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Abstract: In this paper, a tensor splitting AOR iterative method for solving theH+-tensor absolute
value equation is presented. Some sufficient conditions for the existence of the solution to the tensor
absolute value equation are given. Under suitable conditions, the new method is proved to be
convergent. Finally, some numerical examples demonstrate that our new method is effective.
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1. Introduction

Recently, the study of tensors has become a hot research field due to its numerous
fields of application, such as tensor complementary problems [1–3], numerical partial
differential equations [4], image processing [5] and data mining [6]. With the development
of the tensor problem, the solution to the tensor absolute value equation has been paid more
and more attention. In this paper, we consider the tensor absolute value equation (TAVE):

Axm−1 − |x|[m−1] = b, (1)

where A = (ai1i2···im) is an m-order, n-dimensional tensor; x = (x1, x2, . . . , xn)T and the
right-hand b = (b1, b2, . . . , bn)T are both n-dimensional vectors; and |x|[m−1] = (|x1|m−1,
|x2|m−1, . . . , |xn|m−1)T . The tensor absolute value equation is a further extension of the
matrix absolute value equation. Du et al. [7] proved that TAVE (1) is equal to a certain class
of structural tensor complementarity problems, and they solved it with the Levenberg–
Marquardt method. Bu and Ma [8] proposed some tensor splitting methods and proved the
existence of positive solutions for solving TAVE (1), with A being a nonsingularM-tensor.
Ning et al. [9] studied a tensor-type successive over-relaxation method and tensor-type
accelerated over-relaxation method for solving TAVE (1) whenA is a nonsingularM-tensor.
More generally, Guo and Gu [10] introduced the following tensor generalized absolute
value equation (TGAVE):

Axm−1 −B|x|[m−1] = b, (2)

where B = (bi1i2···im) is also an m-order n-dimensional tensor, and they proposed a smooth-
ing Newton method to solve it. Ling et al. [11] provided the existence of solutions of
TGAVE (2) with the help of degree theory and proved that TGAVE (2) has at least one
solution under some checkable conditions. Jiang and Li [12] analyzed the existence of
solutions of TGAVE (2) and proposed a SOR iterative algorithm to solve this equation.
Apparently, (2) covers (1), when B is an m-order n-dimensional unit tensor.
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In addition, when B is a zero tensor, TGAVE (2) is expressed as the tensor equation:

Axm−1 = b. (3)

There are many methods for solving (3) when A is a nonsingular M-tensor. For
example, the Jacobi method, the Gauss–Seidel method, the Newton method [13], the tensor
splitting method [14], and the preconditioned tensor splitting method [15]. TheH-tensor
has been widely used in evolutionary game dynamics and high-order Markov chains.
Wang et al. [16] proposed a preprocessing AOR iterative method for solving (3) when the
coefficient tensor A is a nonsingularH-tensor. When A is anH+-tensor, Wang et al. [17]
theoretically proved that (3) has a unique positive solution with positive right-hand side b,
and also proved that (3) has a negative solution.

To our knowledge, TAVE (1) has been studied in recent years, and there is not much
literature on it. It is observed that many of the current research works aim at TAVE (1),
which A is anM-tensor, and the results of studies about TAVE (1) with A as anH+-tensor
are relatively rare. Additionally, TAVE (1) of the H+-tensor is a further extension of the
H+-matrix absolute value equation [18]. Based on these motivations, a tensor splitting
AOR iterative method to solve TAVE (1) when A is an H+-tensor is intensively studied
in this paper, and we illustrate the effectiveness of this method through some numerical
examples in Section 4.

The main structure of this paper is as follows. In Section 2, we introduce some notation,
definitions, and lemmas. In Section 3, we give some sufficient conditions for the existence of
the solution of TAVE (1). Then we give a tensor splitting AOR iterative algorithm and prove
the convergence of the algorithm. In Section 4, the results of some numerical examples
are given.

2. Preliminaries

We first introduce some notation relevant to this paper. Let R, Rn, and R[m,n] be the
real field, the set of all n-dimensional real vectors, and the set of all m-order n-dimensional
real tensors, respectively. Remember 0, O, and O are a null vector, a null matrix, and a
null tensor, respectively. Let A,B ∈ R[m,n]. The order A ≥ B means that ai1i2···im ≥ bi1i2···im .
If A ≥ O, that is, ai1i2···im ≥ 0, the tensor A is called a nonnegative tensor. An m-order
n-dimensional unit tensor Im = (δi1i2···im) is given by

δi1i2···im =

{
1, i1 = i2 = · · · = im,
0, otherwise.

