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Abstract: Using the new generalized exp-function method, we were able to derive significant novel
closed form solutions to the nonlinear dispersive modified Benjamin–Bona–Mahony (DMBBM)
equation. The general framework of the new generalized exp-function method has been given. Many
novel closed form solutions have been obtained in the form of hyperbolic, trigonometric, and rational
function solutions. Using the computer application Wolfram Mathematica 10, we plotted 2D, 3D, and
contour surfaces of closed form solutions found in this work. In the form of a table, the acquired
results are compared to the known solutions in the existing literature.

Keywords: generalized exp (−φ(η)) expansion method; exact solutions; nonlinear dispersive modified
Benjamin–Bona–Mahony equation
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1. Introduction

Because of their importance in marine ecology, marine geology, and coastal engineer-
ing, interest in nonlinear internal solitary waves (ISWs) that occur in the coastal ocean has
grown dramatically in recent decades. ISWs frequently have enormous amplitudes and
powerful currents; for example, Huang et al. [1] observed an extreme ISW in the northern
South China Sea with an amplitude of 240 m and a peak westward current velocity of
2.55 m s−1. Because of the size of these waves, they could pose a risk to undersea drilling.
Furthermore, the horizontal propagation of these internal waves provides a mechanism
for the movement of energy and momentum over long distances. Internal waves in the
coastal ocean are usually studied using the Korteweg–De Vries (KdV) equation, which
incorporates cumulative and competing nonlinear and dispersive effects [2].

Although existing Kadomtsev–Petviashvili (KP)-type equations for internal waves
can take into account one or more of the impacts of rotation, background current, variable
topography, and boundary walls, many of them still rely on model density stratifications,
such as a two-layered system. Pierini [3] used the two-layered so-called regularized long-
wave equation, a slightly different version of the KP equation, to simulate internal solitary
waves in the Alboran Sea under a few simple assumptions, including no background
rotation, constant topography, constant interface depth, and no background current. Cai
and Xie [4] used a similar model, this time in a two-layered fluid structure, to explore the
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propagation of ISWs in the northern South China Sea. Despite the two-layered model’s
apparent simplicity and widespread acceptance, the oceanic density stratification is better
represented as continuous when considering oceanic scenarios [5].

A large, seismically produced ocean wave is equipped for extensive destruction in
certain waterfront regions, particularly where submarine earthquakes happen. Although
in the open ocean the wave height may be short of one meter, it steepens to heights of 15 m
or more upon entering shallow seaside water. The frequency in the open sea is in the order
of 100 to 150 km, and the rate of movement of a seismic ocean wave is somewhere in the
range of 640 and 960 km/h. During recent years, the world has seen a booming number
of genuine realities, such as sea acoustic and tsunami wave fields created by earthquakes
known to have occurred along the coast of Japan in 2011, generally identified with short-
distance seismic activities (earthquakes from Mw 6.9 on 8.8). For example, an investigation
studied the first confirmations of natural calamities which were specifically “introduced by
Chunga and Toulkeridis [6] the first proof of aleo-tsunami wave stores of the significant
memorable occasion in Ecuador”. As with seismic ocean waves, the wave length or the
height and frequency ranges are vital in terms of creating disasters. These giant forces
can be transformed into other energy sources, which will be required soon if fundamental
measures are taken. In particular, a few such massive natural tragedies are environment or
weather changes and the worldwide temperature warning seen recently. Today, flooding,
heat waves, shifting seasons, the fading of coral reefs, rising ocean levels, melting glaciers,
and the spread of disease are clear confirmations of environmental changes.

