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Abstract: Regular semigroups and their structures are the most wonderful part of semigroup theory,
and the contents are very rich. In order to explore more regular semigroups, this paper extends
the relevant classical conclusions from a new perspective: by transforming the positions of the
elements in the regularity conditions, some new regularity conditions (collectively referred to as
transposition regularity) are obtained, and the concepts of various transposition regular semigroups
are introduced (L1/L2/L3, R1/R2/R3-transposition regular semigroups, etc.). Their relations with
completely regular semigroups and left (right) regular semigroups, proposed by Clifford and Preston,
are analyzed. Their properties and structures are studied from the aspects of idempotents, local
identity elements, local inverse elements, subsemigroups and so on. Their decomposition theorems
are proved respectively, and some new necessary and sufficient conditions for semigroups to become
completely regular semigroups are obtained.

Keywords: regular semigroups; transposition regular semigroups; decomposition theorems;
completely regular semigroups

MSC: 20M10 and 20M17

1. Introduction

Regularity was first proposed by J. V. Neumann when studying ring theory (see [1]);
W. D. Munn and R. Penrose formally proposed the concepts of regular semigroups (see [2]),
and then regular semigroups became an important research direction (see [3–12]). Many
important subclasses of regular semigroups (for example, completely regular semigroups,
inverse semigroups, orthodox semigroups, locally inverse semigroups, etc.) (see [13–22])
have been proposed one after another, and their structures have been deeply revealed.
In particular, as a group union semigroup, completely regular semigroups have been
deeply studied and widely used, and have become the most wonderful content of regular
semigroups.

In 1961, Clifford and Preston proposed the concept of left (right) regular semigroups,
which are the generalizations of regular semigroups in their monograph (see [4]). In this
paper, it is proved that the necessary and sufficient condition for a semigroup to be a
completely regular semigroup is that it is both a left regular semigroup and a right regular
semigroup. Kiss generalized left (right) regular element of semigroups in 1972 (see [23]).
Anjaneyulu proved that in a duo semigroup S, the set of all left regular elements and the set
of all right regular elements coincide (see [24]). In [25], the ideals and principal ideals of left
(right) regular semigroups were studied. In addition, regular semigroups have many forms
of generalization, which are collectively referred to as generalized regular semigroups, such
as eventually regular semigroups (or π-regular semigroups; see [26]), abundant semigroups
(see [27,28]), superabundant semigroups (see [29]), and so on. The following figure shows
that the relationships among existing associative structures to have a clearer understanding
of the existing algebraic structure.
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In Figure 1, the yellow triangle represents a regular semigroup, the red triangle repre-
sents a left regular semigroup and the black triangle represents a right regular semigroup.
Their common part is the completely regular semigroup.

Figure 1. The relationship among various associative algebras.

Clifford and Preston proposed xaa = a, which is the concept of the left regular element,
and aax = a, which is the concept of the right regular element; the structures of the regular
semigroup, left (right) regular semigroup and completely regular semigroup are very
clear. Firstly, we combine the left regular element and regular element, and an equation
is obtained: xaa = a = axa. In terms of the condition, this equation is stronger than the
completely regular element. However, from the definition point of view, it is uncertain
whether there are completely regular elements that do not satisfy this equation. In this
paper, we define this equation as a L1-transposition regular element, and L1-transposition
regular semigroups are obtained: the composition theorem of the L1-transposition regular
semigroup is proved, and it is equivalent to the completely regular semigroup. That is to
say, there is no case that the completely regular element does not satisfy that equation. So
far, a new equation expressing the completely regular elements appears. In a similar way,
we obtain the R1-transposition regular semigroup and LR-transposition regular semigroup.

By exchanging the regularity equation and combining the regularity condition and
uniqueness, we obtain a new equation: there exists unique x such that axa = a and
xxaa = xa. According to the condition, this equation is stronger than the completely
regular element. However, it is uncertain whether there are completely regular elements
that do not satisfy this equation from the definition. In this paper, we define this equation
as the L2-transposition regular element, and the structure of the L2-transposition regular
semigroup is characterized: It is equivalent to a group. That is, there are completely regular
elements that do not satisfy this equation. We obtain a new equation representing the
group. Similarly, we obtain the R2-transposition regular semigroup.

Finally, an equation is acquired by adding uniqueness on the left regular condition:
there exists unique x such that xaa = a. Clearly, it is stronger than the left regular condition.
The completely regular condition is stronger than left regular condition. However, it is
not clear whether this equation is stronger than the completely regular condition. So we
define this equation as an L3-transposition regular element. According to the structure
theorem of the L3-transposition regular semigroup, the L3-transposition regular semigroup
is stronger than the completely semigroup and generalized group. So far, a subclass of
completely regular semigroups is obtained. In the same measure, the R3-transposition
regular semigroup is acquired. The conditions satisfied by each transposition regular
semigroup are shown in Table 1.
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Table 1. These are various transposition regularities.

Transposition Regularity axa = a xaa = a aax = a (x(xa))a =
xa

a((ax)x) =
ax Uniqueness

L1
√ √

R1
√ √

LR
√ √

L2
√ √ √

R2
√ √ √

L3
√ √

R3
√ √

2. Preliminaries

Firstly, we introduce Green’s equivalences of a semigroup.
If a is an element of semigroup S, the smallest left ideal of S containing a is Sa ∪ {a},

denoted by S1a. We shall call it the principal left ideal generated by a. An equivalence L
on S is defined by the rule that aLb if, and only if, a and b generate the same principal left
ideal, that is, if and only if S1a = S1b.

