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Abstract: Genome-wide association studies (GWAS) are observational studies of a large set of genetic
variants, whose aim is to find those that are linked to a certain trait or illness. Due to the multivariate
nature of these kinds of studies, machine learning methodologies have been already applied in them,
showing good performance. This work presents a new methodology for GWAS that makes use of
extreme learning machines and differential evolution. The proposed methodology was tested with
the help of the genetic information (370,750 single-nucleotide polymorphisms) of 2049 individuals,
1076 of whom suffer from colorectal cancer. The possible relationship of 10 different pathways with
this illness was tested. The results achieved showed that the proposed methodology is suitable for
detecting relevant pathways for the trait under analysis with a lower computational cost than other
machine learning methodologies previously proposed.

Keywords: machine learning; differential evolution; extreme learning machines; genome-wide
association studies; single nucleotide polymorphism; pathways analysis

MSC: 68T20; 92B20; 68T05; 68W50

1. Introduction

Since the completion of the Human Genome Project [1] and the International HapMap
Project [2], it has been well known by the scientific community that there is a clear link
between some genes and certain traits and illness. Genome-wide association studies
(GWAS) [3] are a powerful methodology that has proved its importance in the analysis of
complex genomic problems.

Although GWAS studies present certain limitations, mainly concerning the need to
make use of a large sample size to perform the study [4–6] and to have a population
stratification [7] as well as the high probability of false positives [8,9] that must be managed
with the help of the statistical techniques, the use of GWAS has allowed researchers to
produce some outstanding scientific results.
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The first GWAS date back to the years 2005 and 2006 [10,11]. Those first studies were
of great interest at the time, as they found common variants associated to age-related
macular degeneration. The fact that this type of study can look for genetic relationships
in a multivariate way is one of the principal points in its favor. This means that a GWAS
is able to deal with a large number of SNPs simultaneously and look for any relationship
between them and a particular trait being analyzed [12]. It is also remarkable that GWAS
does not require any a priori hypotheses, as they just take into account the relationships of
SNPs that can be placed in any gene with the trait without needing to study a previous list
of loci [13].

While in the first GWAS analysis performed, the link between SNPs and phenotypes
was considered in a univariate way [14], the studies performed in recent years made
use of multivariate methodologies [15] that, in some cases, include machine learning
techniques [12]. Previous research has employed random forest, and this is just one instance
of machine learning methodologies being used in GWAS in recent times [16–18]. In one
particular case, [16], a method was used that was based on random forest designed with the
express purpose of interpreting imbalanced genomic data. Another work [17] developed
an algorithm called Reg-SNPs-intron with the help of random forest classifiers, while in
the research performed by Roshan et al. [18], random forest was employed to study the
number of casual variants and associated regions identified by top SNPs, and the results
obtained were compared with other methodologies.

Furthermore, the gradient boosting methodology was already applied in the frame-
work of GWAS [19,20]. Previous work [19] used gradient boosting models with the aim
of differentiating inflammatory bowel disease (IBD) genes from non-IBD genes through
the use of information from expression data and gene annotations. In other instances of
the use of gradient boosting [20], its goal is to analyze genetic loci in order to make the
task of interpreting large-scale genetic studies simpler, whilst maintaining their inherently
unbiased character.

Support vector machines (SVM) were also employed to classify genes that cause
inflammatory bowel diseases and those that do not [19].

Another article [21] applied SVM classification models to assess the potential of using
GWAS data to predict duloxetine, and further research [12] employed them in a hybrid
algorithm that combined SVM with genetic algorithms to determine which pathways would
have an influence on colorectal cancer. Additionally, deep neural networks were employed
in deep learning to predict the effect of genomic variants on tissue-specific expression [22]
and genetic algorithm in GWAS analysis that makes use of hybrid algorithms combined
with SVM [12].

This study was performed to propose and validate a new methodology based on
machine learning techniques that can be applied in GWAS studies and could improve
those currently available in a certain way. More specifically, the proposed methodology
can find the most relevant SNPs in each pathway that lead to determining if an individual
has a certain trait or is suffering from a particular illness. More specifically, the method
presented in this paper is based on differential evolution and extreme learning machines.
The performance of the new proposed methodology was checked with the help of a GWAS
database, which helped to monitor the performance of this new proposed methodology as
did a number of well-known pathways, all of which made it possible to make a comparison
of the results with those obtained in some of our previous work [12].

2. Materials and Methods
2.1. Differential Evolution

Differential evolution (DE) is a metaheuristic algorithm that was proposed by Storn
and Price [23], whereby the use of operators effects a random initialization of the population
which then evolves to produce trial offspring. These operators are also employed in
methods, such as crossover and mutation. In addition, DE uses a selection operator that
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admits this offspring into the population or otherwise discards it, depending on the values
of their objective function.