Next, we summarize some definitions and lemmas related to this paper. We introduce
the definitions ofM-tensor,H-tensor, andH+-tensor.

Definition 1 ([19]). A ∈ R[m,n] is called anM-tensor if there exist a nonnegative tensor B and a
positive real number η ≥ ρ(B) such that

A = ηIm −B.

If η > ρ(B), then A is called a nonsingularM-tensor.

Definition 2 ([19]). Let A ∈ R[m,n]. We call another tensor 〈A〉 = (mi1i2 ...im) the comparison
tensor of A if

mi1i2 ...im =

{
|ai1i2 ...im |, (i1i2 . . . im) = (i1i1 . . . i1),
−|ai1i2 ...im |, (i1i2 . . . im) 6= (i1i1 . . . i1).

Definition 3 ([19,20]). LetA ∈ R[m,n]. We call a tensorA anH-tensor, if its comparison tensor is
anM-tensor; we call it a nonsingularH-tensor, if its comparison tensor is a nonsingularM-tensor.
We call A anH+-tensor, if it is a nonsingularH-tensor with all the diagonal elements aii...i > 0.
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The following introduces the majorization matrix and the order-2 left-inverse of
the tensor.

Definition 4 ([21]). Let A ∈ R[m,n]. The majorization matrix M(A) of A is defined as an n× n
matrix with its entries

M(A)ij = (aij···j), i, j = 1, 2, · · · , n.

Definition 5 ([22]). Let A ∈ R[m,n]. If M(A) is a nonsingular matrix and A = M(A)Im, we
call M(A)−1 the order-2 left-inverse of A.

Definition 6 ([14]). Let A ∈ R[m,n]. If A has an order-2 left-inverse, then A is called a left-
invertible tensor or left-nonsingular tensor.

Tensor H-splitting and H-compatible splitting are introduced next.

Definition 7 ([14]). Let A, E ,F ∈ R[m,n]. A = E − F is said to be a splitting of A if E is
left-nonsingular, or a convergent splitting if ρ(M(E)−1F ) < 1.

Definition 8 ([16]). Let A, E ,F ∈ R[m,n]. The splitting A = E − F is called

(1) H-splitting if 〈E〉 is a left-nonsingular tensor and 〈E〉 − |F| is a nonsingularM-tensor;
(2) H-compatible splitting if 〈E〉 is a left-nonsingular tensor and 〈A〉 = 〈E〉 − |F|.

Lemma 1 ([16]). Let A, E ,F ∈ R[m,n]. If A = E − F is an H-splitting, then A and E are
nonsingularH-tensors and ρ(M(E)−1F ) ≤ ρ(M(〈E〉)−1|F |) < 1.

Lemma 2 ([16]). Let A, E ,F ∈ R[m,n]. If the splitting A = E − F is an H-compatible splitting
and A is a nonsingularH-tensor, then it is an H-splitting and ρ(M(E)−1F ) < 1.

From the above Lemmas 1 and 2, we have the following lemma.

Lemma 3. Let A is anH+-tensor. Then all H-(compatible) splittings of A are convergent.

Proof. Assume that A = E − F is an H-(compatible) splitting. Since A is anH+-tensor, A
is a nonsingularH-tensor. By Lemmas 1 and 2, we get ρ(M(E)−1F ) < 1.

Finally, for tensor Equation (3) with A as an H+-tensor, the existence theorem for a
positive solution and a negative solution is in the following lemmas.

Lemma 4 ([17]). If A is an H+-tensor, then for every positive vector b, the tensor Equation (3)
has a unique positive solution.

Lemma 5 ([17]). Let A be an H+-tensor. For every positive vector b and an odd m, if x is a
solution of

Axm−1 − b = 0,

then the tensor Equation (3) has a negative solution: −x.

3. Main Results
3.1. Existence and Uniqueness of Solutions of TAVE (1)

First of all, we discuss the conditions for the existence and uniqueness of the solution
of TAVE (1).