Nonlinear partial deferential equations (NPDEs) have been extensively used in recent
years to designate many significant phenomena and dynamic developments in physics,
chemistry, mechanics, biology, and many other fields as well. Many powerful methodolo-
gies have been developed as a result of the development of soliton theory. For example,
the (G’/G)-expansion method [7,8], the sine cosine method [9], the tanh-coth method [10],
the F-expansion method [11], the exp-function method [12], the generalized exp-function
method [13], and the exp (−φ (ξ)) expansion method [14,15]. Fei and Cao [16] used the
truncated Painlevé expansion and the CTE method to construct the residual symmetry
and the explicit soliton–cnoidal wave interaction solutions for the (2 + 1)-dimensional
negative-order breaking soliton equation. Wang et al. [17] used the new scheme by combin-
ing the modified Riemann–Liouville fractional derivative rule and two kinds of fractional
dual-function methods with the Mittag-Leffler function on the space–time fractional Fokas–
Lenells equation to find some new exact analytical solutions including bright soliton, dark
soliton, combined soliton, and periodic solutions. Wen et al. [18] used tapered graded-
index waveguides with parity–time-symmetric potentials to obtain the light bullet. Fang
et al. [19] applied the physics-informed neural network to solve a variety of femtosecond
optical soliton solutions of the high-order nonlinear Schrödinger equation, including the
one-soliton solution, two-soliton solution, rogue wave solution, W-soliton solution, and M-
soliton solution. The Darboux transformation method was used by Raghuraman et al. [20]
to obtain a one-soliton solution for the nonlinear Schrödinger equation with a variable
dispersion coefficient and an external harmonic potential.

The exp (−φ(η))-expansion method is effective for solving NPDEs and can lead to
numerous previously unknown closed form solutions. The goal of this work is to generate
many new and more general closed form solutions. To that end, we propose a novel
generalized approach to investigate NLEEs based on the exp (−φ(η))-expansion method.
To demonstrate the effectiveness and benefits of this method, we apply it to the nonlinear
DMBBM equation.

The generalized exp-function method was successfully applied to the nonlinear
DMBBM equation defined as follows:

Ut + Ux − β U2 Ux + Uxxx = 0, (1)

where β nonzero and real constant. The nonlinear DMBBM equation was first developed
to describe estimation for surface wave propagation in nonlinear dispersive media, but
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it also categorizes hydromagnetic waves in plasmas, acoustic waves in distinctive form
crystals, and acoustic gravitational waves in compressible fluids [21–23]. The modified
simple equation (MSE) method was applied by Khan et al. [23] to find exact travelling
wave solutions of the nonlinear DMBBM equation and coupled Klein–Gordon equations.
Filiz and Arzu [24] utilized the consistent Riccati expansion method for erecting new
exact solutions of mKdV-Burgers equations and nonlinear DMBBM equation. The sinh-
Gordon function method was used by Yokus et al. [25] to check the stability analysis
to find numerical and new closed form trigonometric function solutions of nonlinear
DMBBM equation. They used appropriate parameters to perform numerical simulations
of the obtained solutions. They also used the finite forward difference approach to solve
the exact and numerical approximations of the nonlinear dispersive modified Benjamin–
Bona–Mahony equation. They also used the Fourier-Von Neumann analysis to assess the
numerical scheme’s stability. They displayed the results in the form of a table for both
numerical and precise solutions. The error norms were determined by using L2 and L∞.

Khater et al. [26] used the modified Khater method to study the computational solu-
tions to the modified Benjamin–Bona–Mahony (BBM) equation. They also looked at the
stability of the obtained solutions using the Hamiltonian system’s features, evaluating the
initial and boundary conditions that allow them to use B-spline collection schemes (cubic,
quantic, and septic) to find numerical solutions for the proposed model and explain the
similarities between them. The modified exp-function method was applied by Baskonus
and Bulut [27] on a nonlinear DMBBM equation to obtain some new exact solutions.

The motivation for this article is to find new and more general solutions to Equation (1).
The main novelty of this paper is as follows: (i) the nonlinear DMBBM equation is firstly
studied using the generalized exp-function method; (ii) different types of solutions, includ-
ing rational, exponential, trigonometric, and hyperbolic are obtained. The obtained solu-
tions are compared in the form of Table 1 with the previous results obtained by Baskonus
and Bulut [27]. Previous results are re-derived, which shows that our solutions are new and
more general. The hyperbolic function solutions, as seen in Figures 1–3, provide physical
interpretations of analytical solutions discovered in this study, such as amplitude and
widths of seismic sea waves. These hyperbolic function solutions, in other words, show
wave length and frequency, as seen in Equations (22), (25), and (28), respectively. The more
that wave lengths increase, the more harmful they become all over the globe.