As was mentioned in the previous paragraph, DE uses a population of randomly
chosen vectors as starting points. That population is the first one employed by the algorithm,
while the following ones are created with the help of functions that modify the initial points.
DE perturbs the vectors that make up a certain population by performing the scaled
difference of two randomly selected vectors of the said population. To produce the new
vector v0, the result is added to another vector member of the same population. The
procedure is repeated until all members of a population have competed against the newly
generated vector v0.

The issue of optimization is considered one of minimization in which the vector chosen
for the next population is the one whose objective function value is the lowest. After all the
trial vectors are tested, the survivors are the members of the next generation and will be
responsible for creating new offspring.

The DE algorithm requires a population structure. The set of individuals of the x-th
generation is represented by Px, while each vector of that generation can be represented by
vix, where i means that it is the i-th vector of the x-th generation.

Before the random population initialization, the upper and lower boundaries for each
variable must be fixed in order to make sure that all components (variables) of all the
members (vectors) of the population are inside both limits. Once the population of the DE
algorithm is initialized, the algorithm mutates and recombines all the vectors that are part
of the population. As was stated before, this process is based on re-scaling, subtraction and
addition according to the following equation [24] that is employed in order to obtain each
of the new vectors:

Vn = vr0x + F(vr1x − vr2x), (1)

where
Vn is the new vector that is created, making use of two members of the x-th generation.
F is a scale factor larger than 1 with no upper limit.
vr0x is the r0-th vector of the x-th generation.
vr1x is the r1-th vector of the x-th generation.
vr2x is the r2-th vector of the x-th generation.
DE also makes use of the uniform crossover. It involves taking two vectors from the

same population and copying a certain proportion of components of one to another with
certain probability p. In the DE algorithm selection, the operator is included, too. It works
as follows: if the trial vector Vn has a lower value than the target vector Vix (i.e., the i-th
vector of the x-th generation), it replaces the target vector in the next generation; otherwise,
the target retains its place in the population.

Once the new population is created, the process is repeated until the optimum is lo-
cated, or a prespecified termination criterion is achieved. Appendix A contains Algorithms
A1 that describes the pseudocode of the DE algorithm.

2.2. Extreme Learning Machines

When dealing with problems of regression and classification, extreme learning ma-
chine (ELM) has shown itself to be a highly practical learning algorithm [25]. A major
point in its favor is that it can learn from data much more quickly than other machine
learning methodologies [25]. It is not necessary to tune the parameters of the hidden layer
iteratively, and it is possible to calculate the output weights by employing the least square
optimization methodology [26,27].

In the case of the present research, ELM is used for classification. More specifically,
regularized extreme learning machine (RELM) [28] will be employed. One of the main
advantages of RELM is that not only is it able to obtain a better generalization that reduces
the training error, but it also maximizes the edge distance.
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RELM can consider empirical and structural risks at the same time [29]. The RELM
mathematical model can be expressed as the following optimization problem [29]:

min
(

1
2
‖β‖2 +

γ

2
‖ε‖2

)2
, (2)

Subject to
N

∑
i=1

βig
(
aixj + bi

)
− tj = ε j (3)

where
β is a parameter employed to smooth the cost function.
γ is the proportion of the two kinds of risk parameters.
ε represents the differences between the reference feature vectors and the feature

vectors generated by the hidden layer of the RELM.
The equations presented above can be converted to an unconditional extremum

problem with the help of a Lagrange function [30].

2.3. The Proposed Algorithm

The algorithm presented in this paper employs DE and ELM. The aim of this new
development is to find a certain subset of SNPs belonging to a previously defined pathway
that would be able to perform a classification of individuals in cases and controls with
certain accuracy. The flowchart of this new methodology is presented in Figure 1. Although
the machine learning tools employed are different, the overall foundations of the algorithm
are similar to those proposed in previous research [12] that made use of genetic algorithms
and support vector machines.

The algorithm first takes all the SNPs pertaining to the pathway being considered.
It should be pointed out that every time the algorithm is run, it only uses those SNPs
corresponding to that pathway. As a consequence, only those SNPs belonging to this
subset will end up being members of the search space used by the DE algorithm. All of the
candidate solutions are considered an argument, taking the form of a vector of real numbers
and produces a value indicating the fitness of the candidate solution under analysis as
output. Please note that in the case of the present problem, the vector of real numbers is a
string of “1s” and “0s” that indicates which SNPs of those that are in the subset will take
part in the ELM model employed as a fitness function of the ELM. In our case, “1” indicates
that the SNP will participate in the ELM model, while “0” means that it will not. It should
also be mentioned that for each member of the population, a different ELM model will
be trained.

In the first generation of the population, there will be only one active SNP in each of
its members. This means that the initial population is built as if random rows from a square
identity matrix of rank equal to the number of SNPs of the pathway under study were
chosen as elements of the initial population. In the following generations, these population
members will evolve through making use of the DE rules. The evolution is performed in
such a way that only those members of the population with a higher value of the fitness
function will be kept and employed to create the next generation of individuals. What this
means is that in this algorithm, those variables that are active in the DE are employed as
input information for the ELM model. The next step consists of assessing the performance
of the ELM model.

