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Abstract: The bipolar fuzzy (BF) set is an extension of the fuzzy set used to solve the uncertainty
of having two poles, positive and negative. The rough set is a useful mathematical technique to
handle vagueness and impreciseness. The major objective of this paper is to analyze the notion of
approximation of BF ideals of semirings by combining the theories of the rough and BF sets. Then,
the idea of rough approximation of BF subsemirings (ideals, bi-ideals and interior ideals) of semirings
is developed. In addition, semirings are characterized by upper and lower rough approximations
using BF ideals. Further, it is seen that congruence relations (CRs) and complete congruence relations
(CCRs) play fundamental roles for rough approximations of bipolar fuzzy ideals. Therefore, their
associated properties are investigated by means of CRs and CCRs.

Keywords: semirings; bipolar fuzzy subsets; bipolar fuzzy ideals; congruence relations; complete
congruence relation; upper rough sets; lower rough sets

1. Introduction and Motivation

The implementation of traditional fuzzy sets presented by Zadeh [1] in the field of alge-
braic structures has brought great success to the study of fuzzy algebra. A few mathematical
researchers, such as Rosenfeld [2], Mordeson and Malik [3], Akram et al. [4], Mandal [5],
Shabir and Mahmood [6] and Zhan [7], have obtained many wonderful and useful results
on fuzzy sets. Nevertheless, the membership degrees of elements in conventional fuzzy
sets are all limited to the interval [0,1], which leads to a great difficulty in explaining
the distinction between the irrelevant elements and the opposite elements in fuzzy sets.
Zhang [8] presented the theory of the bipolar fuzzy (BF) set, which has a range of [−1, 1],
to avoid this problem. Recently, keeping the results of BF sets under consideration, many
researchers have been using BF sets to represent algebraic structures [9–12]. This theory
provides the difference between positive and negative aspects of the same situation. In real
life, we observe many bipolar concepts, good and bad effects of medicines, thickness and
thinness of fluid, honesty and dishonesty. For more applications, see [13–18].

Pawlak, in 1982 [19], initiated the theory of rough sets. Based on the known attributes, a
rough set contains all the information. Rough sets are characterized by means of upper and
lower approximation. This theory is a useful tool in the areas of artificial intelligence, such
as pattern recognition, learning algorithms, inductive reasoning, automatic classification,
etc. In addition, it has many applications in measurement theory, classification theory,
taxonomy, cluster analysis, etc. In the medical field, a serious challenge is abdominal pain
in children. There are many reasons for this disease and it is hard to detect the main cause.
This theory helps the doctors to detect the cause through discharge observations.

In 1934, Vandiver studied the structure of semirings [20]. A large amount of work has
been conducted on this mathematical algebraic structure in the fields of medical science,
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social science, engineering, arts, economics and environmental science. From an algebraic
point of view, semirings provide the most natural common generalization of the theories
of rings and bounded distributive lattices, and the techniques used in analyzing them are
taken from both areas.

Fuzzy semirings, introduced by Ahsan et al. [21], have drawn widespread interest from
scholars. In addition, a large amount of related findings have emerged by Ahsan et al. [22].
Many experts have investigated roughness in algebra and fuzzy algebraic structures [23–26].
Hosseini et al. studied the generalizations of roughness or T-roughness in fuzzy algebra [27].
In 2020, Bashir et al. studied the roughness of fuzzy ideals with three-dimensional congru-
ence relations of ternary semigroups [28]. In 2019, Shabir et al. [29] worked on BF ideals of
regular semigroups. Moreover, Bashir et al. extended the work of [29] to regular ordered
ternary semigroups [30] and regular ternary semirings [31]. However, approximation of
BF sets has not been commonly used in semirings so far, to our knowledge. Therefore,
consideration of a new framework of approximation of BF subsemirings (resp. ideals) is
reasonable and necessary. We address the principles of RBF subsemirings (resp. ideals) in
this article and analyze related properties by extending [29,32].