Similarly, we define the equivalenceR by the rule that aRb if, and only if, aS1 = bS1.
An alternative characterization, making the “mutual divisibility” aspect of these

equivalences more apparent, is given in the following proposition:

Proposition 1 ([3]). Let a and b be elements of a semigroup S. Then, aLb if, and only if, there
exists x and y in S1 such that xa = b and yb = a. Additionally, aRb if, and only if, there exists u
and v in S1 such that au = b and bv = a.

Since the intersection of L and R is of great importance in the development of the
theory, we reserve for it the letterH.

We now define

S1 =

{
S if S has an identity element,
S ∪ {1} otherwise.

We refer to S1 as the monoid obtained from S by adjointing an identity if necessary.

Definition 1 ([1]). Element a of a semigroup S is said to be regular if there exists x in S such that
axa = a. The semigroup S is said to be regular if all its elements are regular.

Definition 2 ([3]). A semigroup S is said to be completely regular if there exists a unary operation
a 7→ a−1 on S with the properties

(a−1)−1 = a, aa−1a = a, aa−1 = a−1a.

Theorem 1 ([3]). Let S be a semigroup. Then, the following statements are equivalent:

(1) S is completely regular;
(2) Every element of S lies in a subgroup of S;
(3) EveryH-class in S is a group.

Definition 3 ([3]). A Clifford semigroup is defined as a completely regular semigroup (S, µ,−1 ) in
which, for all x,y in S,

(xx−1)(yy−1) = (yy−1)(xx−1).

In an arbitrary semigroup S, let us say that an element c is central if sc = cs for every s in S.
The set of central elements forms a subsemigroup of S, which is said to be the center of S.
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Definition 4 ([30]). A generalized group (G, ∗) is a non-empty set admitting a binary operation ∗
said to be multiplication subject to the set of rules given below:

(1) (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x,y,z ∈ G;
(2) For each x ∈ G, there exists a unique e(x) ∈ G such that x ∗ e(x) = e(x) ∗ x = x;
(3) For each x ∈ G, there exists x−1 ∈ G such that x ∗ x−1 = x−1 ∗ x = e(x).

Theorem 2 ([30]). For each element x in a generalized group (G, ∗), there exists a unique x−1 ∈ G.

Theorem 3 ([30]). Let (G, ∗) be a generalized group. If x ∗ y=y ∗ x for all x, y ∈ G, then G is
a group.

Definition 5 ([1]). An element a of a semigroup S is said to be left regular if there exists x in S
such that xaa = a. The semigroup S is said to be left regular if all its elements are left regular.

Definition 6 ([1]). An element a of a semigroup S is said to be right regular if there exists x in S
such that aax = a. The semigroup S is said to be right regular if all its elements are right regular.

Theorem 4 ([25]). Let S be left(right) regular semigroup. Then the following conditions are
equivalent:

(1) S is completely regular semigroup;
(2) S is regular semigroup;
(3) S is π-regular semigroup;
(4) S is completely π-regular semigroup;
(5) S is right(left) regular semigroup.

3. L1-Transposition Regular Semigroup and R1-Transposition Regular Semigroup

Definition 7. Let G be a groupoid, a ∈ G.

(1) If there exists e ∈ G such that ea = a(ae = a), e is said to be a local left (right) identity
element of a. e is said to be a local identity element if e is both a local left identity element and
local right identity element.

(2) Let e be a local left identity element/right identity element/identity element of a. If there exists
b such that ba = e(ab = e), b is said to be a local left(right) inverse element of a relative to e.
b is a local inverse element of a relative to e if b is both a local left inverse element of a relative
to e and local right inverse element of a relative to e.

Definition 8. Let G be a semigroup, a ∈ G. a is a L1-transposition regular element of G if ∃p ∈ G
s.t. paa = a = apa. The semigroup G is said to be L1-transposition regular if all its elements are
L1-transposition regular.

Remark 1. The L1-transposition regular semigroup is both a left regular semigroup and right
regular semigroup. According to Theorem 4, the L1-transposition regular semigroup is a completely
regular semigroup.

Definition 9. Let G be a semigroup, a ∈ G. a is a strong L1-transposition regular element of G if
a is a L1-transposition regular element and ∃x ∈ G, s.t. ax = pa. a is a stubborn L1-transposition
regular element of G if a is a L1-transposition regular element and ∀x ∈ G, ax 6= pa.

Example 1 shows that not every L1-transposition regular element is a strong L1-
transposition regular element.

Example 1. Let X = N∗ (N∗ represents positive integer set) and G be the set of all mappings of
X; the operation on G is the composition operation of mappings. Clearly, the identity mapping is
the identity of G. Let

f : X → X
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x 7→ x2, ∀x ∈ X.

Then f ∈ G. Let
g : X → X

x 7→ [
√

x], ∀x ∈ X.

where [] is the rounding function, then g is the surjection, and g ∈ G. ∀x ∈ X, there is

(g f )(x) = g( f (x)) = [
√

x2] = x

which is the identity mapping, and g f f = f = f g f ; then, f is a L1-transposition regular element.
However, ∀x ∈ X, there does not exist a mapping h(x) ∈ G such that ( f h)(x) = (g f )(x), that is,
f is not a strong L1-transposition regular element.