Please note that the fitness function employed in this algorithm calculates the area
under the ROC curve that is obtained by the individuals classified according to the results
of the ELM model that makes use of the active variables. As in previous research [12]
performed by the authors, the use of more than one SNP from the same gene is not allowed
so as to prevent the epitasis phenomenon [31], which in this algorithm implementation
means that the ROC value obtained by population members with epitasis is replaced by 0.



Mathematics 2022, 10, 1024 5 of 21

Mathematics 2022, 10, x FOR PEER REVIEW 5 of 21 
 

 

implementation means that the ROC value obtained by population members with epitasis 
is replaced by 0. 

 
Figure 1. Flowchart of the proposed algorithm (DE—differential evolution, ELM—extreme learning 
machine). 

The algorithm is applied as shown in Figure 1. The first step involves choosing the 
subset of SNPs that belongs to the pathway under analysis. The DE population is then 
initialized with a set of individuals in which one SNP is active. This is why in the flowchart 
it says that the DE population is initialized by making use of the rows of an identity ma-
trix. The following step consists of evaluating the DE population under the fitness func-
tion, taking into account the epitasis rule and using ELM as the classification algorithm 
whose performance is assessed by means of the area under the ROC curve. Taking into 
account the performance obtained, a new DE population is created, using the current pop-
ulation as a starting point. Should the maximum number of cycles be reached, the SNPs 
already employed in the element of the population which has performed the best are taken 
out. This process is then carried out again, and only halted when the SNPs set is empty or 
when 80 cycles in total have reached completion. 

The proposed algorithm is also applied through permutating the labels of cases and 
controls. Taking into account the advice in the existing literature, the permutation process 
was repeated 10,000 times [32]. Please note that in our previous research [12], due to 

Figure 1. Flowchart of the proposed algorithm (DE—differential evolution, ELM—extreme learning
machine).

The algorithm is applied as shown in Figure 1. The first step involves choosing the
subset of SNPs that belongs to the pathway under analysis. The DE population is then
initialized with a set of individuals in which one SNP is active. This is why in the flowchart
it says that the DE population is initialized by making use of the rows of an identity matrix.
The following step consists of evaluating the DE population under the fitness function,
taking into account the epitasis rule and using ELM as the classification algorithm whose
performance is assessed by means of the area under the ROC curve. Taking into account
the performance obtained, a new DE population is created, using the current population
as a starting point. Should the maximum number of cycles be reached, the SNPs already
employed in the element of the population which has performed the best are taken out.
This process is then carried out again, and only halted when the SNPs set is empty or when
80 cycles in total have reached completion.

The proposed algorithm is also applied through permutating the labels of cases and
controls. Taking into account the advice in the existing literature, the permutation process
was repeated 10,000 times [32]. Please note that in our previous research [12], due to
computational limitations, only 1000 permutations were employed. This option is also
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valid, and some examples can be found in the literature [33–35] but in this case, it was
possible to perform 10,000 permutations.

2.4. The Database

In this work, the data set used forms part of the Colorectal Cancer Transdisciplinary
Study (CORECT), which was an observational multicentric multicase control study carried
out between September 2008 and December 2013, while the subset of information employed
came from Leon University Hospital and Bellvitge Hospital [12].

This information set had a total of 2019 people, of whom 1076 had colorectal cancer.
For the present research, 370,570 distinctive SNPs of each person were employed. The
cases considered in this research were histologically affirmed, and their ages were within
the range from 20 to 85 years old. The choice of controls was made at random from the
population records assigned to family doctors within the same area of the hospitals that
participated in this research with the same age and sex, all having lived in the area under
study for at least 6 months.

The subjects that took part in this study were all volunteers. The safety and privacy of
the research was guaranteed through the protocol and ethical document approved by the
Ethics Committees of the Study. As no personal information was required, it was removed
from the database to ensure confidentiality. All the files that include information about the
subject complied with Spain’s Organic Law 15/1999. The files employed in the study were
registered with the Spanish Data Protection Agency with the record number 2102672171.
Please also note that not only was approval obtained of the Ethics Committee of the study,
but also a double informed consent was requested to all the patients. Genetic samples were
stored in regional genetic banks of the autonomous communities of Castilla y León (Spain)
and Catalonia (Spain).

It is of interest to remark that comparison of the results of the present research with
those obtained in previous work [12] is possible, as the same pathways were chosen. These
are 10 pathways that belong to the KEGG database [36–38]. These pathways can be divided
into three different kinds: pathways whose relationship with colorectal cancer was already
proved, pathways whose relationship with colorectal cancer is inconclusive according
to the current medical literature and finally, pathways that according to current medical
literature are unlikely to have a relationship with colorectal cancer.

