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1. Introduction

In recent decades, relevant theories and applications of fractional differential equa-
tions [1–6] have developed rapidly. Generally, fractional differential equations are derived
from the research of solid mechanics [7], chemistry [8], physics [9,10], electromechanics [11],
finance [12], and so on. Abundant theoretical achievements have been made in the study
of the existence and uniqueness of fractional differential equations by applying the fixed-
pointed theorem, such as [12–16]. However, there are few articles in the research and
application of fractional differential equations with time delay. The delay factor has an
important influence on the solution to the fractional differential system. The change of
the system solution not only depends on the present state but also is constrained by the
past state. Therefore, it is of great significance to consider the delay effect on a fractional
differential system. In [17], the authors discussed the stability of fractional differential
equations with delay evolution inclusion. Li et al. [18] derived a comparison principle for
functional differential equations with infinite delays. Additionally, note that the Hyers–
Ulam stability property of delay differential equations can be mainly considered by the
Gronwall inequality. It is worth mentioning that the mentioned method can be applied
for the stability study of Caputo fractional delay differential equations (see, for example,
in [19–21]).

In [22], Qixiang Dong et al. investigated a kind of weighted fractional differential
equations with infinite delay, which can be expressed by{

Dαy(t) = f (t, ỹt), t ∈ (0, b],
ỹ0 = φ ∈ B,

where α ∈ (0, 1], ỹ(t) = t1−αy(t), Dα represents the Riemann–Liouville fractional derivative,
f : (0, b]×B → B is a given function satisfying some assumptions, and B is the phase
space. A method named weighted delay is applied by the authors to study the properties
of solutions to fractional differential equations whose initial value is not zero.

On the basis of these contents, we study the related properties of solutions to a class of
nonlinear fractional differential equations with infinite delay, namely
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{
cDαy(t)− acDβy(t) = f (t, yt), t ∈ J = [0, b],
y(t) = φ(t), t ∈ (−∞, 0],

(1)

where cDα and cDβ are Caputo fractional derivatives with 0 < β < α 6 1, a is a certain
constant, f : J ×B → R is a given function satisfying some assumptions that will be
specified later, function φ ∈ B, and B is called a phase space, as defined later. Function yt,
which is an element B, is defined as any function y on (−∞, b] as follows:

yt(s) = y(t + s), s ∈ (−∞, 0], t ∈ J. (2)

Here, yt(·) represents the preoperational state from time−∞ up to time t. The notion of
the phase space B plays an important role in the study of both qualitative and quantitative
theories for functional differential equations. A common choice is the seminormed space
satisfying suitable axioms, which was introduced by Hale and Kato [23].

Our approach is largely based on the alternative of Leray–Schauder and Banach fixed-
point theorem. Due to the characteristic of delay equations, we need to give the proper
form of the solutions when discussing the existence and uniqueness, which is one of the
key and difficult points to solve the problem. Generally, delay differential equations can be
transformed into integral equations. Under the definition of phase space, the solutions of
the integral equations can be appropriately extended, and the constructed equations are
still continuous at the point x = 0. Additionally, we study the Hyers–Ulam stability of
fractional differential Equation (1) with infinite delay y(t) = φ(t). Due to the limitation of
delay conditions, the research of the Hyers–Ulam stability becomes more complicated. In
this paper, we verify the Hyers–Ulam stability of delay differential Equation (1) by using
the related properties of phase space and obtain the stability conclusion by means of a class
of Gronwall inequalities.

This paper is organized as follows. In Section 2, some basic mathematical tools
are introduced that are used throughout the article. Section 3 is devoted to our main
conclusions. The stability analysis is discussed in Section 4. Two examples are given at the
end of the article to illustrate the conclusions.

2. Preliminaries and Lemmas

In order to facilitate readers in reading the following contents, we introduce some
basic definitions and lemmas which are used throughout this paper in this section. First and
foremost, we denote C([a, b],R) the Banach space of all continuous functions y : [a, b]→ R
with the norm ‖y‖ = sup{|y(t)|, t ∈ [a, b]}. Additionally, we denote by Cm([0, b];R) the
Banach space of all continuously differentiable functions, with the norm defined as usual.

Definition 1 ([24]). The Riemann–Liouville integral with order α > 0 of the given function
h : [a, b]→ R is defined as

Jα
a h(t) =

1
Γ(α)

∫ t

a
(t− s)α−1h(s)ds, t ∈ [a, b],

provided the other side is point-wisely defined, where Γ(·) is the Euler’s gamma function; i.e,
Γ(z) =

∫ ∞
0 e−ttz−1dt.