Proposition 2. Let G be a L1-transposition regular semigroup. ∀a ∈ G, ∃p ∈ G s.t. paa = a =
apa. Let e = pa. Then ∀n ∈ N∗,

(1) ean = ane = an, pnan = e;
(2) e is idempotent.

Proof.

(1) According to paa = a = apa,e = pa, we know ea = a = ae. So

ean = (ea)an−1 = aan−1 = an, ane = an−1(ae) = an−1a = an.

pnan = pn−1(paa)an−2 = pn−1aan−2 = pn−1an−1 = ... = p2a2 = ppaa = pa = e.

(2) According to associative law,

ee = (pa)e = p(ae) = pa = e.

So e is idempotent.

Proposition 3. Let G be a L1-transposition regular semigroup, then e is an idempotent of G. Let

Ge={a ∈ G|ea = a = ae, and ∃p ∈ G s.t. e = pa}

Then

(1) Ge is a submonoid of G;

(2) If Ge has a finite number of elements. Then Ge is a subgroup of G.

Proof.

(1) Clearly, e ∈ Ge, that is, Ge is non-empty.

Let a, b ∈ Ge. Then ea = a = ae, eb = b = be. And ∃p, q ∈ G, s.t. pa = e, qb = e. Then

(ab)e = a(be) = ab, e(ab) = (ea)b = ab;

(qp)(ab) = q(pa)b = qeb = q(eb) = qb = e.

That means ab ∈ Ge, then Ge is a submonoid of G.

(2) Let G have a finite number of elements. If G has an element, then G = {e} is a singleton
group.

If |G| > 1, for any a ∈ Ge, and a 6= e, then according to (1), a, aa, aaa, ...an ∈ Ge
(∀n ∈ N∗). Because Ge has a finite number of elements, then there must exist n, k ∈ N∗

such that an = an+k. According to the definition of Ge, ∃x ∈ G s.t. xan = e. So

e = xan = xan+k = (xan)ak = eak = ak.
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Because a 6= e, then k 6= 1. So, e = ak = aak−1. This means that for any a ∈ Ge, a 6= e,
a = ae and there is a right inverse element of a. So Ge is a group.

Proposition 4. S is a semigroup, and a is a L1-transposition regular element in S. Let

P(a) = {p|paa = a = apa, p ∈ S}

Then the following conditions are equivalent:

(1) There is an idempotent element in P(a);
(2) ∃p ∈ P(a) such that pa = a;
(3) a is idempotent;
(4) P(a) is a subsemigroup of S.

Proof. (1)⇒(2) Let p ∈ P(a) and p2 = p. Then paa = a. Multiply both ends left by p, and
there is ppaa = pa. Because p is idempotent, ppaa = paa = pa, that is, pa = a.

(2)⇒(3) Let p ∈ P(a) and pa = a, then paa = a, that is, (pa)a = aa = a. So a2 = a.
(3)⇒(4) ∀p, q ∈ P(a), then

(pq)aa = p(qaa) = pa = paa = a,

a(pq)a = apqaa = ap(qaa) = apa = a.

Then pq ∈ P(a). That is, P(a) is a subsemigroup of S.
(4)⇒(1) ∀p, q ∈ P(a), then pq ∈ P(a), so a = pqaa = p(qaa) = pa.aa = (pa)a = a.

Then a is idempotent, that is, there is an idempotent element in P(a).

Theorem 5. Let G be a L1-transposition regular semigroup. Define the binary operation ≈ on G
as follows:

a ≈ b⇔ ea = eb, ∀a, b ∈ G,

where ea is a local identity element of a. Then we have the following:

(1) The binary operation ≈ on G is the equivalence relation, and we denote the equivalence class
contained x by [x]≈;

(2) ∀x ∈ G, [x]≈ is a subgroup;
(3) G =

⋃
x∈G

[x]≈, that is, every L1-transposition regular semigroup is the disjoint union of

subgroups;
(4) G is a completely regular semigroup.

Proof.

(1) Clearly, ∀x ∈ G, ex = ex. That is, x ≈ x.

Assume that x ≈ y, then ex = ey, and ey = ex. So y ≈ x.
If x ≈ y and y ≈ z, then ex = ey, and ex = ey. Clearly, ex = ez. That is, x ≈ z. So ≈ is

an equivalence relation on G.

(2) ∀a, b ∈ [x]≈, assume that ea = eb = e. Assume that there exist p, q ∈ G such that
paa = a = apa, qbb = b = bqb. Then, ea = a = ae, pa = e, eb = b = be, and qb = e. So

e(ab) = (ea)b = ab, (ab)e = a(be) = ab.

That is, ab ∈ [x]≈.
Because a ∈ [x]≈, and ee = e. Then e ∈ [x]≈.
Because

(epe)e = ep(ee) = epe, e(epe) = (ee)pe = epe.

Then epe ∈ [x]≈.
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(epe)a = ep(ea) = epa = e(pa) = ee = e, that is, epe is a local left inverse element of a
relative to e. According to the definition of group, [x]≈ is a subgroup of G.