3. Results

In the present research, the DE population size was fixed at 5000, and the maximum
number of iterations allowed was 6000. The crossover probability was fixed at 50%, and a
differential weighting factor (F) of 0.8 was employed. The proposed algorithm was applied
in the same way to all the pathways described in the database section.

This algorithm first creates a subset made up exclusively of SNPs pertaining to the
pathway being analyzed. In Table 1, the number of SNPs belonging to each pathway may
be seen. As this table shows, the longest of these is the Huntington’s disease pathway with
1980 SNPs, while the shortest is the mitochondrial biogenesis pathway with 679.

In total, 5500 individuals make up the initial population. As mentioned before in the
Materials and Methods section, only one active SNP was found in all these members of the
initial population. It is to be noted that fewer than 2600 SNPs are involved in any of the
pathways being analyzed, and so there are some elements in the initial population that are
the same as one another. Taking one such population as a starting point, new generations
are created in which two or more SNPs may simultaneously be active. These elements
evolve, generation after generation, in search of the AUC maximization. This process is
repeated until generation 6000 is reached.

The AUC value obtained after the application of the algorithm to the adipocytokine-
signaling pathway was 0.542125, the AUC value obtained for the AMPK-signaling pathway
was 0.569859, etc. The values obtained for each of the pathways under analysis can be
consulted in the column called AUC of Table 1.
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Table 1. Pathways under analysis. Total number of SNPs per pathway (Tot. SNPs), SNPs employed
in the 80 iterations by the non-permutated phenotypes (SNPs employed), average AUC obtained
in the 80 iterations by the non-permutated phenotypes (AUC), AUC obtained by the permutated
phenotypes (AUC perm.), percentage of non-permutated AUC values that are higher than the
maximum permutated AUC value (win subsets).

Pathway Name Tot.
SNPs

SNPs
Employed AUC AUC

Perm.
Win

Subsets

Adipocytokine signaling pathway 752 558 0.542125 0.542302 17.30%
AMPK signaling pathway 1812 508 0.569859 0.555751 89.45%
Apelin signaling pathway 2525 626 0.578882 0.542724 100%
Colorectal cancer pathway 813 399 0.583862 0.569623 100%

Glucagon signaling pathway 1707 439 0.563172 0.550494 81.95%
Huntington’s disease 1980 493 0.552506 0.546617 85.15%

Insulin resistance 1574 489 0.554821 0.558040 30.05%
Insulin signaling pathway 1215 487 0.557398 0.551704 95.90%

Longevity regulating pathway 1481 443 0.535514 0.533965 48.85%
Mitochondrial biogenesis 679 362 0.578295 0.550624 100%

In this research, an algorithm combining DE and ELM was tested, and on average,
each of the 6000 iterations used took 0.73 s. When the iterations were completed, those
SNPs that were employed for training the ELM model with the best performance were
removed, so that the algorithm would repeat the process in search of those SNPs that are
able to provide the best classification but without being able to make use of those that
have already shown the best classification performance. It would be possible to repeat this
process for as long as the pathway has SNPs available, but instead of repeating the process
until no more SNPs were available, the algorithm was programmed to stop the process
after 80 cycles.

The reasons that lead the researchers to work in this way are twofold: on the one
hand, the algorithm has a quite high computational cost, which means that repeating the
loop while there are still SNPs available would be a highly time-consuming process and,
also, that number of SNPs in the different pathways are not the same, and so stopping the
process before running out of SNPs makes it easier to compare the results.

Once the algorithm execution was finished, it was run again, making use of the
permutation of the cases and controls labels but preserving the number of individuals in
each of these categories. Please note that the use of this methodology is very common for
these kinds of studies [12].

The numerical results produced are presented in Table 1. This table contains the
following information on all the pathways under analysis: how many SNPs make up
the pathway subset, how many different SNPs of the pathway employed in any of the
models showed the best AUC performance, what AUC value the algorithm obtained on
average, the AUC value when phenotypes were permutated, and what percentage of
non-permutated AUC values were greater than the highest permutated AUC value that
was obtained.