This paper is arranged as follows. In Section 1, we introduce all of the terms used in
this paper. In Section 2, we discuss the ideas of rough sets and BF sets and present some
basic definitions. The main section of this paper is Section 3, where we will present RBF
ideals, bi-ideals and interior ideals of semirings and their related theorems on the basis of
CRs and CCRs. In the last section, a comparative study and conclusions are given.

The list of acronyms used in the research article is given in Table 1.

Table 1. List of acronyms.

Acronyms Representation

BF Bipolar fuzzy

RBF Rough bipolar fuzzy

BF(S) A set of all bipolar fuzzy subsets of a semiring S

CR Congruence relation

CCR Complete congruence relation

2. Preliminaries

A nonempty set (S,+, ·) is known as a semiring if (S,+) is a commutative semigroup,
(S, ·) is a semigroup and s.(p + q) = s.p + s.q, (p + q).s = p.s + q.s for every s, p, q ∈ S.
By a subset, we always mean a nonempty one. A subset P of a semiring S is known as a
subsemiring of S if P is itself a semiring under addition and multiplication as defined in S.
A subset P of a semiring S is known as a left (resp. right) ideal of S if (P,+) is a groupoid
and sp ∈ P (ps ∈ P) for every s ∈ S, p ∈ P. If P is both a right and left ideal, then it is said
to be an ideal of S. A subset P of a semiring S is called a bi-ideal if P is a subsemiring of S
and PSP ⊆ P. A subset P of a semiring S is known as an interior ideal if P is a subsemiring
and SPS ⊆ P.

In BF subset ρ = (S, ρp, ρn) of S, ρp(z) presents the satisfaction degree of z to the
correlated characteristic of ρ and ρn(z) is the satisfaction degree of z to the somewhat
opposite characteristic of ρ. The fuzzy set presents only positive aspects of a situation with
membership function [0, 1]. The difference between the fuzzy set and the BF set is shown by
the following example. Let A = {u, v, w, x, y, z} be a set of workers of a company. Define
a fuzzy set on A with fuzzy property “honesty”, the workers v, x and y having property
“honesty” mapped to [0, 1], as shown by the bar graph in Figure 1.
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Figure 1. Graph of fuzzy set.

Other workers have no membership degree in range [0, 1], as they are not honest. In
the fuzzy set, we can cover only positive aspects of any situation. We cannot deal with
negative aspects of situations. To facilitate, we deal with such problems with the BF set.
The property “dishonesty” is opposite to “honesty”. The workers u, w and z are mapped to
[−1, 0] with property “dishonesty”. In such a way, the BF set gives information about all
elements, as shown in Figure 2.

Figure 2. Graph of bipolar fuzzy set.

Throughout this article, S represents a semiring. Let λ, ρ ∈ BF(S). Then, λ ⊆ ρ if and
only if λp(z) ≤ ρp(z) and λn(z) ≥ ρn(z) for every z ∈ S, and λ = ρ if and only if λ ⊆ ρ
and ρ ⊆ λ. Let λ, ρ ∈ BF(S). Then, λ + ρ = (S, λp + ρp, λn + ρn), the sum of λ and ρ, is
defined as

(λp + ρp)(z) =
∨

z=a+c
{λp(a) ∧ ρp(c)}

and

(λn + ρn)(z) =
∧

z=a+c
{λn(a) ∨ ρn(c)}
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for a, c, z ∈ S. For λ, ρ ∈ BF(S), define the BF subset λ ◦ ρ = (S, λp ◦ ρp, λn ◦ ρn) of S as

(λp ◦ ρp)(z) =


∨

z=Σn
i=1aibi

{∧n
i=1(λ

p(ai) ∧ ρp(bi))

}
,

0 if z is not expressible as z = Σn
i=1aibi

and

(λn ◦ ρn)(z) =


∧

z=Σn
i=1aibi

{∨n
i=1(λ

p(ai) ∨ ρp(bi))

}
,

0 if z is not expressible as z = Σn
i=1aibi

for z, ai, bi ∈ S.