(3) According to (2), epe is a local right inverse element of a relative to e, that is, a(epe) = e.
Let q = epe, then ea = a = ae, aq = e = qa. Assume that the local identity element of
a is not unique, and there exist f , m ∈ G such that f a = a = a f , ma = f = am. Then

e f = (qa) f = q(a f ) = qa = e, e f = e(am) = (ea)m = am = f .

That is, e = f . That is to say, the local identity element of a is unique. So
⋂

x∈G
[x]≈ = ∅,

and G =
⋃

x∈G
[x]≈. That is, every L1-transposition regular semigroup is the disjoint union

of subgroups.

(4) According to (3), G is the disjoint union of groups. According to Theorem 1, G is the
completely regular semigroup.

Definition 10. Let G be a semigroup, ∃a ∈ G. a is a R1-transposition regular element of G if
∃p ∈ G s.t. apa = a = aap. The semigroup G is said to be R1-transposition regular if all its
elements are R1-transposition regular.

Remark 2. The R1-transposition regular semigroup is both a right regular semigroup and regular
semigroup. According to Theorem 4, the R1-transposition regular semigroup is a completely regular
semigroup.

Definition 11. Let G be a semigroup, a ∈ G. a is a strong R1-transposition regular element of G if
a is a R1-transposition regular element and ∃x ∈ G, s.t. xa = ap. a is a stubborn R1-transposition
regular element of G if a is a R1-transposition regular element and ∀x ∈ G, xa 6= ap.

Example 2 shows not every R1-transposition regular element is a strong R1-transposition
regular element.

Example 2. In Example 1,

(g f )(x) = g( f (x)) = [
√

x2] = x

is the identity mapping, and gg f = g = g f g, then g is a R1-transposition regular element.
However, ∀x ∈ X, there does not exist a mapping l(x) ∈ G such that (lg)(x) = (g f )(x), that is,
g is not a strong R1-transposition regular element.

Proposition 5. Let G be a R1-transposition regular semigroup. ∀a ∈ G, ∃p ∈ G s.t. apa = a =
aap. Let e = pa. Then ∀n ∈ N∗,

(1) ean = ane = an, an pn = e;
(2) e is idempotent.

Proof.

(1) According to apa = a = aap, e = pa, we know ea = a = ae. So

ean = (ea)an−1 = aan−1 = an, ane = an−1(ae) = an−1a = an.

an pn = an−2(aap)pn−1 = an−2apn−1 = an−1 pn−1 = ... = a2 p2 = aapp = ap = e.

(2) According to the associative law,

ee = e(ap) = (ea)p = ap = e

So e is idempotent.
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Theorem 6. Let G be a R1-transposition regular semigroup. Define the binary operation ≈ on G
as follows:

a ≈ b⇔ ea = eb, ∀a, b ∈ G,

where ea is the local identity element of a. Then we have the following:

(1) The binary operation ≈ on G is equivalence relation, and we denote the equivalence class
contained x by [x]≈;

(2) ∀x ∈ G, [x]≈ is a subgroup;
(3) G =

⋃
x∈G

[x]≈, that is, every R1-transposition regular semigroup is the disjoint union of sub-

groups;
(4) G is a completely regular semigroup.

Proof.

(1) Clearly, ∀x ∈ G, ex = ex. That is, x ≈ x.

Assume that x ≈ y, then ex = ey, and ey = ex. So y ≈ x.
If x ≈ y and y ≈ z, then ex = ey, and ex = ey. Clearly, ex = ez. That is, x ≈ z. So ≈ is a

equivalence relation on G.

(2) ∀a, b ∈ [x]≈, assume that ea = eb = e. Assume that there exist p, q ∈ G such that
apa = a = aap, bqb = b = bbq. Then ea = a = ae, ap = e, eb = b = be, and bq = e. So

e(ab) = (ea)b = ab, (ab)e = a(be) = ab.

That is, ab ∈ [x]≈.
Because ∀a ∈ [x]≈, and ee = e(ap) = (ea)p = ap = e. Then e ∈ [x]≈.
Because

(epe)e = ep(ee) = epe, e(epe) = (ee)pe = epe.

Then epe ∈ [x]≈.
a(epe) = (ae)pe = ape = (ap)e = ee = e, that is, epe is the local right inverse element

of a relative to e. According to the definition of the group, [x]≈ is the subgroup of G.

(3) According to (2), epe is the local left inverse element of a relative to e, that is, (epe)a = e.
Let q = epe, then ea = a = ae, aq = e = qa. Assume that the local identity element of
a is not unique, and there exist f , m ∈ G such that f a = a = a f , ma = f = am. Then

e f = (qa) f = q(a f ) = qa = e, e f = e(am) = (ea)m = am = f .

That is, e = f . That is to say, the local identity element of a is unique. So
⋂

x∈G
[x]≈ = ∅,

and G =
⋃

x∈G
[x]≈. That is, every R1-transposition regular semigroup is the disjoint union

of subgroups.

(4) According to (3), G is the disjoint union of groups. According to Theorem 1, G is a
completely regular semigroup.

4. LR-Transposition Regular Semigroup and Completely Regular Semigroup

Definition 12. Let G be a semigroup, ∃a ∈ G. a is a LR-transposition regular element of G if
∃p, q ∈ G s.t. paa = a = aaq. The semigroup G is said to be LR-transposition regular if all its
elements are LR-transposition regular.