In this research, a figure for each pathway under analysis was created. Figure 2 shows
the values that were obtained by applying the proposed algorithm to the adipocytokine-
signaling pathway in six different cases, one of which is the one in which cases and controls
were labeled correctly as cases and controls while the other five show the results achieved
by five different permutations. In the six algorithm executions presented, the AUC values
are ordered from higher to lower to make it easier to interpret the curves obtained. In the
case of the pathway mentioned, the curve that represents data without cases and controls
permutations is not higher than those curves obtained by making use of permutated cases
and controls labels, as they are very close to each other. This result is confirmed by the
boxplot presented in Figure 3, where the median AUC value obtained for cases and controls
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correctly labeled is very similar to the median values achieved for the five algorithm
executions with permutated labels represented in the same figure.
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In Figure 4 the results obtained for the insulin-resistance pathway can be seen. Figure 5
shows the boxplot of the insulin resistance AUC values of the 80 iterations of 5 executions
of the algorithm with the labels of cases and controls permutated and one with cases and
controls correctly labeled, while Figure 6 shows the same information that Figure 4 for
the longevity pathway. In both cases, and this also occurs in Figure 2, for the green curve,
called a phenotype and which refers to the results produced by the algorithm when applied
to the data with the labels correctly assigned to cases and controls, the AUC values show a
great similarity to those obtained with permutated labels. Please also note that the same
effect can be noticed in Figures 5 and 7 as in both cases the median value of the AUCs for
cases and controls is not higher than the median value of all the permutated executions.
Therefore, it must be inferred that these three pathways are not linked to colorectal cancer.
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Considering the results obtained by means of the algorithm, the AUC value obtained
was on average a little greater when the algorithm was applied to those data sets in which
cases and controls labels were permutated than the one achieved for cases and controls.
Regarding the insulin resistance pathway, there was a greater value for cases and controls,
by a difference of 0.003219 or 0.58%, while for the longevity pathway, this difference was
0.001549, or 0.29%. A summary of these results can be seen in Table 1.

The three following pathways under study were the apelin-signaling pathway that is
represented in Figures 8 and 9, the mitochondrial biogenesis pathway that is presented in
Figures 10 and 11 and the colorectal cancer pathway that can be observed in Figures 12 and 13.
In these three pathways, the curve that represents the AUC values obtained by the algorithm
when applied to the subset in which labels correspond to cases and control has undoubtedly
higher values than those obtained when permutation was applied. The same effect is
observed in their corresponding boxplots, as the median value for the algorithm execution
without permutation of cases and controls is higher than the five executions in which cases
and controls are permutated. Even in the case of the apelin-signaling pathway and the
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mitochondrial biogenesis pathway, the value that corresponds to the 25th percentile of the
executions without permutation is higher than the 75th percentile of most of the permutated
executions. These graphic results are in line with those presented in Table 1, where the
AUC value for the apelin-signaling pathway was 0.578882, as compared to 0.542724 when
it was permutated. Something similar occurred in the case of the mitochondrial biogenesis
pathway, where the AUC value achieved was 0.578295, while with permutated labels, the
average value was 0.550624. In the case of the colorectal cancer pathway, the AUC value
was 0.583862, while in that of the permutated pathways, the average value was 0.569623.
It is also of interest to highlight that in these three pathways, fully 100% of the permutated
subsets obtained results under the subset with cases and controls correctly labeled.
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In other words, these three pathways are the most likely of the 10 under analysis in the
present research to influence over the colorectal cancer. This can be clearly noticed when
their figures are compared with, for example, those that correspond to the results obtained
for the adipocytokine-signaling pathway (Figure 2), insulin resistance pathway (Figure 4)
or longevity pathway (Figure 6) or even with others that will be described afterwards in
the present section. From a machine learning point of view, it can be interpreted that these
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pathways are the ones that are able to separate in a clearer way the cases from controls, but
from a genetic point of view, it is translated as a possible influence of the pathway under
study on the trait of interest that in the present research is suffering or not from colorectal
cancer. A detailed description of the possible biological reasons of the importance of the
three referred pathways in the colorectal cancer can be found in the discussion section.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 21 
 

 

from controls, but from a genetic point of view, it is translated as a possible influence of 
the pathway under study on the trait of interest that in the present research is suffering or 
not from colorectal cancer. A detailed description of the possible biological reasons of the 
importance of the three referred pathways in the colorectal cancer can be found in the 
discussion section. 

 
Figure 8. Apelin-signaling pathway: AUC values of 80 iterations for the execution of the algorithm 
with cases and controls correctly labeled and five different permutations. 

 
Figure 9. Boxplot of the apelin-signaling pathway AUC values of the 80 iterations of 5 executions of 
the algorithm with the labels of cases and controls permutated and one with cases and controls 
correctly labeled. Red color represents permutated cases, green color represents the phenotype case 
and circles are outliers. 

 
Figure 10. Mitochondrial biogenesis pathway: AUC values of 80 iterations for the execution of the 
algorithm with cases and controls correctly labeled and five different permutations. 

Figure 8. Apelin-signaling pathway: AUC values of 80 iterations for the execution of the algorithm
with cases and controls correctly labeled and five different permutations.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 21 
 

 

from controls, but from a genetic point of view, it is translated as a possible influence of 
the pathway under study on the trait of interest that in the present research is suffering or 
not from colorectal cancer. A detailed description of the possible biological reasons of the 
importance of the three referred pathways in the colorectal cancer can be found in the 
discussion section. 

 
Figure 8. Apelin-signaling pathway: AUC values of 80 iterations for the execution of the algorithm 
with cases and controls correctly labeled and five different permutations. 