Definition 2 ([24]). The Caputo derivative with order α > 0 of the given function h : [a, b]→ R
is defined as

cDα
a h(t) =

1
Γ(m− α)

∫ t

a
(t− s)m−α−1h(m)(s)ds, t ∈ [a, b],

provided the other side is point-wisely defined, where m is a positive integer satisfying m− 1 <
α 6 m. Incidentally, cDα

a is called the Caputo fractional differential operator as well.
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Lemma 1 ([24]). Let α > 0 and m = [α] + 1. Then, the general solution to the fractional differential
equation cDαu(t) = 0 is given by

u(t) = c0 + c1t + c2t2 + · · ·+ cm−1tm−1,

where ci ∈ R, i = 0, 1, 2, · · · , m− 1 are some constants. Further, assuming that u ∈ Cm([0, b];R),
we can get

Jα
cDαu(t) = u(t) + c0 + c1t + c2t2 + · · ·+ cm−1tm−1,

for some ci ∈ R, i = 0, 1, 2, · · · , m− 1.

Definition 3 ([25]). Let X be a Banach space; a linear topological space of functions from (−∞, 0]
into X, with the seminorm ‖ · ‖B , is called an admissible phase space if B has the following
properties:

(A1) There exists a positive constant H and functions K(·), M(·) : [0,+∞)→ [0,+∞), with K
continuous and M locally bounded, such that for any constant a, b ∈ R and b > a, if the
function x : (−∞, b]→ X, xa ∈ B and function x(·) is continuous on [a, b], then for every
t ∈ [a, b], the following conditions (i)–(iii) hold:

(i) xt ∈ B;
(ii) ‖x(t)‖ 6 H‖xt‖B for some H > 0;
(iii) ‖xt‖B 6 K(t− a) supa6s6t ‖x(s)‖+ M(t− a)‖xa‖B .
(A2) For the function x(·) in (A1), t 7→ xt is a B-valued continuous function for t ∈ [a, b].
(B1) The space B is complete.

Lemma 2 ([26] Leray-Schauder alternative). Let X be a Banach space, C ⊂ X be a closed, convex
subset of X, U is an open subset of C and 0 ∈ U . Suppose T : U → C is a continuous, compact (in
other words, T (U ) is a relatively compact subset of C) map. Then, either

(i) T has a fixed point in U , or
(ii) there is a u ∈ ∂U and λ ∈ (0, 1) with u = λT (u).

In general, Gronwall inequality plays a vital role in the study of Hyers–Ulam stability
of differential equations. Next, we introduce an integral inequality which can be considered
as a generalization of the Gronwall inequality.

Lemma 3 ([27]). Suppose α > 0, a > 0, g(t, s) is a nonnegative continuous function defined
on [0, T] × [0, T] with g(t, s) 6 M, and g(t, s) is nondecreasing w.r.t. the first variable and
nonincreasing w.r.t. the second variable. Assume that function u(t) is nonnegative and integrable
on [0, T] with

u(t) 6 a +
∫ t

0
g(t, s)(t− s)α−1u(s)ds, t ∈ [0, T].

Then, we have

u(t) 6 a + a
∫ t

0

∞

∑
n=1

(g(t, s)Γ(α))n

Γ(nα)
(t− s)nα−1ds,

where the notion ”w.r.t.” means “with respect to”.

Lemma 4 ([22]). Suppose α > 0 and function f ∈ C[0, b] is nonnegative and nondecreasing.
Then, function F(t) = Jα

0 f (t) = 1
Γ(α)

∫ t
0 (t− s)α−1 f (s)ds is nondecreasing on [0, b].

Based on the Lemma 4 introduced above, the following inequality is proved to verify
the Hyers–Ulam stability in Section 4.
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Lemma 5. For any nonnegative function ω ∈ C[a, b] and any t ∈ [a, b], we have the following
integral inequality

sup
06τ6t

∫ τ

0
(τ − s)α−1ω(s)ds 6

∫ t

0
(t− s)α−1 sup

06σ6s
ω(σ)ds.

Proof of Lemma 5. Since function ω(·) is nonnegative, sup06σ6s ω(σ) is nondecreasing ,

which implies that the function
∫ t

0 (t− s)α−1 sup06σ6s ω(σ)ds is also nondecreasing , by
Lemma 4. Now, fix t ∈ [a, b]. Then, for any τ ∈ [0, t], we have∫ τ

0
(τ − s)α−1ω(s)ds 6

∫ τ

0
(τ − s)α−1 sup

06σ6s
ω(s)ds

6
∫ t

0
(t− s)α−1 sup

06σ6s
ω(s)ds,

which indicates that

sup
06τ6t

∫ τ

0
(τ − s)α−1ω(s)ds 6

∫ t

0
(t− s)α−1 sup

06σ6s
ω(σ)ds.

Thus, the Lemma is proved.

3. Existence Results

In this section, we prove the existence results for problem (1) by using the alternative
of Leray–Schauder theorem. Further, our results for the unique solution are based on
the Banach contraction principle. Let us start by defining what we mean by a solution of
problem (1). Define the space:

Ω
′
= {y : (−∞, b]→ R : y |(−∞,0]∈ B and y |[0,b] is contiunous}. (3)

It can be easily verified that a function y ∈ Ω
′

is said to be a solution of (1) if y
satisfies (1). For the existence results on (1), we need the following Lemma.