Remark 3. The LR-transposition regular semigroup is both a left regular semigroup and right
regular semigroup. According to Theorem 4, the LR-transposition regular semigroup is a completely
regular semigroup.
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Proposition 6. Let G be a LR-transposition regular semigroup. For any element a in G, ∃p, q ∈ G
such that paa = a = aaq. Then pa = aq.

Proof. Let G be a LR-transposition regular semigroup. For any element a in G, pa =
p(aaq) = (paa)q = aq.

Theorem 7. Let G be a LR-transposition regular semigroup. For any a in G, we have the following:

(1) The local identity element of a is idempotent;
(2) The local identity element of a is unique.

Proof.

(1) Let G be a LR-transposition regular semigroup. For any a in G, ∃p, q ∈ G, s.t. paa =
a = aaq. According to Proposition 6, pa = aq. Let pa = e = aq, there is

ee = (pa)e = p(ae) = pa = e.

That is to say, the local identity element of a is idempotent.

(2) Assume that local identity element of a is not unique, and there exist e, p, q, f , m, n ∈ G
such that ea = a = ae, pa = e = aq. f a = a = a f , ma = f = an. Additionally,

f e = (ma)e = m(ae) = ma = f , f e = f (aq) = ( f a)q = aq = e.

That is, e = f . That is to say, the local identity element of a is unique.

Theorem 8. Let S be a semigroup. Then the following conditions are equivalent:

(1) a is a strong L1-transposition regular element, a ∈ S;
(2) a is a strong R1-transposition regular element, a ∈ S;
(3) a is a LR-transposition regular element, a ∈ S.

Proof. (1)⇒(2) Let S be semigroup, a ∈ S. Assume that a is a strong L1-transposition
regular element, then ∃p ∈ S s.t. paa = a = apa, and ∃x ∈ S s.t. ax = pa. That
is, axa = a = aax. According to Definitions 10 and 11, a is a strong R1-transposition
regular element.

(2)⇒(3) Let S be semigroup, a ∈ S. Assume that a is a strong R1-transposition regular
element, then ∃p ∈ S s.t. apa = a = aap, and ∃x ∈ S s.t. xa = ap. That is, xaa = (ap)a = a.
That is, xaa = a = aap. According to Definition 12, a is a LR-transposition regular element.

(3)⇒(1) Let S be semigroup, a ∈ S. Assume that a is a LR-transposition regular
element, then ∃p, q ∈ S s.t. paa = a = aaq, and pa = p(aaq) = (paa)q = aq. Then
(pa)a = a = a(pa), and pa = aq. According to Definition 8 and Definition 9, a is a strong
L1-transposition regular element.

According to Theorem 4, the L1-transposition regular semigroup, R1-transposition
regular semigroup, LR-transposition regular semigroup and completely regular semigroup
are equivalent to one another. The following theorem starts with the elements and proves
their equivalence.

Theorem 9. Let S be a semigroup. Then the following conditions are equivalent:

(1) S is a L1-transposition regular semigroup;
(2) S is a R1-transposition regular semigroup;
(3) S is a LR-transposition regular semigroup;
(4) S is a completely regular semigroup.

Proof. (1)⇒(2) Let S be a L1-transposition regular semigroup. According to Theorem 5,
for any a in S, ∃p, e ∈ S s.t. ea = a = ae, (epe)a = e = a(epe). Let q = epe, then
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qa = e = aq, that is to say, aqa = a = aaq. According to Definition 10, S is a R1-transposition
regular semigroup.

(2)⇒(3) Let S be a R1-transposition regular semigroup. According to Theorem 6,
for any a in S, ∃p, e ∈ S s.t. ea = a = ae, (epe)a = e = a(epe). Let q = epe, then qa = e = aq
and qaa = a = aaq. According to Definition 12, S is a LR-transposition regular semigroup.

(3)⇒(4) Let S be a LR-transposition regular semigroup. For any a in S, ∃p, q ∈ S such
that paa = a = aaq, then pa = p(aaq) = (paa)q = aq.

Let a−1 = paq,

aa−1a = a(paq)a = a(aqp)a = apa = aaq = a,

a−1aa−1 = (paq)a(paq) = p(aq)apaq = ppaapaq = papaq = paaqq = paq = a−1,

aa−1 = a(paq) = apaq = paaq = aq, a−1a = (paq)a = ppaa = pa.

Because pa = aq, then aa−1 = a−1a. According to Definition 2, S is a completely
regular semigroup.

(4)⇒(1) Let S be a completely regular semigroup. For any a in S, ∃a−1 ∈ S s.t.
aa−1a = a, (a−1)−1 = a and aa−1 = a−1a. Let p = a−1. Then

paa = a−1aa = aa−1a = a,

apa = aa−1a = a.

That is, paa = a = apa. According to Definition 8, S is a L1-transposition regular
semigroup.

According to Theorems 8 and 9, L1, strong L1, R1, strong R1, and LR-transposition
regular semigroups are equivalent to completely regular semigroups. However, not every
L1(R1)-transposition regular element is a strong L1(R1)-transposition regular element; see
Examples 1 and 2.

According to Definition 4, the generalized group is the L1/R1/LR-transposition reg-
ular semigroup. However, not every L1/R1/LR-transposition regular semigroup is the
generalized group; see Example 3.