Table 1. Comparison between our solutions and Baskonus and Bulut [27] solutions.

Our Solutions Baskonus and Bulut [27]

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, β = 1, k1 =
1, k2 = 1,η = ξ, A = 1, and U1(x, t) = u1(x, t) in Equation (22),

then u1(x, t) = −2
√

3 +
√

6√
2+tanh (x+t+E)

.

If we put α = 1, c = −1, and µ = 1 in Equation (21), then

u1(x, t) = −2
√

3 +
√

6√
2+tanh (x+t+E)

.

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, β = 1, k1 =
1, k2 = −3,η = ξ, A = 1, and U2(x, t) =
u2(x, t) in Equation (23), then u2(x, t) = −

√
6

tan (x−3t+E) .

If we put α = 1, c = 3,andµ = 1 in Equation (22), then

u2(x, t) = −
√

6
tan (x−3t+E) .

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, β = 1, k1 =
1, k2 = −1,η = ξ, A = 1, and U3(x, t) =
u3(x, t) in Equation (24), then u3(x, t) = −

√
6

(x−t+E)+1 .

If we put α = 1, c = 1, and µ = 1 in Equation (23), then

u3(x, t) = −
√

6
(x−t+E)+1 .

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, β = 1, k1 =
1, k2 = 1,η = ξ, B = 1, and U4(x, t) = u4(x, t) in Equation (25),

then u4(x, t) = −
√

6
2 −

3
√

6
4tanh (x+t+E)+2 .

If we put α = 1, c = −1, and λ = 1 in Equation (24),

then u4(x, t) = −
√

6
2 −

3
√

6
4tanh (x+t+E)+2 .
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Table 1. Cont.

Our Solutions Baskonus and Bulut [27]

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, β = 1, k1 =
1, k2 = −3,η = ξ, B = 1, and U5(x, t) =
u5(x, t) in Equation (26), then u5(x, t) = −

√
6

2 −
5
√

6
4 tan (x−3t+E)−2 .

If we put α = 1, c = 3, and λ = 1 in Equation (25), then

u5(x, t) = −
√

6
2 −

5
√

6
4 tan (x−3t+E)−2 .

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, β = 1, k1 =
1, k2 = −1,η = ξ, B = 1, and U6(x, t) =
u6(x, t) in Equation (27), then u6(x, t) = −

√
6

(x−t+E)+2 .

If we put α = 1, c = 1, and λ = 1 in Equation (26), then

u6(x, t) = −
√

6
(x−t+E)+2 .

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, β = 1, k1 =
1, k2 = 1,η = ξ, a0 = 2, and U7(x, t) = u7(x, t) in Equation (28),

then u7(x, t) = 2 +
√

6√
6+3tanh (x+t+E)

.

If we put α = 1, c = −1, and A0 = 2 in Equation (27),

then u7(x, t) = 2 +
√

6√
6+3tanh (x+t+E)

.

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, β = 1, k1 =
1, k2 = −3,η = ξ, a0 = 2, and U8(x, t) =
u8(x, t) in Equation (29), then u8(x, t) = 2 + 5

√
6

3 tan (x−3t+E)−
√

6
.

If we put α = 1, c = 3, and A0 = 2 in Equation (28), then

u8(x, t) = 2 + 5
√

6
3 tan (x−3t+E)−

√
6

.

If we put in A1 = 1, A2 = 0, A3 = 0, A4 = 1, β = 1, k1 =
1, k2 = −1,η = ξ, and U9(x, t) = u9(x, t)
in Equation (30), then u9(x, t) =

√
6√

6(x−t+E)+3
.