 
Figure 9. Boxplot of the apelin-signaling pathway AUC values of the 80 iterations of 5 executions of 
the algorithm with the labels of cases and controls permutated and one with cases and controls 
correctly labeled. Red color represents permutated cases, green color represents the phenotype case 
and circles are outliers. 

 
Figure 10. Mitochondrial biogenesis pathway: AUC values of 80 iterations for the execution of the 
algorithm with cases and controls correctly labeled and five different permutations. 

Figure 9. Boxplot of the apelin-signaling pathway AUC values of the 80 iterations of 5 executions
of the algorithm with the labels of cases and controls permutated and one with cases and controls
correctly labeled. Red color represents permutated cases, green color represents the phenotype case
and circles are outliers.

Mathematics 2022, 10, x FOR PEER REVIEW 11 of 21 
 

 

from controls, but from a genetic point of view, it is translated as a possible influence of 
the pathway under study on the trait of interest that in the present research is suffering or 
not from colorectal cancer. A detailed description of the possible biological reasons of the 
importance of the three referred pathways in the colorectal cancer can be found in the 
discussion section. 

 
Figure 8. Apelin-signaling pathway: AUC values of 80 iterations for the execution of the algorithm 
with cases and controls correctly labeled and five different permutations. 

 
Figure 9. Boxplot of the apelin-signaling pathway AUC values of the 80 iterations of 5 executions of 
the algorithm with the labels of cases and controls permutated and one with cases and controls 
correctly labeled. Red color represents permutated cases, green color represents the phenotype case 
and circles are outliers. 

 
Figure 10. Mitochondrial biogenesis pathway: AUC values of 80 iterations for the execution of the 
algorithm with cases and controls correctly labeled and five different permutations. 
Figure 10. Mitochondrial biogenesis pathway: AUC values of 80 iterations for the execution of the
algorithm with cases and controls correctly labeled and five different permutations.



Mathematics 2022, 10, 1024 12 of 21Mathematics 2022, 10, x FOR PEER REVIEW 12 of 21 
 

 

 
Figure 11. Boxplot of the mitochondrial biogenesis pathway AUC values of the 80 iterations of 5 
executions of the algorithm with the labels of cases and controls permutated and one with cases and 
controls correctly labeled. Red color represents permutated cases, green color represents the pheno-
type case and circles are outliers. 

 
Figure 12. Colorectal cancer pathway: AUC values of 80 iterations for the execution of the algorithm 
with cases and controls correctly labeled and five different permutations. 

 
Figure 13. Boxplot of the colorectal cancer pathway AUC values of the 80 iterations of 5 executions 
of the algorithm with the labels of cases and controls permutated and one with cases and controls 
correctly labeled. Red color represents permutated cases, green color represents the phenotype case 
and circles are outliers. 

Figure 11. Boxplot of the mitochondrial biogenesis pathway AUC values of the 80 iterations of
5 executions of the algorithm with the labels of cases and controls permutated and one with cases
and controls correctly labeled. Red color represents permutated cases, green color represents the
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Figure 13. Boxplot of the colorectal cancer pathway AUC values of the 80 iterations of 5 executions
of the algorithm with the labels of cases and controls permutated and one with cases and controls
correctly labeled. Red color represents permutated cases, green color represents the phenotype case
and circles are outliers.
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Figure 14 represents how the algorithm behaves when applied to the AMPK-signaling
pathway. For this pathway, the phenotype curve is close to the permutated ones. The
same result is observed in the boxplot of Figure 15. The numerical results, presented in
Table 1, where the AUC value of the phenotype curve is higher than the value obtained
when the cases and controls were permutated, show a slightly better result in the case of no
permutation. In this figure, the cases and control curves perform better than 89.45% of the
permutated curves. In other words, there are some randomly labeled subsets where the
algorithm achieves better AUC results than in the case of cases and controls.
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Figure 15. Boxplot of the AMPK-signaling pathway AUC values of the 80 iterations of 5 executions
of the algorithm with the labels of cases and controls permutated and one with cases and controls
correctly labeled. Red color represents permutated cases, green color represents the phenotype case
and circles are outliers.

Figures 16 and 17 show the results obtained for the glucagon-signaling pathway, while
Figures 18 and 19 do the same for the Huntington’s disease pathway. In both cases, the
phenotype curve is very close to the permutated curves, although its average value appears
to be a little higher. Taking into account those values presented in Table 1, in both pathways,
the AUC value of the cases and control is slightly higher than the permutated ones. In
the case of the glucagon-signaling pathway, 81.95% of the permutated subsets obtained
an AUC value lower than the ones not permutated, while in the case of the Huntington’s
disease pathway, these percentages rose to 85.15%.