Example 3. Let G = {a, b, c, d}. The operation on G is shown in Table 2. Clearly, G is the
L1/R1/LR-transposition regular semigroup since a ∗ a = a, b ∗ b = b, c ∗ c = c, and d ∗ d = d.

Table 2. This is an L1/R1/LR-transposition regular semigroup.

∗ a b c d

a a a a a
b b b b b
c c c c c
d d d d d

However, G is not the generalized group since c ∗ d = d = d ∗ c, d ∗ d = d and c 6= d.

Proposition 7. Let a be a L1(R1/LR)-transposition regular element of semigroup S. Then Ha is a
subgroup of S.

Proof. Let S be a semigroup and a be a L1-transposition regular element of S. Then there
exist p ∈ S s.t. paa = a = apa. ∀b ∈ Ha, there exists x, y, u, v ∈ S1 s.t. ua = b, vb = a, ax = b,
by = a. Thus,

b = ua = uapa = bpa,

b = ax = paax = pab.
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∀b ∈ Ha, pa is an identity element of b. Then

b = ua = uapa = bpa = bp(vb) = b(pv)b,

b = ax = paax = pab = p(vb)b = (pv)bb.

So b is a L1-transposition regular semigroup. Because b is arbitrary, every element of Ha is
a L1-transposition regular element. That is to say, Ha is a L1-transposition regular semigroup.
According to the above, there exists identity element pa of Ha, and pa = p(vb) = (pv)b. That
is, ∀b ∈ Ha, there exists left inverse element pv s.t. (pv)b = pa. According to the definition
of group, Ha is a subgroup of S. In a similar way, if a is a R1/LR-transposition regular
element, the same conclusions are obtained.

5. L2-Transposition Regular Semigroup and R2-Transposition Regular Semigroup

Definition 13. Let G be a semigroup, a ∈ G. a is a L2-transposition regular element of G if there
exists a unique x ∈ G s.t.

axa = a and xxaa = xa.

The semigroup G is said to be L2-transposition regular if all its elements are L2-transposition
regular. a is a R2-transposition regular element of G if there exists a unique x ∈ G s.t.

axa = a and aaxx = ax.

The semigroup G is said to be a R2-transposition regular if all its elements are R2-transposition
regular.

Proposition 8. Let G be a L2-transposition regular semigroup. ∀a ∈ G, there exists a unique
x ∈ G s.t. axa = a and xxaa = xa. Let xa = e. Then xe = x = ex.

Proof. According to xa = e, ae = e, xxaa = x(xa)a = xea = xa = e. So

ee = (xa)e = x(ae) = xa = e.

That is, the local right identity element e of a is idempotent.
Additionally,

a(xe)a = a(xea) = axa = a, and (xe)(xe)aa = (xe)(xea)a = (xe)ea = x(ee)a = (xe)a.

Then a(xe)a = a, and (xe)(xe)aa = (xe)a. Then xe = x since x is unique.

a(ex)a = (ae)xa = axa = a, and (ex)(ex)aa = e(xe)xaa = e(xxaa) = e(xa) = ee = e.

Then a(ex)a = a, (ex)(ex)aa = (ex)a. Then ex = x since x is unique. That is,
ex = x = xe.

Proposition 9. Let G be a R2-transposition regular semigroup. ∀a ∈ G, there exists a unique
x ∈ G s.t. axa = a and aaxx = ax. Let ax = e. Then xe = x = ex.

The proof is similar to Proposition 8.

Theorem 10. Let G be a semigroup. It is a L2-transposition regular semigroup or R2-transposition
regular semigroup if, and only if, it is a group.

Proof. (⇒) Let G be a L2-transposition regular semigroup. ∀a ∈ G, there exists a unique
x ∈ G s.t. axa = a and xxaa = xa. Let xa = e. Then ae = a, xea = xa = e.

Let Ge be a subset of all elements of G whose local right identity element is e.
Let a, b ∈ Ge, then ae = a, be = b. Then

(ab)e = a(be) = ab.
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That is, ab ∈ Ge.
Clearly, Ge satisfies the associative law, that is, Ge is a subgroup of G.
Because

ee = (xa)e = x(ae) = xa = e,

e ∈ Ge.
Let a ∈ Ge, there exists a unique x ∈ G such that axa = a and xxaa = xa. According

to the proposition, xe = x. So x ∈ Ge.
Because x is unique, xa = e is unique. ∀a ∈ Ge, ∃a′, a′′ ∈ Ge, s.t. ae = a, a′a = e.

a′e = a′, a′′a′ = e. a′′e = a′′. Then

ea = a′′a′a = a′′(a′a) = a′′e = a′′.

Then
a′(aa′) = (a′a)a′ = ea′ = a′′a′a′ = eaa′a′,

So ea′ = eaa′a′.
Multiply both ends right by a,

left=ea′a = e(a′a) = ee = e.

right=eaa′a′a = eaa′e = ea(a′e) = eaa′.

Then, because e is unique, aa′ = e.
At the same time,

ea = aa′a = a(a′a) = ae = a.