If we put α = 1, c = 1, and A0 = 2 in Equation (29), then

u9(x, t) =
√

6√
6(x−t+E)+3

.
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2. Description of the Method

Assume we have a nonlinear PDE given below of the form [13]

F (U, Ux, Ut, Ux x, Ut t, Ux t, Ux x t, . . .) = 0, (2)

where U is an unidentified function, and F is a polynomial in U and its derivatives with
respect to x and t, which includes derivatives of highest-order and nonlinear terms. The
major steps of the generalized exp-function method are:

Step 1: The travelling wave transformation:

U(x, t) = U (η), η = k1 x + k2 t, (3)

where k1 and k2 are constants to be found later, and Equation (2) is transformed into an
ordinary differential equation (ODE):

P
(
U, k1U′, k2U′, k1k2U′′, . . .

)
= 0. (4)

Step 2: Assume the trial solution of Equation (4) can be written as:

U (η) =
m

∑
i=0

ai

[
exp

(
−A1 φ (η) + A2

A3 φ (η) + A4

)]i
, (5)

where ai, am 6= 0, (0 ≤ i ≤ m) are undetermined constants and φ (η) satisfies the following
differential equation:

φ′(η) =
(A3 φ (η) + A4)

2

(A1 A4 + A2 A3)

(
exp

(
−A1 φ (η) + A2

A3 φ (η) + A4

)
+ A exp

(
A1 φ (η) + A2

A3 φ (η) + A4

)
+ B

)
, (6)

where ∆ = (A1 A4 − A2 A3) 6= 0. Equation (6) has the following families of solutions:
Family 1: When ∆ = (A1 A4 − A2 A3) 6= 0, A 6= 0,

(
B2 − 4A

)
> 0,A2 = 0,

φ1(η) =

A4 ln

−√B2−4A tanh
(√

B2−4A
2 (η+E)

)
−B

2A


A1 − A3 ln

−√B2−4A tanh
(√

B2−4A
2 (η+E)

)
−B

2A

 (7)

Family 2: When ∆ = (A1 A4 − A2 A3) 6= 0, A 6= 0,
(

B2 − 4A
)
< 0, A2 = 0,

φ2(η) =

A4 ln

√−B2+4A tan
(√

−B2+4A
2 (η+E)

)
−B

2A


A1 − A3 ln

√−B2+4A tan
(√

−B2+4A
2 (η+E)

)
−B

2A

 (8)

Family 3: When ∆ = (A1 A4 − A2 A3) 6= 0, A 6= 0, B 6= 0,
(

B2 − 4A
)

= 0, A2 = 0,

φ3(η) =
A4 ln

(
− 2(B(η+E))+2

B2 (η+E)

)
A1 − A3 ln

(
− 2 (B(η+E))+2

B2 (η+E)

) . (9)

Family 4: When ∆ = (A1 A4 − A2 A3) 6= 0, A 6= 0, B 6= 0,
(

B2 − 4A
)
> 0,A3 = 0,
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φ4(η) = −2
(

A2

A1

)
+

(
A4

A1

)
ln

−tanh
(√

(B2 − 4A)
(η+E)

2

)√
e(

2A2
A4 )(B2 − 4A)− Be(

A2
A4

)

2A

. (10)

Family 5: When ∆ = (A1 A4 − A2 A3) 6= 0,A 6= 0, B 6= 0,
(

B2 − 4A
)
< 0, A3 = 0,

φ5(η) = −2
(

A2

A1

)
+

(
A4

A1

)
ln

− tan
(√

(−B2 + 4A)
(η+E)

2

)√
e(

2A2
A4 )(−B2 + 4A)− Be(

A2
A4

)

2A

 (11)

Family 6: When ∆ = (A1 A4 − A2 A3) 6= 0, A 6= 0, B 6= 0,
(

B2 − 4A
)
= 0, A3 = 0,

φ6(η) = −
(

A2

A1

)
+

(
A4

A1

)
ln
(

2(B(η + E) + 2)
B2(η + E)

)
(12)

Family 7: When ∆ = (A1 A4 − A2 A3) 6= 0, A = 0, B 6= 0,
(

B2 − 4A
)
> 0,

φ7(η) = −

A2 + A4 ln
(

B
exp(B(η+E))−1

)
A1 + A3 ln

(
B

exp(B(η+E))−1

)
 (13)