Lemma 6. The solution y of the fractional differential Equation (1) has the following form:

y(t) = aJα−βy(t) + Jα f (t, yt) + θ(t), t ∈ J = [0, b],

where θ(t) = c0

(
atα−β

Γ(α−β+1) − 1
)

is a polynomial type function, and c0 is a certain constant.

Proof of Lemma 6. The proof is an immediate consequence of the Lemma 1.

The following assumptions are essential to the results of existence.

Assumption 1. f : [0, b]×B → R is continuous, and there exists a bounded set W0 ⊂ B such
that f : [0, b]×W0 uniformly continuous.

Assumption 2. There exist function g, l ∈ C(J,R+) such that | f (t, u)| 6 g(t) + l(t)‖u‖B for
t ∈ J and every u ∈ B.

Assumption 3. There exists a nonnegative function η ∈ Lp[0, b] with p > 1
α and a continuously

non-decreasing function Ω : [0,+∞) → [0,+∞) such that | f (t, u)| 6 η(t)Ω(‖u‖B) for t ∈ J
and every u ∈ B.

Assumption 4. There exists a constant L such that | f (t, u)− f (t, v)| 6 L‖u− v‖B for t ∈ J
and every u, v ∈ B.
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Theorem 1. Suppose that Assumptions 1 and 2 hold. Additionally, assume that

|a|bα−β

Γ(α− β + 1)
+

bαKb
Γ(α + 1)

‖l‖ < 1 (4)

holds. Then, the Equation (1) has at least one solution on (−∞, b].

Proof of Theorem 1. According to the content discussed above, we know that y is a solu-
tion to (1) if and only if y satisfies

y(t) =
{

aJα−βy(t) + Jα f (t, yt) + θ(t), t ∈ [0, b],
φ(t), t ∈ (−∞, 0].

For any given function φ : (−∞, 0] that belongs to B, let φ̃ be a function defined by

φ̃(t) =
{

φ(0), t ∈ [0, b],
φ(t), t ∈ (−∞, 0].

For each z ∈ C([0, b],R), we denote by z̃ the function defined by

z̃(t) =
{

z(t)− φ(0), t ∈ [0, b],
0, t ∈ (−∞, 0].

It can be easily seen that if y(·) satisfies the following integral equation

y(t) = aJα−βy(t) + Jα f (t, yt) + θ(t),

we can decompose y(·) as y(t) = φ̃(t) + z̃(t), t ∈ [0, b], which implies that yt = φ̃t + z̃t, for
every t ∈ [0, b], and the function z(·) satisfies

z(t) = aJα−βz(t) + Jα f (t, z̃t + φ̃t) + θ(t).

Set C0 = {z ∈ C
(
[0, b],R

)
: z(0) = φ(0)}. Then C0 is closed, and hence completed.

Define an operator P : C0 → C0 by

(Pz)(t) = aJα−βz(t) + Jα f (t, z̃t + φ̃t) + θ(t). (5)

where t ∈ [0, b]. According to the Schauder’s fixed point theorem, we show that the
operator P is continuous and completely continuous in the following four steps.

Step 1. P is continuous.

Let {zn} be a sequence such that zn → z in C0. Then, we have for each t ∈ [0, b]

|Pzn(t)− Pz(t)| 6 |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|zn(s)− z(s)|ds

+
1

Γ(α)

∫ t

0
(t− s)α−1| f (s, (̃zn)s + φ̃s)− f (s, z̃s + φ̃s)|ds.

Set W0 = {(zn)s : s ∈ [0, b], n > 1} ⊂ B. It can be easily known from Assumption 1
that function f is uniformly continuous in s ∈ [0, t], which implies that ∀ε > 0, ∃δ >
0, s.t ∀z1, z2 ∈ W0, |z1 − z2| < δ, we have | f (s, z1) − f (s, z2)| < ε. Since zn → z, then
∃N > 0, s.t ∀n > N, we have |zn − z| < δ. Hence, for any s ∈ [0, t], we can claim that
| f (s, zn)− f (s, z)| < ε. According to the definition z(t) = z̃(t) + φ̃(t) introduced above, it
follows that | f (s, (̃zn)s + φ̃s)− f (s, z̃s + φ̃s)| < ε, so we get

|Pzn(t)− Pz(t)| 6 |a|bα−β

Γ(α− β + 1)
‖zn − z‖+ bα

Γ(α + 1)
‖ f (s, (̃zn)s + φ̃s)− f (s, z̃s + φ̃s)‖.
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Hence, |Pzn(t)− Pz(t)| → 0 as zn → z, and P is continuous.

Step 2. P maps bounded sets into bounded sets in C0.