Theorem 1. Let A = (ai1i2···im),B, Im ∈ R[m,n]. If the diagonal elements aii...i > 1 and the
comparison matrix 〈A〉 can be written as 〈A〉 = cIm −B with B ≥ O and c > ρ(B) + 1, then
for every positive vector b, TAVE (1) has a unique positive solution.
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Proof. Since aii...i > 1, we get

〈A − Im〉 =
{
|ai1i2 ...im | − 1, (i1i2 . . . im) = (i1i1 . . . i1),
−|ai1i2 ...im |, (i1i2 . . . im) 6= (i1i1 . . . i1),

and then we obtain 〈A − Im〉 = 〈A〉 − Im. Suppose that s = c− 1. According to 〈A〉 =
cIm −B, we have

〈A〉 − Im = sIm −B, B ≥ O, s > ρ(B),

which means that 〈A〉 − Im is a nonsingularM-tensor; that is, 〈A − Im〉 is also a nonsin-
gularM-tensor. Thus, A− Im is anH+-tensor. By Lemma 4, the tensor equation

(A− Im)xm−1 = b (4)

has a unique positive solution for every positive vector b. Additionally, TAVE (1) can
be converted to the tensor Equation (4) when x > 0. Hence, for every positive vector b,
TAVE (1) has a unique positive solution.

Theorem 2. Let A = (ai1i2···im),B, Im ∈ R[m,n], and x is a solution of TAVE (1). If the diagonal
elements aii...i > 1, the comparison matrix 〈A〉 can be written as 〈A〉 = cIm −B with B ≥ O and
c > ρ(B) + 1, so TAVE (1) has a negative solution −x for every positive vector b and an odd m.

Proof. It is known from the proof of Theorem 1 that A− Im is anH+-tensor. By Lemma 5,
it follows that for every positive vector b and an odd m, if x > 0 is a solution of the tensor
Equation (4), then so is −x; that is,

(A− Im)(−x)m−1 = b.

Hence, for every positive vector b and an odd m, if x is a solution of TAVE (1), then
TAVE (1) has a negative solution −x.

From the conditions of Theorems 1 and 2, we proved that A− Im is an H+-tensor.
Therefore, we have the following two corollaries.

Corollary 1. Let A, Im ∈ R[m,n]. If A− Im is an H+-tensor, then for every positive vector b,
TAVE (1) has a unique positive solution.

Corollary 2. Let A, Im ∈ R[m,n] and x is a solution of TAVE (1). If A− Im is an H+-tensor,
then TAVE (1) has a negative solution −x for every positive vector b and an odd m.

3.2. Tensor Splitting AOR Iterative Method

In [16], the preconditioned tensor splitting AOR iterative method was proposed to
solve the tensor Equation (3) by Wang et al. Next, based on the method of [16], we give a
tensor splitting AOR iterative method for solving TAVE (1).

From Theorems 1 and 2, we proved that TAVE (1) can be converted to the tensor
Equation (4) when x > 0 or m is an odd number and x < 0, where x is the solution of (4).
Thus, we can get the solution of TAVE (1) by solving the tensor Equation (4). First of all, a
splitting of the tensor A− Im into

A− Im = E − F . (5)

If (M(E))−1 exists, then an iterative formula for solving the tensor Equation (4) can be
written as

xk = (T xm−1
k−1 + f )[

1
m−1 ], k = 1, 2, · · · ,
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where T = M(E)−1F and f = M(E)−1b. The tensor T denotes the iterative tensor of the
splitting method. Let

A− Im = D −L− U ,

where D = DIm; L = LIm; and D and −L are the diagonal and the strictly lower triangle
part of M(A− Im), respectively. If

E =
1
ω
(D − rL), F =

1
ω
[(1−ω)D + (ω− r)L+ ωU ],

then the splitting method (5) is called the AOR method. Additionally, the iteration tensor of
the AOR method is given by TAOR = M(E)−1F = M(D− rL)−1 · [(1−ω)D+ (ω− r)L+
ωU ], where ω, r are real parameters with ω 6= 0. In particular, the AOR method becomes
the SOR method when r = ω, the AOR method becomes the Gauss–Seidel method when
r = ω = 1, and the AOR method becomes the Jacobi method when r = 0 and ω = 1.
The corresponding tensor splitting AOR iterative method for solving TAVE (1) is given
as follows.

Next, we give the convergence theorem of Algorithm 1.

Algorithm 1 Tensor splitting AOR iterative method.

1. Given an H+-tensor A, a splitting A− Im = E − F , a right-hand vector b > 0, a
maximal iteration number kmax, a machine precision ε, and a positive initial vector x0.
Initialize k := 1.

2. While k < kmax

xk = (M(E)−1Fxm−1
k−1 + M(E)−1b)[

1
m−1 ], k = 1, 2, · · · .