Finally, Figure 20 shows the results obtained when the algorithm is applied to the
insulin-signaling pathway. In this case, the phenotype curve is close to the permutated one,
but at most of the points, the former is above the latter. In the case of the boxplot presented
in Figure 21, the median of the AUC value of the execution without permutation is higher
than the five permutations showed for the same pathway. Please also note that in this case,
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the AUC value for cases and controls is over the average permutated value and is higher
than 96.5% of the permutated results obtained.
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of the algorithm with the labels of cases and controls permutated and one with cases and controls
correctly labeled. Red color represents permutated cases, green color represents the phenotype case
and circles are outliers.
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4. Discussion

The results obtained by the algorithm proposed in the present research that makes use
of ELM for classification are quite similar to those achieved in a study carried out by the
authors in which SVM and genetic algorithms were employed [12]. The ELM performance
was quite similar to that obtained by SVM, but the time required for the model training
was considerably lower (times approximately divided by 47), which makes the use of ELM
especially convenient considering the long time required for SVM model training.

As was already stated in the materials and methods section, ELM is a learning algo-
rithm based on feed-forward neural networks that makes use of a single hidden layer [39].
Although ELM has a weaker generalization ability than SVM for a small sample, it can
generalize as well as SVMs for large samples.

In our research, as in earlier works, it was found that ELM has advantages over SVM
in the selection of parameters [40]. Like SVM, ELM is able to minimize the training errors
as well as maximizing the separation margin [41].

Despite there being a great deal of existing literature, more profound research about the
comparison of ELM and SVM is still necessary. The present research confirms a theoretical
result found in the existing literature that indicates that ELM can achieve similar accuracy
to SVM [40].

Previous research [39] made an experimental comparison of SVM and ELM for differ-
ent training sample sizes. This research employed eight different data sets with samples
ranging from 150 to 22, 784 and the number of variables from 4 to 8. These results suggested
that SVM has the strongest generalization behavior. This fact is important in the case of
small sample sizes, but when the size of the training data set increases, the generalization
ability of the ELM becomes closer to the SVM, making both have similar classification
abilities for large sample sizes. According to previous research [42], DE outperforms GA
on many optimization problems, both single [24] and multi-objective [43].

In the case of the present work, the sample size selected was the same as in previous
research [12] to make it possible to compare the results. Please also note that in this case,
instead of 1000 permutations, a number chosen due to the high computational cost set out
in said research [12], 10,000 permutations were performed.

From our point of view, the results reached in this work are not only very similar to
those obtained in previous work by [12] that made use of the same database, but also are
in line with others available in existing literature. One of the main concerns of readers
unfamiliar with GWAS studies is that the AUC values obtained are quite low, yet this is
frequently the case [44] in this research area.

Taking these results into account, we concluded that some of the proposed pathways
are obviously related to colorectal cancer, namely apelin signaling, colorectal cancer and
mitochondrial biogenesis. Others present a probable, albeit weak, relationship with colorec-
tal cancer, namely AMPK signaling, glucagon signaling, Huntington’s disease and insulin
signaling. We failed to find any relationship for adipocytokine signaling, insulin resistance
or longevity regulating.

Regarding colorectal cancer, previous research has already highlighted the importance
of the apelin-signaling pathway [45]. Apelin (AP) may potentially be a target for anticancer
therapy [46,47]. Further research [48] studied the tumor tissues of 56 surgically treated
colorectal adenocarcinoma patients and therein carried out an analysis of the apelin and
its receptor mRNA as well as the levels of protein expression. The values obtained were
compared with 27 healthy controls, finding that serum levels of apelin and its receptor
were increased in colorectal cancer patients in comparison to controls. These results lead to
the conclusion that apelin is an important factor in the progression of colorectal carcinoma.
Finally, a recently published study came to the conclusion that the level of apelin and
its receptors is closely linked to the regulation of migration and invasion of colon cancer
cells [49]. The presence of the colorectal cancer pathway as being one of those linked to
patients that suffer from colorectal cancer was expected, and it can be considered a basic
test to guarantee the correct behavior of the algorithm.
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As is well known and has already been stated in previous research, mitochondria are
linked to the genesis of cancer [12]. In fact, cancer development in humans is closely linked
to mitochondrial alteration, increased production of free mitochondrial oxide radicals and
oxidative stress [50].

There are other pathways in which a certain degree of relationship with the labels of
cases and controls of colorectal cancer was found. The first of these is the AMPK-signaling
pathway. In existing literature, there are now some papers that link it with colorectal cancer,
either considering that AMPK promotes the survival of colorectal cancer stem cells [51]
or showing that the p-AMPK expression is more frequent in controls than in colorectal
cases [52].

The fact that glucagon boosts the production of glucose in the liver by increasing glyco-
genesis and gluconeogenesis whilst also reducing glycogenesis glycolysis is now widely
known. Research performed in 2008 [53] discovered expressions of the glucagon receptor
in colon cancer cell lines and in colon cancer tissue obtained from patients. Furthermore,
another study which came out the same year reported that the growth of colon cancer cells
is promoted by glucagon through regulating AMPK and MAPK pathways [54].