Indeed, it is enough to show that for any r > 0 there exists a positive constant ξ such
that for each z ∈ Br = {z ∈ C0 : ‖z‖ 6 r} one has ‖Pz(t)‖ 6 ξ. Let z ∈ Br. Since f is a
continuous function, we have for each t ∈ [0, b]

|Pz(t)| 6 |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|z(s)|ds +

1
Γ(α)

∫ t

0
(t− s)α−1| f (s, z̃s + φ̃s)|ds + |θ(b)|

6
|a|bα−β

Γ(α− β + 1)
‖z‖+ 1

Γ(α)

∫ t

0
(t− s)α−1(g(s) + l(s)‖z̃s + φ̃s‖B

)
ds + |θ(b)|.

According to Definition 3, we can conclude that

‖z̃s + φ̃s‖B 6 ‖z̃s‖B + ‖φ̃s‖B
6 K(s) sup

06τ6s
‖z̃(τ)‖+ M(s)‖z̃0‖B + K(s) sup

06τ6s
‖φ̃(τ)‖+ M(s)‖φ̃0‖B

6 Kb sup
06τ6s

‖z(τ)− φ(0)‖+ Kb‖φ(0)‖+ Mb‖φ‖B

6 Kbr + Kb‖φ(0)‖+ Kb‖φ(0)‖+ Mb‖φ‖B
6 Kbr + 2Kb H‖φ‖B + Mb‖φ‖B
= Kbr +

(
2Kb H + Mb

)
‖φ‖B

:= r0,

where Mb = sup{|M(t)|: t ∈ [a, b]}, Kb = sup{|K(t)|: t ∈ [a, b]} and H is a positive constant.
So we have

|Pz(t)| 6 |a|bα−β

Γ(α− β + 1)
r +

bα‖g‖
Γ(α + 1)

+
bα‖l‖

Γ(α + 1)

(
Kbr +

(
2KbH + Mb

)
‖φ‖B

)
+ |θ(b)| := ξ.

Hence, |Pz(t)| 6 ξ, which implies P maps bounded subsets into bounded subsets
in C0.

Step 3. P maps bounded sets into equicontinuous sets of C0.

Let t1, t2 ∈ [0, b], t1 < t2, and Br be a bounded set of C0 as in Step 2. Let z ∈ Br. Then,
for each t ∈ [0, b], we have

|(Pz)(t2)− (Pz)(t1)|

6
|a|‖z‖

Γ(α− β)

∣∣∣∣∫ t1

0

(
(t2 − s)α−β−1 − (t1 − s)α−β−1

)
ds +

∫ t2

t1

(t− s)α−β−1ds
∣∣∣∣

+
1

Γ(α)

∣∣∣∣ ∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
f (s, z̃s + φ̃s)ds

+
∫ t2

t1

(t− s)α−β−1 f (s, z̃s + φ̃s)ds
∣∣∣∣+ |θ(t2)− θ(t1)|

6
|a|‖z‖

Γ(α− β + 1)

(
t2

α−β − t1
α−β + 2(t2 − t1)

α−β
)

+
‖g‖+ ‖l‖r0

Γ(α + 1)
(t2

α − t1
α + 2(t2 − t1)

α) + |θ(t2)− θ(t1)|.

As t1 → t2, the right-hand side of the above inequality tends to zero, and the equicon-
tinuity for the cases that t1 < t2 6 0 and t1 6 0 6 t2 is obvious.

As a consequence of Steps 1–3, together with the Arzela–Ascoli theorem, we can
conclude that P : C0 → C0 is a completely continuous mapping.
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Step 4. (A priori bounds). There exists an open set U ⊆ C0 with z 6= λP(z) for λ ∈ (0, 1)
and z ∈ ∂U.

According to the condition |a|bα−β

Γ(α−β+1) +
bαKb

Γ(α+1)‖l‖ < 1, we can deduce that there exists
a constant N > 0 such that

|a|bα−β

Γ(α− β + 1)
N +

bαKb
Γ(α + 1)

‖l‖N +
bα

Γ(α + 1)

(
‖g‖+ ‖l‖

(
2KbH + Mb

)
‖φ‖B

)
+ |θ(b)| < N.

Define the set E = {z ∈ C0 : ‖z‖ < N}. Thus, the operator P : E → C0 satisfies the
complete continuity. Assume the equation

z = λPz

holds for some z ∈ E and λ ∈ (0, 1). Then, we obtain

|z(t)| = |λPz(t)| 6 |Pz(t)|

6
|a|bα−β‖z‖

Γ(α− β + 1)
+

bα‖g‖
Γ(α + 1)

+
bα‖l‖

Γ(α + 1)

(
Kb‖z‖+

(
2KbH + Mb

)
‖φ‖B

)
+ |θ(b)|.

Hence, the following inequality

‖z‖ 6 |a|bα−β‖z‖
Γ(α− β + 1)

+
bαKb‖l‖‖z‖

Γ(α + 1)
+

bα

Γ(α + 1)

(
‖g‖+ ‖l‖

(
2Kb H + Mb

)
‖φ‖B

)
+ |θ(b)|

< N

holds, which contradicts to N = ‖z‖. Thus, we get

z 6= λPz

for any z ∈ E and λ. By the Leray–Schauder alternative, we infer that there exists at
least one fixed point z of P, and y = z̃ + φ̃ is a solution to problem (1). The proof is thus
complete.

