum(P), 3)
rj = mod(ceil(sum(P)/126), 8) + 1

where sum(P) represents the sum of pixel values of image P, rb represents the coding rules
of image P3, rr represents the coding rules of matrix R, ry represents the operation rules,
and rj represents the decoding rules.

The encryption process can be described by Figure 9.
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The decryption algorithm is the reverse process of the encryption algorithm.

4. Simulation Results and Security Analysis

We used MATLAB 2016a to verify the proposed encryption algorithm on a personal
computer with an Intel(R) Core(TM) i7-7500U CPU @ 2.70 GHz and 8.00 GB memory, and
the operating system was a Microsoft Windows 10. The test images are Lena (256 × 256),
Girl(256 × 256), and Baboon(256 × 256). The system parameters of the chaotic system are

a1 = 2, x01 = 0.2759, a2 = 1.5, x02 = 0.3257, a3 = 2, x03 = 0.28,
b1 = 2, b2 = b3 = b4 = b5 = b6 = 1, x04 = 0.6871,
c1 = 3, c2 = 2, c3 = c4 = c5 = c6 = 1, x05 = 0.4179

n0 = 1000, d = 3


The simulation results are shown in Figure 10.

4.1. Key Space Analysis

Key space measures the ability to resist exhaustive attacks. The key space size needs
to be analyzed and calculated in combination with the system parameters involved in
encryption, initial value conditions, and computer accuracy. Generally, the more key
parameters there are, the greater the sensitivity of the key, the larger the key space, and
the more difficult it is for the encryption and decryption algorithm to crack. In many other
studies, the calculation accuracy is usually 10−14. Therefore, this paper sets the calculation
accuracy to 10−14 to compare with the key space of the same scale.

The key space of this algorithm is
(
1014)20

= 10280. Since the keys {n0, k0, lM−1, d, e, f , g, h}
are numbers in the integer field, the key space is not taken into account when calculating.
Therefore, the key space of this algorithm is much larger than the minimum value of
resisting violent attacks and the key space in the following references. The comparison
with the key space in other references is provided in Table 3.
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Table 3. Key space analysis.

Ref. [23] Ref. [24] Ref. [25] Ref. [26] Proposed

Key space 1093 1098 1084 10142 10280

4.2. Key Sensitivity Analysis

A good encryption scheme should be sensitive to the key in the encryption process. Be-
low, the key is slightly disturbed, and NPCR and UACI are used to measure the differences
of the images before and after the perturbation.

The NPCR and UACI are expressed as follows:

NPCR =

W
∑

i=1

H
∑

j=1
D(i, j)

W×H
× 100%,

UACI =

W
∑

i=1

H
∑

j=1

|p1(i,j)−p2(i,j)|
L−1

W×H
× 100%,

D(i, j) =
{

0, p1(i, j) = p2(i, j)
1, p1(i, j) 6= p2(i, j)

,

where W × H is the number of pixels.
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The key sensitivity analysis results of the encryption algorithm are shown in Table 4.
The values of NPCR and UACI are very close to the ideal values of 99.609% and 33.464%, re-
spectively, after a minor disturbance of the parameters. Therefore, there are large differences
in decrypted images and high key sensitivity.

Table 4. Key sensitivity analysis.

Initial Parameters Minor Disturbance NPCR UACI

a1 +10−14 99.63% 33.51%
x01 +10−14 99.61% 33.45%
a2 +10−14 99.62% 33.49%
x02 +10−14 99.60% 33.52%
a3 +10−14 99.60% 33.45%
x03 +10−14 99.62% 33.46%
b1 +10−14 99.59% 33.47%
b2 +10−14 99.62% 33.47%
b3 +10−14 99.60% 33.44%
b4 +10−14 99.63% 33.47%
b5 +10−14 99.61% 33.45%
b6 +10−14 99.61% 33.38%
x04 +10−14 99.61% 33.40%
c1 +10−14 99.58% 33.47%
c2 +10−14 99.60% 33.39%
c3 +10−14 99.62% 33.45%
c4 +10−14 99.59% 33.45%
c5 +10−14 99.62% 33.44%
c6 +10−14 99.60% 33.45%
x05 +10−14 99.61% 33.48%

4.3. Histogram Analysis

The statistical histogram directly observes the encryption effect of image encryption
and reflects the distribution of pixels by comparing the pixel statistical histogram of the
original image with the encrypted image. It is generally considered that the statistical
histogram of an encrypted image is approximately uniform. Figure 11 shows the encrypted
histogram of the Lena image. The histogram distribution is flat and better hides the
statistical law of pixels. It can effectively resist statistical attacks and pure password attacks.
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4.4. Correlation Analysis

The correlation coefficient calculates the correlation coefficient of the original im-
age and the encrypted image, compares the absolute value of the correlation coefficient,
judges the correlation change of adjacent pixels of the encrypted image, and measures the
correlation of adjacent pixels.