Family 8: When ∆ = (A1 A4 − A2 A3) 6= 0, A = 0, B = 0,
(

B2 − 4A
)
= 0,

φ8(η) = −A2 − A4 ln (η + E)
A1 − A3 ln (η + E)

. (14)

Family 9: When (A1 A4 − A2 A3) 6= 0, A 6= 0, B 6= 0,
(

B2 − 4A
)

= 0, Ai 6=
0(i = 1, 2, 3, 4),

φ9(η) = −
A2 − A4 ln

(
− 2(η+E)

B(η+E)−2

)
A1 − A3 ln

(
− 2(η+E)

B(η+E)−2

) . (15)

Family 10: When ∆ = (A1 A4 − A2 A3) 6= 0,A < 0,B = 0,

φ10(η) = −
A2 − A4 ln

(
− exp (−2

√
−A(η+E))+1√

−A exp (−2
√
−A(η+E))−1

)
A1 − A3 ln

(
− exp (−2

√
−A(η+E))+1√

−A exp (−2
√
−A(η+E))−1

) . (16)

Step 3: We calculate the value of the positive integer m by using the balancing principle
between the highest-order derivative and the highest-order nonlinear term in Equation (4).

Step 4: Swapping Equation (5) into Equation (4) and then using Equation (6), and

setting all the coefficients of
[
exp

(
− A1 φ (η) +A2

A3 φ (η) +A4

)]i
to the zero, yields a system of the

algebraic equations for k1, A, B, k2 and (i = 0, 1, 2, 3, . . . m). The values of the constants
k1, A, B, k2 and ai (i = 0, 1, 2, . . . , m) can be determined by solving the algebraic system
of equations. Because the general solutions of (6) are known to us, we can substitute
k1, k2, B, A and ai as well as the general solutions of (6) into Equation (5) to obtain the
exact solutions of nonlinear PDEs (1).

3. Applications

In this section, we obtain new closed form solutions with the application of the
generalized exp (−φ(η))-expansion method to the nonlinear DMBBM equation.
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The travelling wave variable Equation (3), converts Equation (1) to the following
nonlinear ordinary differential equation:

U′ (η) k2 + U′ (η) k1 + U′′′(η) k3
1 − β U(η)2 (U′(η)) k1 = 0. (17)

where β, k1, and k2 are nonzero real constants.
By balancing principle between U′′′ and U2U′′ in (17), we get m = 1. As a result, the

trial solution (5) becomes:

U(η) = a0 + a1 exp
(
−A1 φ (η) + A2

A3 φ (η) + A4

)
. (18)

Switching Equation (18) along with Equation (6) into Equation (17), we get a poly-

nomial in
(

exp
(
− A1 φ (η) +A2

A3 φ (η) +A4

))j
, (j = 0, 1, 2, . . .), and then equate all the coefficients of

the resulting polynomial to zero, yielding a set of the simultaneous algebraic equations
for a0, a1, k1, k2, B, A, and β. After solving the algebraic system by using Maple 18, we
acquire the following values of the coefficients:

Case 1:

a0 = −

√
3β k1

(
2A k3

1 + k1 + k2
)

β k1
, a1 = −

√
6 k1

β
, B =

√
2β k1

(
2A k3

1 + k1 + k2
)

β k2
1

, A = A, k1 = k1, k2 = k2. (19)

Case 2:

a0 = −B k1
√

6
2
√

β
, a1 = −

√
6 k1

β
, A =

B2 k3
1 − 2k1 − 2k2

4k3
1

, B = B, k1 = k1, k2 = k2. (20)

Case 3:

a0 = a0, a1 =

√
6 k1

β
, A =

1
6

β a2
0 k1 − 3 k1 − 3k2

k3
1

, B =
1
3

√
β a0
√

6
k1

, k1 = k1, k2 = k2. (21)