Remark 1. In infinite dimensional space, continuous functions are not uniformly continuous in
a bounded closed region. In order to verify the continuity of the operator P in the step 1, we give
Assumption 1. The conclusion of continuity of the map P can be directly obtained by using the
Lebesgue Dominated Convergence Theorem.

Theorem 2. Suppose that Assumptions 1 and 3 hold. Additionally, assume that

|a|bα−β

Γ(α− β + 1)
+

b(α−1)q+1‖η‖p

Γ(α)(1 + (α− 1)q)
1
q

lim
r→∞

sup
Ω(r)

r
< 1 (6)

holds. Then, the Equation (1) has at least one solution on (−∞, b].

Proof of Theorem 2. Let P : C0 → C0 be defined as in (5). The conclusion can be verified
analogously in the following four steps as well.

Step 1. P is continuous.

Similar to the proof of Theorem 1, it is not difficult to verify that P is continuous by
Assumption 3 and the Lebesgue dominated convergence theorem.

Step 2. P maps bounded sets into bounded sets in C0.
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Let Br = {z ∈ C0 : ‖z‖ 6 r}. Then, for any z ∈ Br and t ∈ [0, b], we have

|Pz(t)| 6 |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|z(s)|ds +

1
Γ(α)

∫ t

0
(t− s)α−1| f (s, z̃s + φ̃s)|ds + |θ(b)|

6
|a|bα−β

Γ(α− β + 1)
‖z‖+ 1

Γ(α)

∫ t

0
(t− s)α−1η(s)Ω(‖z̃s + φ̃s‖B)ds + |θ(b)|.

Since

‖z̃s + φ̃s‖B 6 ‖z̃s‖B + ‖φ̃s‖B 6 Kbr +
(
2KbH + Mb

)
‖φ‖B := r0,

where Mb = sup{|M(t)|: t ∈ [a, b]}, Kb = sup{|K(t)|: t ∈ [a, b]} and H is a positive constant.
It follows from Holder’s inequality and Assumption 3 that

|Pz(t)| 6 |θ(b)|+ |a|bα−β

Γ(α− β + 1)
‖z‖

+
1

Γ(α)

∫ t

0
(t− s)α−1η(s)dsΩ

(
Kbr +

(
2KbH + Mb

)
‖φ‖B

)
6 |θ(b)|+ |a|bα−β

Γ(α− β + 1)
‖z‖

+
1

Γ(α)
Ω
(

Kbr +
(
2Kb H + Mb

)
‖φ‖B

)(∫ t

0
(t− s)(α−1)q

) 1
q
‖η‖p

6 |θ(b)|+ |a|bα−β

Γ(α− β + 1)
‖z‖

+ Ω
(

Kbr +
(
2KbH + Mb

)
‖φ‖B

) b(α−1)q+1

Γ(α)(1 + (α− 1)q)
1
q
‖η‖p

:= ξ,

where ‖η‖p = (
∫ b

0 |η(s)|
pds)

1
p and 1

p + 1
q = 1, (α− 1) > −1. Therefore, ‖Pz‖ 6 ξ for every

z ∈ Br, which implies that P maps bounded subsets into bounded subsets in C0.

Step 3. P maps bounded sets into equicontinuous sets of C0.

Let t1, t2 ∈ [0, b], t1 < t2, and let Br be a bounded set of C0 as in the Step 2. Let z ∈ Br.
Then for each t ∈ [0, b], we have

|(Pz)(t2)− (Pz)(t1)|

6
|a|‖z‖

Γ(α− β)

∣∣∣∣∫ t1

0

(
(t2 − s)α−β−1 − (t1 − s)α−β−1

)
ds +

∫ t2

t1

(t− s)α−β−1ds
∣∣∣∣

+
1

Γ(α)

∣∣∣∣ ∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
f (s, z̃s + φ̃s)ds

+
∫ t2

t1

(t− s)α−β−1 f (s, z̃s + φ̃s)ds
∣∣∣∣+ |θ(t2)− θ(t1)|

6
|a|‖z‖

Γ(α− β + 1)

(
t2

α−β − t1
α−β + 2(t2 − t1)

α−β
)

+
1

Γ(α)

∣∣∣ ∫ t1

0

(
(t2 − s)α−1 − (t1 − s)α−1

)
η(s)Ω(‖z̃s + φ̃s‖B)ds

+
∫ t2

t1

(t− s)α−β−1η(s)Ω(‖z̃s + φ̃s‖B)ds
∣∣∣+ |θ(t2)− θ(t1)|

6
|a|‖z‖

Γ(α− β + 1)

(
t2

α−β − t1
α−β + 2(t2 − t1)

α−β
)
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+
Ω(r0)

Γ(α)