Definition 1 ([29]). Let ρ ∈ BF(S). Then, ρ is known as a BF subsemiring of S if for every
a, z ∈ S:

(i) ρp(0) ≥ ρp(z), ρn(0) ≤ ρn(z);
(ii) ρp(a + z) ≥ min{ρp(a), ρp(z)}, ρn(a + z) ≤ max{ρn(a), ρn(z)};
(iii) ρp(az) ≥ min{ρp(a), ρp(z)}, ρn(az) ≤ max{ρn(a), ρn(z)}.

Definition 2 ([29]). Let ρ ∈ BF(S). Then, ρ is known as a BF left (resp. right) ideal of S if for
every a, z ∈ S :

(i) ρp(a + z) ≥ min{ρp(a), ρp(z)}, ρn(a + z) ≤ max{ρn(a), ρn(z)};
(ii) (ρp(az) ≥ ρp(z), ρn(az) ≤ ρn(z))(resp. ρp(az) ≥ ρp(a), ρn(az) ≤ ρn(a)).

If ρ is both a BF left and right ideal, then it is known as a BF ideal of S.

Definition 3 ([29]). Let ρ ∈ BF(S). Then ρ is known as a BF bi-ideal of S if for every a, c, z ∈ S:

(i) ρp(a + z) ≥ min{ρp(a), ρp(z)}, ρn(a + z) ≤ max{ρn(a), ρn(z)};
(ii) ρp(az) ≥ min{ρp(a), ρp(z)}, ρn(az) ≤ max{ρn(a), ρn(z)};
(iii) ρp(azc) ≥ min{ρp(a), ρp(c)}, ρn(azc) ≤ max{ρn(a), ρn(c)}.

Definition 4. Let ρ ∈ BF(S). Then, ρ is known as a BF interior ideal of S if for every a, c, z ∈ S:

(i) ρp(a + z) ≥ min{ρp(a), ρp(z)}, ρn(a + z) ≤ max{ρn(a), ρn(z)};
(ii) ρp(az) ≥ min{ρp(a), ρp(z)}, ρn(az) ≤ max{ρn(a), ρn(z)};
(iii) ρp(acz) ≥ ρp(c), ρn(azc) ≤ ρn(c).

Let W be a universe and Θ̂ an equivalence relation on W. Then E = (W, Θ̂) is known
as an approximation space. The equivalence classes of Θ̂ are the main constituents of the
rough sets. Let Y( 6= ϕ) ⊆W. The set Y is called a definable subset of W if it is the collection
of some equivalence classes of the universal set W; otherwise, it is not definable. The set Y
is approximated in the form of upper and lower approximations, which are given as:

Apr(Y) =
{

w ∈W : [w]Θ̂ ∩Y 6= ϕ

}
,

Apr(Y) =
{

w ∈W : [w]Θ̂ ⊆ Y
}

,

where [w]Θ̂ is the equivalence class of w for w ∈W.
The rough set is a pair (Apr(Y), Apr(Y)) if Apr(Y) 6= Apr(Y). The set Y is a definable

set if Apr(Y) = Apr(Y).
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3. Approximations of Bipolar Fuzzy Ideals in Semirings

This is the main section of our paper in which we present the concepts of RBF subsets
of semirings and concentrate on their key properties. RBF subsemirings, RBF ideals, RBF
bi-ideals and RBF interior ideals of the semirings are additionally discussed in this section.
The lower and upper RBF approximations of ξ under the relation Θ̂ are the BF subsets Θ̂(ξ)

and Θ̂(ξ) of S, respectively, defined as:

Θ̂(ξ) = {(s, Θ̂ξ p(s), Θ̂ξn(s)) : s ∈ S};
Θ̂(ξ) = {(s, Θ̂ξ p(s), Θ̂ξn(s)) : s ∈ S},

where

Θ̂ξ p(s) =
∧

b∈[s]Θ̂

ξ p(b), Θ̂ξn(s) =
∨

b∈[s]Θ̂

ξ p(b);

Θ̂ξ p(s) =
∨

b∈[s]Θ̂

ξ p(b), Θ̂ξn(s) =
∧

b∈[s]Θ̂

ξ p(b).