So in Ge, ea = a = ae, a′a = e = aa′. Then Ge is a subgroup of G. Because the identity
element is unique, then ∀i, j ∈ I, Gi

⋂
i 6=j

Gj = ∅, where I is the index set. Then G is the

disjoint union of groups, according to Theorem 1, and G is a completely regular semigroup.
Because G is a L2-transposition regular semigroup, G =

⋃
n∈I

Gn, and ∀i, j ∈ I, Gi
⋂

i 6=j
Gj = ∅,

where Gn is a subgroup of G, I is the index set. ∀m, n ∈ I and m 6= n, Gm, Gn is a
subgroup of G, respectively, em, en is the identity element of Gm, Gn respectively, then
emem = em, enen = en. Assume that emen = p, where p ∈ Ge, e is an identity element of Ge,
and p−1 is an inverse element of p relative to identity element e. Then,

ee = e, pe = p = ep, pp−1 = e = p−1 p, p−1e = p−1 = ep−1.

So p = emen = ememen = em p, eme = em(pp−1) = (em p)p−1 = pp−1 = e.
Additionally, p = emen = emenen = pen, een = (p−1 p)en = p−1(pen) = p−1 p = e.
Then eeme = e(eme) = ee = e, ememee = eme. and eene = (een)e = ee = e, enenee = ene

because eee = ee = e, and eeee = ee. According to the definition of the L2-transposition
regular semigroup, e = em = en. Then identity elements of all groups in G are equal, that is
to say, there is only an identity element in G. For any elements in G, there exists a unique
inverse element. So G is a group.

In a similar way, if G is a R2-transposition regular semigroup, then G is a group.
(⇐) Let G be a group, and e be an identity of G. ∀a ∈ G, there exists a unique

a−1 ∈ G s.t. aa−1a = ea = a, a−1a−1aa = a−1(a−1a)a = (a−1e)a = a−1a. Then G is a
L2-transposition regular semigroup. In a similar way, G is a R2-transposition regular
semigroup.

6. L3-Transposition Regular Semigroup and R3-Transposition Regular Semigroup

Definition 14. Let G be a semigroup, a ∈ G. a is said to be a L3-transposition regular element of
G if there exists a unique x ∈ G s.t.

xaa = a.
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The semigroup G is said to be L3-transposition regular if all its elements are L3-transposition
regular.

Definition 15. a is said to be a R3-transposition regular element of G if there exists a unique x ∈ G
s.t.

aax = a.

The semigroup G is said to be R3-transposition regular if all its elements are R3-transposition
regular.

Proposition 10. Let G be a semigroup, a ∈ G. Additionally,

xaa = a, x ∈ G.

Then for any positive integer m, there is xmam = xa.

Proof. Because xaa = a, x2a2 = (xx)(aa) = x(xaa) = xa. Assume that xmam = xa and
m > 2, then

xm+1am+1 = (xmx)(aam) = (xmx)(aaam−1) = xm(xaa)am−1 = xmaam−1 = xmam = xa.

According to the mathematical induction, for any positive integer, xmam = xa hold.

Proposition 11. Let G be a L3-transposition regular semigroup. ∀a ∈ G, there exists a unique
x ∈ G s.t. axa = a and xaa = a. Let xa = e. Then xe = x = ex.

Proof. According to xa = e, ea = a, and (xe)aa = x(ea)a = xaa = a. Then, xe = x since x
is unique.

Then (ex)aa = e(xaa) = ea = a. Then ex = x since x is unique. That is, ex = x = xe.

Proposition 12. Let G be a R3-transposition regular semigroup. ∀a ∈ G, there exists a unique
x ∈ G s.t. aax = a. Let ax = e. Then xe = x = ex.

The proof is similar to Proposition 11.

Theorem 11. Let G be a semigroup. If G is a L3-transposition regular semigroup, then it is a
generalized group.

Proof. Let G be a L3-transposition regular semigroup. Then ∀a ∈ G, there exists x ∈ G s.t.
xaa = a.

Let Ge be a subset of all elements of G whose local left identity element is e.

(1) Let a, b ∈ Ge. Then ea = a, eb = b, and e(ab) = (ea)b = ab. So ab ∈ Ge.
(2) Because Ge satisfies the associative law, Ge is a subsemigroup of G.
(3) ee = e(xa) = (ex)a = xa = e. Then e ∈ Ge.
(4) According to Proposition 11, ex = x, that is, x ∈ Ge, and xa = e.

Then Ge is a subgroup of G.
Because x is unique, then xa = e is unique. So G is a union of a disjoint group,

according to Theorem 1, G is a completely regular semigroup. Because the local left inverse
element of a is unique, the local inverse element of a is unique, then G is a generalized
group.

Example 4 shows that not every generalized group is a L3-transposition regular
semigroup.

Example 4. Let G = {a, b, c, d, e}. The operation on G is shown in Table 3. Clearly, (G, ∗) is a
generalized group.
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Table 3. This is a generalized group.

∗ a b c d e

a a b c d e
b a b c d e
c a b c d e
d a b c d e
e a b c d e

However, it is not a L3-transposition regular semigroup since a ∗ a ∗ a = a ∗ a = a, b ∗ a ∗ a =
a ∗ a = a, and a 6= b.

Theorem 12. Let G be a semigroup. If G is a R3-transposition regular semigroup, then it is a
generalized group.

Proof. Let G be a R3-transposition regular semigroup. Then ∀a ∈ G, there exists x ∈ G s.t.
aax = a.

Let Ge be a subset of all elements of G whose local right identity element is e.