(∫ t1

0
((t2 − s)α−1 − (t1 − s)α−1)qds

) 1
q
(∫ t1

0
ηp(s)ds

) 1
p

+
Ω(r0)

Γ(α)

(∫ t2

t1

(t2 − s)(α−1)qds
) 1

q
(∫ t2

t1

ηp(s)ds
) 1

p
+ |θ(t2)− θ(t1)|

6
|a|‖z‖

Γ(α− β + 1)

(
t2

α−β − t1
α−β + 2(t2 − t1)

α−β
)

+
Ω(r0)‖η‖p

Γ(α)r1

(
t2

r2 − t1
r2 + 2(t2 − t1)

r2
)
+ |θ(t2)− θ(t1)|,

where r0 = Kbr +
(
2Kb H + Mb

)
‖φ‖B , r1 = (1 + (α− 1)q)

1
q , r2 = [(α− 1)q + 1]/q > 0.

As t1 → t2 the right-hand side of the above inequality tends to zero, and the equicontinuity
for the cases that t1 < t2 6 0 and t1 6 0 6 t2 is obvious.

As a consequence of Steps 1–3, together with the Arzela–Ascoli theorem, we can
conclude that P : C0 → C0 is a completely continuous mapping.

Step 4. (A priori bounds). There exists an open set U ⊆ C0 with z 6= λP(z) for λ ∈ (0, 1)
and z ∈ ∂U.

According to the condition |a|bα−β

Γ(α−β+1) +
b(α−1)q+1‖η‖p

Γ(α)(1+(α−1)q)
1
q

limr→∞ sup Ω(r)
r < 1, we can

deduce that there exists a constant N > 0 such that

|a|bα−β

Γ(α− β + 1)
N +

b(α−1)q+1‖η‖p

Γ(α)(1 + (α− 1)q)
1
q

Ω(N) + |θ(b)| < N.

Define the set E = {z ∈ C0 : ‖z‖ < N}. So the operator P : E → C0 satisfies the
complete continuity. Assume the equation

z = λPz

holds for some z ∈ E and λ ∈ (0, 1). Then we obtain

|z(t)| = |λPz(t)| 6 |Pz(t)|

6
|a|bα−β‖z‖

Γ(α− β + 1)
+

b(α−1)q+1‖η‖p

Γ(α)(1 + (α− 1)q)
1
q

Ω
(

Kb‖z‖+
(
2KbH + Mb

)
‖φ‖B

)
+ |θ(b)|

< N.

Hence, the following inequality

‖z‖ < N

holds, which contradicts N = ‖z‖. Thus, we get

z 6= λPz

for any z ∈ E and λ. By the Leray–Schauder alternative, we infer that there exists at
least one fixed point z of P, and y = z̃ + φ̃ is a solution to problem (1). The proof is thus
complete.

Theorem 3. Suppose that Assumptions 1 and 4 hold. Additionally, assume that

0 <
|a|bα−β

Γ(α− β + 1)
+

LbαKb
Γ(α + 1)

< 1 (7)

holds, Then, Equation (1) has a unique solution on (−∞, b].
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Proof of Theorem 3. Let P : C0 → C0 be defined as in (5). The operator P has a fixed point.
which is equivalent to Equation (1) having a unique solution, and we turn to proving that
P has a fixed point. We shall show that P : C0 → C0 is a contraction map. Indeed, consider
any u, v ∈ C0. Then for each t ∈ [0, b], we have

|(Pu)(t)− (Pv)(t)| 6 |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|u(s)− v(s)|ds

+
1

Γ(α)

∫ t

0
(t− s)α−1| f (s, ũs + φ̃s)− f (s, ṽs + φ̃s)|ds

6
|a|bα−β

Γ(α− β + 1)
‖u− v‖+ L

Γ(α)

∫ t

0
(t− s)α−1‖ũ(s)− ṽ(s)‖Bds.

Since

‖ũ(s)− ṽ(s)‖B 6 K(s) sup
06τ6s

‖ũ(τ)− ṽ(τ)‖+ M(s)‖ũ0 − ṽ0‖B

6 Kb sup
06τ6s

‖u(τ)− φ(0)− v(τ) + φ(0)‖

6 Kb‖u− v‖,

where Kb = sup{|K(t)|: t ∈ [a, b]}, we get

‖Pu− Pv‖ 6
(
|a|bα−β

Γ(α− β + 1)
+

LbαKb
Γ(α + 1)

)
‖u− v‖,

and P is a contraction. Therefore, P has a unique fixed point by applying the Banach
contraction principle.

4. Stability Analysis

In this section, the analysis of Hyers–Ulam stability of the fractional differential
Equation (1) with infinite delay is presented. First and foremost, the definition given below
is crucial to the proof of Hyers–Ulam stability.