In the case of Huntington’s disease, previous studies have found [55] that those who
suffer from this illness have up to 80% less cancer than the general population. The reason
is that the mutated huntingtin (HTT) gene in those who suffer from Huntington’s disease
generates a class of small molecules that are highly toxic to cancer cells.

The relationship between the insulin-signaling pathway and the risk of colorectal
cancer is backed by previous research [56] that found that genetic variations in the insulin-
signaling pathways genes may affect the risk of colorectal cancer. It must also be taken
into account that the modification in the individual values of plasma insulin levels due
to diet may also affect the risk of suffering from colorectal cancer [56]. Finally, it must be
highlighted that no relationship was found between the adipocytokine-signaling, insulin-
resistance and longevity-regulating pathways. These results are in line with the lack of
results about these possible relationships found in literature.

Although the algorithm presented in this research has proved a satisfactory predictive
ability, this ability lacks easy biological interpretability [57]. In order to deal with this
limitation, the use of explainable artificial intelligence techniques is required. As it was
already pointed out by other authors [58], the main advantage of explainable artificial
intelligence techniques is that they integrate interpretability and transparency into the
machine learning models [59], which, in the case of the problem under study, means that
the relevance of the different SNPs in a certain pathway would be known. Additionally, it
must be highlighted that from a biological point of view, the use of explainable artificial
intelligence techniques systems would help healthcare professionals in gaining a better
understanding of the model and to make reasoned decisions.

Finally, from the point of view of the researchers, one of the first explainable artificial
intelligence techniques that should be tested with the database of the present research
is random forest. Random forest is a combination of predictor trees such that each tree
depends on the values of a random vector tested independently and with the same distri-
bution for each of them [60]. It can be considered a substantial modification of bagging that
builds a large collection of uncorrelated trees and then averages them [61].

5. Conclusions

The research described in this paper presents a novel algorithm based on machine
learning methodologies that has proved to give good performance in GWAS. This work
continues a research line [12] that makes use of algorithms and combines different machine
learning methodologies. One of the main drawbacks of these methodologies is the lack
of a simple biological explanation for the results obtained, as, although there are many
pathways whose relationships with illness and traits are well known, it is difficult to find
how each of the SNPs that form the pathway behaves in the process and influences it. In
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spite of this, it is possible to explain the influence of the different pathways on colorectal
cancer by making use of the available literature.

As was already stated in a previous work [12], in our opinion, due to the current
lack of a gold standard multivariate methodology for GWAS, all the algorithms, such as
the one presented in this research, should be taken into account in GWAS. Additionally,
when compared with the previous algorithm proposed by the authors [12], the fact that the
computation time required for this one is about 1 divided by 47 must be considered as one
of the main advantages of the algorithm proposed in this research. This result is mainly
due to the fast training of the ELM that was already stated in the literature [62].

Furthermore, as it was proved in the present research, and in line with previous works,
machine learning is a valuable tool for GWAS analysis, as it is able to find SNPs and the
loci of interest. In spite of these, one of the main drawbacks of machine learning is the lack
of a clear explanation for the models obtained with most of the methodologies. This fact is
important in the field of GWAS where the relationships between genes and traits are often
difficult to interpret. Considering what was mentioned above, one of our future research
lines will consist of applying a machine learning explainable algorithm, such as random
forest, to the problem under study in this paper. Additionally, and in order to contribute
to consolidating the role of machine learning algorithms in GWAS, the authors will also
focus on comparing the results obtained with other methodologies that are common in
GWAS and do not belong to the machine learning field in order to close the gap between
the different approaches to GWAS.
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Appendix A

Algorithms A1 shows the algorithm of the DE algorithm. This pseudocode requires
4 indexes, one of which is the target index i, while the other three are the vector indexes,
called r0, r1, and r2. Please note that r0 6= r1 and r1 6= r2. When the population is completed,
the selection is performed. In this pseudocode, Np represents the number of elements in
the population.
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Algorithms A1. Algorithm of the differential evolution (DE) algorithm

// initialize...
do // generate a trial population
{

for (i = 0; i < Np; i++) // r0! = r1! = r2! = i
{

do r0 = floor(rand(0,1)*Np); while (r0 == i);
do r1 = floor(rand(0,1)*Np); while (r1 == r0 or r1 == i);
do r2 = floor(rand(0,1)*Np); while (r2 == r1 or r2 == r0 or r2 == i);
jrand = floor(D*rand(0,1));
for (j = 0; j < D; j++) // generate a trial vector
{

if (rand (0,1) <= Cr or j == jrand)
{

uj,i = xj,r0 + F ∗
(

xj,r1 − xj,r2

)
; //check for out-of-bounds?

}
else
{

uj,i = xj,i;
}

}
}
// select the next generation
for (i = 0; i < Np; i++)
{

if ( f (ui) <= f (xi)) xi = ui;
}

} while (termination criterion not me);
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