(1) Let a, b ∈ Ge. Then ae = a, be = b, and (ab)e = a(be) = ab. So ab ∈ Ge.
(2) Because Ge satisfies the associative law, Ge is a subsemigroup of G.
(3) ee = (ax)e = a(xe) = ax = e. Then e ∈ Ge.
(4) According to Proposition 12, xe = x, that is, x ∈ Ge, and ax = e.

Then Ge is a subgroup of G.
Because x is unique, then ax = e is unique. So G is a union of the disjoint group,

according to Theorem 1, G is a completely regular semigroup. Because the local left inverse
element of a is unique, the local inverse element of a is unique, then G is a generalized
group.

Example 5 shows that not every generalized group is a R3-transposition regular
semigroup.

Example 5. Let G = {a, b, c, d, e}. The operation on G is shown in Table 4. Clearly, (G, ∗) is a
generalized group.

Table 4. This is a generalized group.

∗ a b c d e

a a a a a a
b b b b b b
c c c c c c
d d d d d d
e e e e e e

However, it is not a R3-transposition regular semigroup since a ∗ a ∗ a = a ∗ a = a, a ∗ a ∗ b =
a ∗ b = a, and a 6= b.

Theorem 13. Let G be a semigroup. G is both a L3-transposition regular semigroup and R3-
transposition regular semigroup if, and only if, it is a group.

Proof. Let G be a L3-transposition regular semigroup and R3-transposition regular semi-
group, a ∈ G. There exist unique x, y ∈ G s.t. xaa = a = aay. According to Theorems 11
and 12, xa = ax and ay = ya. There is

xayaa = xa(ya)a = xa(ay)a = x(aay)a = xaa = a,

aaxay = a(ax)ay = a(xa)ay = a(xaa)y = aay = a,
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So xay = x = y. That is, there exists unique x ∈ G s.t. xaa = a = aax. Because identity
element is unique, ∀i, j ∈ I, Gi

⋂
i 6=j

Gj = ∅, where I is the index set. Then G is the union of

the disjoint group, according to Theorem 1, and G is a completely regular semigroup.
Because G is a L3-transposition regular semigroup and R3-transposition regular semi-

group, let G =
⋃

n∈I
Gn, ∀i, j ∈ I, Gi

⋂
i 6=j

Gj = ∅, where Gn is a subgroup of G, and I is the

index set. ∀m, n ∈ I and m 6= n, Gm, Gn is subgroup of G, respectively, and em, en is the
identity element of Gm, Gn respectively, that is, emem = em, enen = en. Assume that emen = p,
where p ∈ Ge, e is the identity element of Ge, and p−1 is the inverse element of p relative to
e. That is,

ee = e, pe = p = ep, pp−1 = e = p−1 p, p−1e = p−1 = ep−1.

Then p = emen = ememen = em p, eme = em(pp−1) = (em p)p−1 = pp−1 = e.
Additionally, p = emen = emenen = pen, een = (p−1 p)en = p−1(pen) = p−1 p = e.
Then emee = eme = e, eeen = een = e. and eene = (een)e = ee = e, enenee = ene because

eee = ee = e. Then e = em = en. The identity elements of all groups in G are equal, that is
to say, there is only an identity element in G. For any elements in G, there exists a unique
inverse element. So G is a group.

(⇐) Let G be a group and e be an identity of G. ∀a ∈ G, there exists a unique a−1 ∈ G
s.t. a−1a = e = aa−1. Then a−1aa = ea = a, aaa−1 = a(aa−1) = ae = a. Then G is a
L3-transposition regular semigroup and R3-transposition regular semigroup.

Above all, the L1/R1/LR-transposition regular semigroup is a completely regular
semigroup, the L2/R2-transposition regular semigroup is a group and semigroup which are
both L3-transposition regular semigroups, and the R3-transposition regular semigroup is a
group. Figure 2 shows the relationships among various transposition regular semigroups.

Example 4 shows that not every generalized group is a L3-transposition semigroup.
Example 5 shows that not every generalized group is a R3-transposition semigroup.
Example 3 shows that not every L1/R1/LR-transposition semigroup is a generalized group.

Figure 2. The relationship among various transposition regular semigroups.

7. Discussion

In this paper, some concepts of transposition regular elements and transposition reg-
ular semigroups are introduced, some necessary and sufficient conditions of completely
regular semigroups are obtained, related decomposition theorems of transposition regu-
lar semigroups are given, and some important results are proved: (1) the necessary and
sufficient condition for a semigroup to be a completely regular semigroup is that it is
a L1/R1/LR-transposition regular semigroup; (2) the L2/R2-transposition regular semi-
groups are equivalent to groups; (3) the decomposition theorem of the L3/R3-transposition
regular semigroup is proved—every L3/R3-transposition regular semigroup is a union
of subgroups, and they are generalized groups; and (4) a semigroup which is both a
L3-transposition regular semigroup and R3-transposition regular semigroup is a group.

In Ref. [25], they proved that a semigroup which is left regular semigroup and regular
semigroup is a completely regular semigroup through elements. However, in this paper,
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we firstly prove the composition theorem of L1-transposition regular to prove that it is
equivalent to a completely regular semigroup. This method helps us to understand their
structures clearly. We give some new equation description of a completely regular semi-
group. This helps us to prove that an algebraic structure is a completely regular semigroup,
which requires fewer steps and is more convenient. As the next research topic, we can
explore the relationships among transposition regular semigroups and hypersemigroups
and non-classical logical algebras (see [31–33]).
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