To begin, the hyperbolic, trigonometric, and rational functions solutions are obtained to
the nonlinear DMBBM equation by substituting the value of coefficients from Equation (19)
into Equation (18) together with examining Equations (7)–(9) as follows, respectively:

U1(x, t) = −

√
3β k1

(
2A k3

1 + k1 + k2
)

β k1
−
√

6 k1

β
exp



−

A1

A4 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


A1−A3 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


+ A2

A3

A4 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


A1−A3 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


+ A4



. (22)
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U2(x, t) = −

√
3β k1

(
2A k3

1 + k1 + k2
)

β k1
−
√

6 k1

β
exp



−

A1

A4 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


A1−A3 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


+ A2

A3

A4 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


A1−A3 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


+ A4



. (23)

U3(x, t) = −

√
3β k1

(
2A k3

1 + k1 + k2
)

β k1
−
√

6 k1

β
exp


−

A1

A4 ln
(
− 2(B(η+E))+2

B2 (η+E)

)
A1−A3 ln

(
− 2 (B(η+E))+2

B2 (η+E)

) + A2

A3

A4 ln
(
− 2(B(η+E))+2

B2 (η+E)

)
A1−A3 ln

(
− 2 (B(η+E))+2

B2 (η+E)

) + A4


. (24)

where η = ( k1 x + k2 t ) .
Secondly, we calculate the hyperbolic, trigonometric, and rational functions solutions

for Equation (1) by substituting the coefficient values from Equation (20) into Equation (18)
and considering Equations (7)–(9) as follows:

U4(x, t) = −B k1
√

6
2
√

β
−
√

6 k1

β
exp



−

A1

A4 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


A1−A3 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


+ A2

A3

A4 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


A1−A3 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


+ A4



. (25)

U5(x, t) = −B k1
√

6
2
√

β
−
√

6 k1

β
exp



−

A1

A4 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


A1−A3 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


+ A2

A3

A4 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


A1−A3 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


+ A4



. (26)
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U6(x, t) = −B k1
√

6
2
√

β
−
√

6 k1

β
exp


−

A1

A4 ln
(
− 2(B(η+E))+2

B2 (η+E)

)
A1−A3 ln

(
− 2 (B(η+E))+2

B2 (η+E)

) + A2

A3

A4 ln
(
− 2(B(η+E))+2

B2 (η+E)

)
A1−A3 ln

(
− 2 (B(η+E))+2

B2 (η+E)

) + A4


. (27)

where η = ( k1 x + k2 t ) .
Lastly, we calculate the hyperbolic, trigonometric, and rational functions solutions for

Equation (1) by substituting the coefficient values from Equation (21) into Equation (18)
and considering Equations (7)–(9) as follows:

U7(x, t) = a0 +

√
6 k1

β
exp



−

A1

A4 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


A1−A3 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


+ A2

A3

A4 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


A1−A3 ln

−
√

B2−4A tanh

(√
B2−4A

2 (η+E)

)
−B

2A


+ A4



. (28)

U8(x, t) = a0 +

√
6 k1

β
exp



−

A1

A4 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


A1−A3 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


+ A2

A3

A4 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


A1−A3 ln


√
−B2+4A tan

(√
−B2+4A

2 (η+E)

)
−B

2A


+ A4



. (29)

U9(x, t) = a0 +

√
6 k1

β
exp


−

A1

A4 ln
(
− 2(B(η+E))+2

B2 (η+E)

)
A1−A3 ln

(
− 2 (B(η+E))+2

B2 (η+E)

) + A2

A3

A4 ln
(
− 2(B(η+E))+2

B2 (η+E)

)
A1−A3 ln

(
− 2 (B(η+E))+2

B2 (η+E)

) + A4


. (30)

where η = ( k1 x + k2 t ).
Remark: If we put A1 = 1, A2 = 0, A3 = 0, A4 = 1, a0 = A0, a1 = A1, φ = Ω, and

η = ξ then our Equation (18) coincides with Equation (15) of Baskonus and Bulut [27].