3. If ‖ (A− Im)xm−1
k − b ‖2≤ ε, output the solution xk.

4. Let k = k + 1, return to step 2.

Theorem 3. Let A− Im ∈ R[m,n] be anH+-tensor.
(1) If 0 ≤ r ≤ ω ≤ 1(ω 6= 0), then ρ(TAOR) < 1;
(2) If 0 ≤ r ≤ ω ≤ 2 (ω > 1, ω 6= 0) and ( 2

ω − 1)|D| − |L| − |U | is a nonsingular
M-tensor, then ρ(TAOR) < 1.

Proof. According to the AOR splitting of (5), we have

〈E〉 = 1
ω
(|D| − r|L|), |F | = 1

ω
[|(1−ω)| · |D|+ (ω− r)|L|+ ω|U |].

(1) Due to 0 ≤ r ≤ ω ≤ 1(ω 6= 0), we obtain

〈E〉 − |F| = 1
ω
(|D| − r|L|)− 1

ω
[(1−ω)|D|+ (ω− r)|L|+ ω|U |]

= |D| − |L| − |U|
= 〈A − Im〉.

Since A− Im is an H+-tensor, the diagonal tensor D is nonsingular. Additionally,
r ≤ ω, so 〈E〉 is a left-nonsingular tensor. Therefore, the splitting of A− Im = E − F
is an H-compatible splitting. From Lemma 3, we can get that the AOR splitting of (5) is
convergent. So ρ(TAOR) < 1.

(2) It can be seen from the proof of (1) that 〈E〉 is a left-nonsingular tensor. While
0 ≤ r ≤ ω ≤ 2 (ω > 1, ω 6= 0), we have

〈E〉 − |F| = (
2
ω
− 1)|D| − |L| − |U|.
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As ( 2
ω − 1)|D| − |L| − |U | is a nonsingular M-tensor, A − Im = E − F is an H-

splitting. Hence, by Lemma 3, we know that the AOR splitting of (5) is convergent. In other
words, ρ(TAOR) < 1.

4. Numerical Examples

In this section, we verify the effectiveness of Algorithm 1 through some numeri-
cal examples. All tests were performed in Matlab 2018b with configuration: Intel(R)
Core(TM)i5-8265 CPU @ 1.60 GHz 1.80 GHz. The number of iterations is denoted by IT, and
the CPU time in seconds is denoted by CPU(s). We set the maximum number of iterations
as kmax = 1000 and the stopping tolerance as ε = 10−11.

Example 1. Let anH+-tensor

A =

 3 −0.36 0.40
−0.12 0.10 0.20
0.13 0.12 −0.20

−0.16 0.10 0.13
0.05 4 −0.80
−0.06 0.08 −0.04

−0.06 0.04 0.08
−0.04 0.12 0.05
0.04 −0.02 2

,

and the right-hand side b = (1, 1, 1)T .

It is easy to prove that A− I3 is also anH+-tensor and the AOR splitting of A− I3 =
E − F is convergent when 0 ≤ r ≤ ω ≤ 1.2 and ω 6= 0. Let the initial value x0 = ( 1

3 , 1
3 , 1

3 )
T .

The numerical results of Algorithm 1 are shown in Figure 1, where the values of ω range
from 0.1 to 1.2 in intervals of 0.1 and the values of r from 0 to ω in intervals of 0.1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

r

0
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0.1

0.15

0.2
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C
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)

#

=0.1

=0.2

=0.3

=0.4

=0.5

=0.6

=0.7

=0.8

=0.9

=1.0

=1.1

=1.2

Figure 1. The numerical results of Example 1.

As can be seen in Figure 1, Algorithm 1 effectively solves TAVE (1). Of the parameters
ω and r in this experiment, the value of ω has a greater impact on the running time of the
algorithm. The values of optimal parameters ω and r in Example 1 were between 1.1 and
0.1. The minimum CPU time was 0.01042 s, which is represented by “#” in Figure 1, and
the number of iteration steps was 13.

Example 2. Let
A = |(n2 + 1)I3 −B| ∈ R[3,n],

where B ∈ R[3,n] is a nonnegative tensor with bi1i2i3 = | sin(i1 + i2 + i3)| and the right-hand side
b = (1, 1, . . . , 1)T ∈ Rn.
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By [23], we know that 〈A − I3〉 = n2I3 −B is a nonsingularM-tensor, so A− I3 is
an H+-tensor. Let the initial value x0 = ( 1

2n , 1
2n , . . . , 1

2n )
T ∈ Rn. For the SOR method, we

took the values of ω range from 0.1 to 1.0 in intervals of 0.1. For the AOR method, we
took the values of ω range from 0.1 to 1.0 in intervals of 0.1 and the values of r from 0 to
ω in intervals of 0.1. For n = 3, 5, 10, 30, 50, 100, 150, 200, and 300, we solved TAVE (1) by
the Jacobi method, Gauss–Seidel method, SOR method, and AOR method. The numerical
results are shown in Table 1, where ω and r are the optimal parameters.