Definition 4. The problem (1) is said to be Hyers–Ulam stable if there exists a positive real number
c such that for each ε > 0 and for each solution u(·) of the inequalities{ ∣∣cDαu(t)− acDβu(t) = f (t, ut)

∣∣ 6 ε, t ∈ J = [0, b],
u(t) = φ(t), t ∈ (−∞, 0],

(8)

there exists a solution v(·) of the problem (1) with

|u(t)− v(t)| 6 cε, t ∈ J = [0, b].

Theorem 4. Further, assume that the conditions of Theorem 3 are satisfied and the inequality (8)
has at least one solution. Then, the problem (1) is Hyers–Ulam stable.

Proof of Theorem 4. For each ε > 0, and each function u that satisfies the following
inequalities ∣∣cDαu(t)− acDβu(t)− f (t, ut)

∣∣ 6 ε, t ∈ [0, b],

a function g(t) = cDαu(t)− acDβu(t)− f (t, ut) can be found; then, we have |g(t)| 6 ε,
which implies that

u(t) = θ(t) + aJα−βu(t) + Jα f (t, ut) + Jαg(t),
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where θ(t) is a polynomial function which is given in Lemma 6. According to Theorem 3, it
has been verified that there is a unique solution v(t) of problem (1), then function v can be
expressed as

v(t) = θ(t) + aJα−βv(t) + Jα f (t, vt),

so we have

|u(t)− v(t)| 6 |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|u(s)− v(s)|ds

+
1

Γ(α)

∫ t

0
(t− s)α−1| f (s, us)− f (s, vs)|ds +

1
Γ(α)

∫ t

0
(t− s)α−1|g(s)|ds.

Since
| f (s, us)− f (s, vs)| 6 L‖us − vs‖B ,

together with Definition 3, we get

‖us − vs‖B = ‖(ũs + φ̃s)− (ṽs + φ̃s)‖B = ‖ũs − ṽs‖B
6 K(s) sup

06τ6s
‖ũ(τ)− ṽ(τ)‖+ M(s)‖ũ0 − ṽ0‖B

6 Kb sup
06τ6s

‖u(τ)− φ(0)− v(τ) + φ(0)‖

= Kb sup
06τ6s

|u(τ)− v(τ)|,

where Kb = sup{|K(t)|: t ∈ [a, b]}, it indicates that

|u(t)− v(t)| 6 |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1|u(s)− v(s)|ds

+
LKb
Γ(α)

∫ t

0
(t− s)α−1 sup

06σ6s
|u(σ)− v(σ)|ds +

bα

Γ(α + 1)
ε.

According to Lemma 5, it immediately follows that

sup
06τ6t

|u(τ)− v(τ)| 6 |a|
Γ(α− β)

∫ t

0
(t− s)α−β−1 sup

06σ6s
|u(σ)− v(σ)|ds

+
LKb
Γ(α)

∫ t

0
(t− s)α−1 sup

06σ6s
|u(σ)− v(σ)|ds +

bα

Γ(α + 1)
ε

=
∫ t

0

[
|a| (t− s)α−β−1

Γ(α− β)
+ LKb

(t− s)α−1

Γ(α)

]
sup

06σ6s
|u(σ)− v(σ)|ds

+
bα

Γ(α + 1)
ε,

let ϕ(t) := sup06τ6t |u(τ)− v(τ)|, M := bα

Γ(α+1) , and g(t, s) := |a| 1
Γ(α−β)

+ LKb
(t−s)β

Γ(α) , we
can get

ϕ(t) 6 Mε +
∫ t

0
g(t, s)(t− s)α−β−1 ϕ(s)ds.

It is not difficult to note that g(t, s) 6 |a| 1
Γ(α−β)

+ LKb
bβ

Γ(α) (:= M0). Hence, in view of
Lemma 3,

ϕ(t) 6 Mε + Mε
∫ t

0

∞

∑
n=1

(g(t, s)Γ(α− β))n

Γ(n(α− β))
(t− s)n(α−β)−1ds

6 Mε + Mε
∫ t

0

∞

∑
n=1

(M0Γ(α− β))n

Γ(n(α− β))
(t− s)n(α−β)−1ds
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6 Mε + Mε
∞

∑
n=1

(M0Γ(α− β))n

Γ(n(α− β) + 1)
bn(α−β)

6 MεEα−β

(
M0b(α−β)Γ(α− β)

)
,

let c := MEα−β

(
M0b(α−β)Γ(α− β)

)
, then the inequality

ϕ(t) 6 cε

holds, which implies that Hyers-Ulam stability of problem (1) is proved.

5. Examples

Two examples are presented in this section to illustrate the conclusions. To begin with,
let γ > 0 be a real constant and

Eγ = {y ∈ C
(
(−∞, 0],R

)
: lim

θ→−∞
eγθy(θ) exists in R}.

Accordingly, the norm of Eγ is given by

|y|γ = sup
−∞<θ60

eγθ |y(θ)|.

By [28], Eγ satisfies the conditions in Definition 3 with K = M = H = 1. It can be
easily claimed that Eγ is a phase space.