In digital images, the gray values between adjacent pixels are often very close, indicat-
ing that adjacent pixels have a strong correlation, which will lead to insufficient encryption
security performance. When the absolute value of the correlation coefficient is close to
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1, it is considered that there is a strong correlation between adjacent pixels; when the
absolute value of the correlation coefficient is close to 0, it is considered that there is no
or weak correlation between adjacent pixels. The calculation of the correlation coefficient
between adjacent pixels is divided into three directions: vertical, horizontal, and diago-
nal. Equations (10)–(12) are used to calculate the correlation between adjacent pixels of
an image:

Cov(x, y) =
1
n

n

∑
i=1

[xi − E(x)][yi − E(y)], (10)

D(x) =
1
n

n

∑
i=1

[xi − E(x)]2, (11)

E(x) =
1
n

n

∑
i=1

xi, (12)

where x and y are the gray values of two adjacent pixels. E(x), D(x), and Cov(x, y) are
expectation, variance, and covariance. In this paper we select 2000 pairs of pixels in Lena’s
plain image and cipher image.

The relevant distributions of adjacent pixels of the Lena image along the horizontal,
vertical, and diagonal directions are shown in Figure 12a–c, respectively, and the corre-
sponding distributions of encrypted images are shown in Figure 12d–f. The results show
that the correlation between adjacent pixels in ordinary images is greatly reduced. The
comparison results with other studies are shown in Table 5.
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4.5. Information Entropy Analysis

Information entropy is used to judge the degree of unpredictability, uncertainty, and
randomness of information sources. Information entropy is expressed as Equation (13):

H(S) = −
n

∑
i=1

pi log pi, (13)
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where S = {x1, x2, . . . xn} is an information source and P is a probability distribution of S.
The probability of xi is pi. According to the principle of maximum information entropy,
when the probability distribution of the source is an equal probability distribution, pi =

1
n ,

and the maximum information entropy log2 n can be obtained.

Table 5. Correlation analysis.

Correlation Horizontal Vertical Diagonal

Lena 0.9849 0.9704 0.9611
Ref. [23] 0.0007 0.0015 0.0014
Ref. [24] - - -
Ref. [25] −0.0034 −0.0079 0.0010
Ref. [26] 0.001 −0.014 −0.006
Proposed 0.0072 0.0055 −0.0008

Since the image used in this experiment is a 256-order gray image, the closer the
information entropy is to 8, the better the encryption algorithm performs in this test.
The original picture information entropy = 7.4455, and the picture information entropy
encrypted by the algorithm in this paper = 7.9994, which is very close to the ideal value of
8. Table 6 shows the comparison of entropy with other literature.

Table 6. Information entropy analysis.

Ref. [23] Ref. [24] Ref. [25] Ref. [26] Proposed

Information
entropy 7.9967 7.95667 7.9977 7.9994 7.9994

4.6. Robustness Analysis

In the process of image transmission, some data may be modified or lost. Therefore,
an algorithm should have the ability to resist noise attacks or data loss. A robust encryption
algorithm means that most of the useful information of the plain image can still be recovered
when such situations occur.

Currently, almost all transmission channels are noise channels. When data propagate
in the channel, it receives various types of noise interference, such as Gaussian noise and
salt and pepper noise. A robust image encryption algorithm should be immune to noise
interference. In the actual algorithm analysis, a small amount of some type of noise is
usually added to the encrypted image and then the encrypted image is decrypted after
adding noise. The smaller the contrast difference between the decrypted image and the
original image, the stronger the ability of the algorithm to resist noise attacks.

We added 0.01%, 0.03%, and 0.05% salt and pepper noise. The results are shown in
Figures 13–15, respectively. These figures show that the decryption algorithm can still
restore the original image well, that is, it has a certain ability to resist noise attacks.
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During transmission, the encrypted data may be partially modified or lost. An en-
cryption algorithm should be immune to data loss. In the actual algorithm analysis, a
small image of the encrypted image is usually removed, and then the encrypted image
after removing part of the image is decrypted. The smaller the contrast difference between
the decrypted image and the original image, the stronger the ability of the algorithm to
resist data loss attacks. The 1 × 8, 8 × 8, 8 × 16 subblock in the upper left corner of the
encrypted image is removed in Figure 10b. The decryption algorithm is used to decrypt
the encrypted image after removing a molecular block. The decryption effect is shown in
Figures 16b, 17b, 18b. Figures 16–18 show that the decryption algorithm can still restore
the original image well; that is, it has a certain ability to resist data loss.
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4.7. Time Complexity Analysis

The time consumed by the encryption algorithm and decryption algorithm provided
in this paper can be divided into two stages: (1) preparation stage, that is, the generation
of chaotic pseudorandom sequences; and (2) formal encryption and decryption stage.
The time of phase (1) in this algorithm is 8.948 s. For phase (2), the time consumed by
the encryption algorithm and decryption algorithm is 3.702 s and 3.893 s, respectively.
Therefore, the chaotic image encryption algorithm in this paper consumes less time; that is,
its time complexity is low.

5. Conclusions

This paper proposes a method to construct a one-dimensional discrete chaotic system
and an image encryption scheme based on a uniformly distributed chaotic system. Based
on Marotto’s theorem, one-dimensional discrete systems are proven to be chaotic in the
sense of Li–Yorke, and the corresponding chaos criterion theorems are proposed. The
system can be distributed uniformly which means better randomness. We propose an
image encryption scheme based on a uniformly distributed discrete chaotic system and
DNA encoding. The experimental results demonstrate that our encryption algorithm has a
large key space, high key sensitivity, and fast encryption speed and can resist differential
attacks and statistical attacks.
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