Table 1. The numerical results of Example 2.

n
Jacobi Gauss–Seidel SOR AOR

CPU(s) IT CPU(s) IT ω CPU(s) IT (ω,r) CPU(s) IT

3 0.044761 52 0.026841 31 0.8 0.012209 15 (0.8, 0.8) 0.012209 15
5 0.048811 54 0.033353 40 0.7 0.015901 17 (0.7, 0.3) 0.014624 17

10 0.041475 47 0.034756 41 0.7 0.013918 16 (0.7, 0.3) 0.013632 16
30 0.056128 44 0.064641 42 0.7 0.014826 13 (0.7, 0.5) 0.012868 12
50 0.051478 42 0.044186 41 0.7 0.014656 12 (0.7, 0.1) 0.010484 10

100 0.080886 40 0.10691 39 0.7 0.018922 10 (0.7, 0.3) 0.017542 10
150 0.25923 39 0.19730 38 0.7 0.045011 10 (0.7, 0.3) 0.044049 10
200 0.39142 38 0.33626 37 0.7 0.072017 9 (0.7, 0.7) 0.072017 9
300 0.99464 36 1.0196 36 0.7 0.24692 9 (0.6, 0.1) 0.21801 8

It can be seen in Table 1 that if we take the optimal parameters ω and r, the AOR
method and SOR method are more effective than the Jacobi method and Gauss–Seidel
method for solving TAVE (1) with n = 3, 5, 10, 30, 50, 100, 150, 200, and 300. In particular,
the AOR method is optimal. Furthermore, we found that the number of iteration steps
decreases as n (n ≥ 5) increases in these four methods. Therefore, our algorithm may be
more efficient for solving the large-scale problems.

Example 3. Let B ∈ R[4,n] be generated randomly by MATLAB and

s = 1 + (1 + 0.01) max
i=1,2,··· ,n

(Be3)i,

where, e = (1, 1, . . . , 1)T ∈ Rn. Let A = (ai1i2i3i4), Ã = sI4 −B = (ãi1i2i3i4), and

ai1i2i3i4 = (−1)i1+i2+i3+i4 · ãi1i2i3i4 , 1 ≤ i1, i2, i3, i4 ≤ n.

The right-hand side is b = e.

It is easy to see that s > ρ(B) + 1, 〈A〉 = Ã, so A − I4 is an H+-tensor. We took
the initial value x0 = ( 1

n+1 , 1
n+1 , 1

n+1 , 1
n+1 )

T . We took the values of ω from 0.1 to 1.0 with
intervals of 0.1 and the values of r from 0 to ω with intervals of 0.1. For different ω and r,
we solved TAVE (1) with n = 4, 10, 30, and 50 by Algorithm 1. All numerical results are
depicted in Figure 2, and the numerical results under the optimal parameters ω and r are
shown in Table 2.
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Figure 2. The numerical results of Example 3. (a) n = 4; (b) n = 10; (c) n = 30; (d) n = 50.

Table 2. The numerical results of Example 3 with optimal parameters ω and r.

n
AOR

(ω,r) CPU(s) IT

4 (1.0, 0.9) 0.0075531 9
10 (1.0, 0.2) 0.0042066 5
30 (1.0, 0.4) 0.0049098 3
50 (1.0, 0.1) 0.017581 3

Figure 2 and Table 2 show that Algorithm 1 is efficient for solving TAVE (1) when
A is a 4-order H+-tensor. In Figure 2, the minimum CPU time is represented by “#” for
n = 4, 10, 30, and 50. We observe that Algorithm 1 performs more efficiently as ω increases,
and reaches the optimum when ω = 1.0.

5. Conclusions

In this paper, a tensor splitting AOR iterative method was presented to solve the
H+-tensor absolute value equation. The convergence of the new method was analyzed.
Some numerical examples verified the effectiveness of the new method. In the future, we
will explore theoretical optimal parameters for our algorithm, and study more efficient
algorithms for solving TAVE (1). Our AOR iterative method may be applied to control
problems [24–28], which will be research by our team in future.
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