Example 1. Consider the following nonlinear Caputo-type fractional differential equation with
infinite delay of the form

cD0.8y(t)− 1
2 cD0.4y(t) =

e−γt

10
(|yt|+

1
2

cost), t ∈ J = [0, 1], (9)

y(t) = φ(t) ∈ Eγ, t ∈ (−∞, 0]. (10)

According to the given data, it can be easily found that Assumptions 1 and 2 are satisfied

with function l(t) = e−γt

10 . Furthermore, we have |a|bα−β

Γ(α−β+1) +
bαKb

Γ(α+1)‖l‖ <
1

2Γ(1.4) +
1

10Γ(1.8) ≈
0.6707 < 1. Therefore, all the conditions of Theorem 1 hold true, and consequently the problems (9)
and (10) with f (t, yt) given by the equation f (t, yt) =

e−γt

10 (|yt|+ 1
2 cost) have at least one solution

on (−∞, 1].

Example 2. We can investigate the following nonlinear delayed fractional differential equation

cD0.7y(t)− 1
3 cD0.5y(t) =

c̃e−γt+t|y|γ
(et + e−t)(1 + |y|γ)

, t ∈ J = [0, 1], (11)

y(t) = φ(t) ∈ Eγ, t ∈ (−∞, 0], (12)

where c̃ is a given positive constant. Set

f (t, x) =
e−γt+tx

c̃(et + e−t)(1 + x)
, (t, x) ∈ [0, 1]×R+.

Then, for any x, y ∈ Eγ, we have

| f (t, x)− f (t, y)| = e−γt+t

c̃(et + e−t)

∣∣∣ x
1 + x

− y
1 + y

∣∣∣
6

e−γt+t|x− y|
c̃(et + e−t)(1 + x)(1 + y)
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6
et|x− y|

c̃(et + e−t)

6
1
c̃
|x− y|.

Hence, the condition Assumption 4 holds. Since K = 1, assume that c̃ > 3Γ(1.2)
Γ(1.7)(3Γ(1.2)−1) ≈

1.7269, and Equation (7) holds. Thus, it can be verified that problems (11) and (12) have a unique
solution on (−∞, 1] by applying Theorem 3.

On the basis of the conclusions, we further discuss the Hyers–Ulam stability of problem (11)
and (12). For any ε > 0 and each function y that satisfies the following inequalities

∣∣∣cD0.7y(t)− 1
3 cD0.5y(t)−

c̃e−γt+t|y|γ
(et + e−t)(1 + |y|γ)

∣∣∣ 6 ε, t ∈ J = [0, 1],

let g(t) represent the right side of the inequality above. Additionally, let x(t) be the unique solution
of problem (11) and (12); then, we have

sup
06τ6t

|y(τ)− x(τ)| 6
∫ t

0

( (t− s)−0.8

3Γ(0.2)
+

(t− s)−0.3

c̃Γ(0.7)

)
sup

06σ6s
|y(σ)− x(σ)|ds +

1
Γ(1.7)

ε,

let ϕ(t) := sup06τ6t |y(τ)− x(τ)|, g(t, s) := 1
3Γ(0.2) +

(t−s)0.5

c̃Γ(0.7) and M := 1
Γ(1.7) , then it is easy

to get that g(t, s) 6 1
3Γ(0.2) +

1
c̃Γ(0.7) (:= M0), and in view of Lemma 3,

ϕ(t) 6 Mε +
∫ t

0
g(t, s)(t− s)−0.8 ϕ(s)ds

6 Mε + Mε
∫ t

0

∞

∑
n=1

(g(t, s)Γ(0.2))n

Γ(0.2n)
(t− s)0.2n−1ds

6 Mε + Mε
∫ t

0

∞

∑
n=1

(M0Γ(α− β))n

Γ(0.2n)
(t− s)0.2n−1ds

6 Mε + Mε
∞

∑
n=1

(M0Γ(0.2))n

Γ(0.2n + 1)

6 MεE0.2
(

M0Γ(0.2)
)
,

let c := ME0.2
(

M0Γ(0.2)
)
= 1

Γ(1.7)E0.2

(
1
3 + Γ(0.2)

c̃Γ(0.7)

)
, it follows that ϕ(t) 6 cε, which implies

that the problem (11) and (12) is Hyers-Ulam stable.

6. Conclusions

This paper mainly discusses and investigates a class of nonlinear fractional differential
equations with infinite time delay. Based on the properties of Green’s function, we give
the form of a solution to the differential equations. In addition to applying the fixed point
theorem and Gronwall inequality, the related properties of the phase space are explored
to investigate the nature and Hyers–Ulam stability of the solutions of fractional order
differential equations under time delay conditions. Generally, various types of Gronwall
inequalities can be utilized to explore the stability of fractional differential equations.
However, we have found that only applying Gronwall inequalities is not enough to get
stability conclusions in this paper. Therefore, we prove a comparative property of fractional
calculus as an auxiliary tool to verify the stability of solutions. Furthermore, two examples
are listed to confirm the conclusions.
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