4. Physical Expression of the Problem

The hyperbolic function solutions as seen in Figures 1–3 provide physical interpre-
tations of analytical solutions discovered in this study, such as amplitude and widths
of seismic sea waves. These hyperbolic function solutions, in other words, demonstrate
that wave length and frequency is shown in Equations (22), (25), and (28), respectively.
The more that wave lengths increase, the more harmful they become all over the globe.
We should investigate the mathematical structures of these natural challenges in order to
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lessen the destructive force of such massive natural disasters or convert them into useful
energy sources. We can find the best technique to understand such potential calamities
and then take the required countermeasures if we tackle these difficulties by utilizing
various methods.

Periodic travelling wave solutions 23, 26, and 29 are one-dimensional space periodic
functions, such as cos(x − t), which move at a constant speed. As a result, there is a
unique sort of spatiotemporal oscillation in which both space and time are periodic. Many
mathematical equations, such as self-oscillatory systems, excitable systems, and reaction–
diffusion–advection systems, rely on periodic travelling waves. These types of equations
are commonly utilized in biology, chemistry, and physics as mathematical models. The
solutions 24, 27, and 30 represent the singular kink type solitons.

We investigate the nature of the number of solutions obtained by employing the
generalized exp-function method to the nonlinear DMBBM equation and specifying specific
parameter values. In addition, we provide graphs of the exact solutions generated by the
mathematical software Mathematica 10. The entire set of results is depicted in Figures 1–9.
As a result of these findings in our paper, we discovered that Equations (21)–(29) exhibit
kink-shaped solitons, solitons, periodic solutions, and singular kink type solitons. Figure 1
displays the shape kink types of the exact solutions of 3D, 2D, and contour plots of the
hyperbolic function solution of U1(x, t), for the unknown constants β = 0.8, A = 0.8,
k1 = 1, k2 = 2, E = 5, and within the interval −8 ≤ x, t ≤ 8 for the 3D graph and
t = 1 for the 2D graph. Figure 2 displays the 3D, 2D, and contour plot kink type soliton
solutions of U2(x, t) forβ = 0.9, B = 1, k1 = 1, k2 = 2, E = 5, and within the intervals
−18 ≤ x ≤ 15 , 8 ≤ t ≤ 8 ,for the 3D graph and t = 1 for the 2D graph. The hyperbolic
function solution in Figure 3 demonstrates the kink type shape of U3(x, t) for the unknown
constantsβ = 9,a0 = 8, k1 = 1, k2 = 2, E = 5, to the interval −13 ≤ x ≤ 13 , 8 ≤ t ≤ 8 for
3D graphs and t = 1 for 2D graphs. Equation (22) represents the exact periodic travelling
wave solution. The periodic travelling wave solution of the U2(x, t) and the unknown
constants β = 0.9, A = 8, k1 = 1, k2 = −0.8, E = 5, within the interval −8 ≤ x, t ≤ 8 for the
3D graph and t = 1 for the 2D graph are shown in Figure 4. Figure 5 represents the singular
kink wave type travelling wave solution of U5(x, t), for which the constants are β = 0.9,
A = 1, k1 = 1, k2 = 1, E = 5 and between intervals −18 ≤ x ≤ 18 , 8 ≤ t ≤ 8 , for the 3D
graph and t = 1 for the 2D graph. Equation (23) is a singular soliton solution. Figure 6 shows
3D, 2D, and contour plots of the trigonometric function solution U6(x, t) that act like the
periodic travelling wave solution for the unknown constants β = 0.9, B = 1, k1 = 1, k2 = −2,
E = 5 and between the intervals −30 ≤ x ≤ 15 , 8 ≤ t ≤ 8 for the 3D graph and t = 10
for the 2D graph. The 3D, 2D, and contour plots of the solution U7(x, t) in Equation (26)
behave like a singular kink wave type travelling wave solution for the unknown constants
β = 0.9, B = 0.8, k1 = 1, k2 = 1, E = 5 and to the interval −18 ≤ x ≤ 18 , 8 ≤ t ≤ 8 , for
3D graphs and t = 1 for 2D graphs, which are shown in Figure 7. Figure 8 represents the
periodic soliton wave solutions to the 3D, 2D, and contour graphs of the trigonometric
function solution in U8(x, t) for the different values of the parameters β = 9, a0 = 8, k1 = 1,
k2 = −2, E = 5 within the interval −13 ≤ x ≤ 13 , 8 ≤ t ≤ 8 for 3D graphs and t = 1 for
the 2D graphs. Figure 9 shows the singular kink travelling wave solution of U9(x, t) for the
unknown constants β = 9,a0 = 8, k1 = 1, k2 = −1, E = 5 for 3D graphs within the interval
of −8 ≤ x ≤ 8 , 18 ≤ t ≤ 18 , and t = 10 for the 2D graph. In Figures 1–9, we display the
values of the parameters A1 = 1, A2 = 0, A3 = 0, A4 = 1.
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Our solutions are more exact when compared with the solutions of Baskonus and
Bulut [27].

5. Conclusions

The proposed approach called the generalized exp (−φ(η))-expansion method was
applied to the nonlinear DMBBM equation in this work, and many new closed form
solutions were obtained. The Wolfram Mathematica 10 computer application was used
to verify all of the analytical solutions developed in this study and to plot Figures 1–9
with 2D, 3D, and contour faces. We also compared the obtained solutions in this study
with existing solutions in the literature. We re-derived many existing solutions in the
literature where parameters were given specific values, which demonstrates the novelty
of our work. Similarly, if we use Equations (10)–(16), we obtain many different and new
solutions. Not only rational, but also hyperbolic and trigonometric function solutions can
be obtained using this method. The generalized exp (−φ(η))-expansion method has been
shown to be a powerful tool for acquiring closed form solutions to other nonlinear partial
differential equations.

Author Contributions: Formal analysis, N.A.S.; Methodology, A.; Project administration, N.A.S.;
Software, E.R.E.-Z.; Supervision, J.D.C.; Funding, J.D.C.; Writing—original draft, M.S. All authors
have read and agreed to the published version of the manuscript.



Mathematics 2022, 10, 1026 16 of 17

Funding: This work received no external fund.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The numerical data used to support the findings of this study are
included within the article.

Acknowledgments: This research was supported by Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2017R1D1A1B0-
5030422).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Huang, X.; Chen, Z.; Zhao, W.; Zhang, Z.; Zhou, C.; Yang, Q.; Tian, J. An extreme internal solitary wave event observed in the

northern South China Sea. Sci. Rep. 2016, 6, 30041. [CrossRef] [PubMed]
2. Yuan, C.; Grimshaw, R.; Johnson, E. The propagation of internal solitary waves over variable topography in a horizontally

two-dimensional framework. J. Phys. Oceanogr. 2018, 48, 283–300. [CrossRef]
3. Pierini, S. A model for the Alboran Sea internal solitary waves. J. Phys. Oceanogr. 1989, 19, 755–772. [CrossRef]
4. Cai, S.; Xie, J. A propagation model for the internal solitary waves in the northern South China Sea. J. Geophys. Res. 2010,

115, C12074. [CrossRef]
5. Grimshaw, R.; da Silva, J.C.; Magalhaes, J.M. Odelling and observations of oceanic nonlinear internal wave packets affected by

the Earth’s rotation. Ocean Model. 2017, 116, 146–158. [CrossRef]
6. Chunga, K.; Toulkeridis, T. First evidence of aleo-tsunami deposits of a major historic event in Ecuador. J. Tsunami Soc. Int. 2014,

33, 55–69.
7. Shakeel, M.; Ul-Hassan, Q.M.; Ahmad, J.; Naqvi, T. Exact solutions of the time fractional BBM-Burger equation by novel

(G′/G)-expansion method. Adv. Math. Phys. 2014, 2014, 181594. [CrossRef]
8. Aslam, M.N.; Akbar, M.A.; Mohyud-Din, S.T. General traveling wave solutions of the strain wave equation in microstructured

solids via the new approach of generalized (G′/G)-expansion method. Alex. Eng. J. 2014, 53, 233–241. [CrossRef]
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