If Θ̂(ξ) = Θ̂(ξ), then ξ is Θ̂-definable; else, ξ is an RBF subset of S [33]. An equivalence
relation Θ̂ on S which satisfies the additional condition that if (i, j) and (k, l) ∈ Θ̂ then
(i + k, j + l) ∈ Θ̂ and (ik, jl) ∈ Θ̂ is known as a congruence relation (CR) on S. A CR Θ̂ on
S is complete if for every j, k ∈ S, [j]Θ̂ + [k]Θ̂ = [j + k]Θ̂ and [j]Θ̂[k]Θ̂ = [jk]Θ̂ [32]. Some
authors used the term full congruence instead of complete congruence in their research.

Theorem 1. If Θ̂ is a CCR on S, then Θ̂(ξ) ◦ Θ̂(ρ) ⊆ Θ̂(ξ ◦ ρ) for any ξ, ρ ∈ BF(S).

Proof. Since the CR Θ̂ is complete on S, [u]Θ̂[v]Θ̂ = [uv]Θ̂ for all u, v ∈ S. Let
ξ, ρ ∈ BF(S). The following two cases arise for z ∈ S:
Case (i): If z 6= ∑n

i=1 aibi for ai, bi ∈ S, then (Θ̂ξ p ◦ Θ̂ρp)(z) = 0 = (Θ̂ξn ◦ Θ̂ρn)(z). Thus,
(Θ̂ξ p ◦ Θ̂ρp)(z) = 0 ≤ Θ̂(ξ p ◦ ρp)(z) and (Θ̂ξn ◦ Θ̂ρn)(z) = 0 ≥ Θ̂(ξn ◦ ρn)(z).
Case (ii): If z = ∑n

i=1 aibi for ai, bi ∈ S, then

(Θ̂ξ p ◦ Θ̂ρp)(z) =
∨

z=∑n
i=1 aibi

{ n∧
i=1

(
Θ̂ξ p(a) ∧ Θ̂ρp(b)

)}

=
∨

z=∑n
i=1 aibi

[ n∧
i=1

{( ∧
s∈[ai ]Θ̂

ξ p(s)
)
∧
( ∧

t∈[bi ]Θ̂

ρp(t)
)}]

=
∨

z=∑n
i=1 aibi

[ n∧
i=1

{ ∧
s∈[ai ]Θ̂

∧
t∈[bi ]Θ̂

(
ξ p(s) ∧ ρp(t)

)}]

≤
∨

z=∑n
i=1 aibi

[ n∧
i=1

{ ∧
st∈[aibi ]Θ̂

∨
st=∑n

i=1 siti

(
ξ p(si) ∧ ρp(ti)

)}]
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where st ∈ [ai]Θ̂[bi]Θ̂ = [aibi]Θ̂ and

(Θ̂ξ p ◦ Θ̂ρp)(z) =
∨

z=∑n
i=1 aibi

[ ∧
st∈[aibi ]Θ̂

∨
st=∑n

i=1 siti

{ n∧
i=1

(
ξ p(si) ∧ ρp(ti)

)}]

=
∨

z=∑n
i=1 aibi

{ ∧
st∈[aibi ]Θ̂

(
ξ p ◦ ρp)(st)

}
=

∨
z=∑n

i=1 aibi

Θ̂
(
ξ p ◦ ρp)(aibi)

≤
∨

z=∑n
i=1 aibi

Θ̂
(
ξ p ◦ ρp)(Σn

i=1aibi)

= Θ̂
(
ξ p ◦ ρp)(z).

Similarly, (Θ̂ξn ◦ Θ̂ρn)(z) ≥ Θ̂
(
ξn ◦ ρn)(z). Hence, Θ̂(ξ) ◦ Θ̂(ρ) ⊆ Θ̂(ξ ◦ ρ).

Theorem 2. If Θ̂ is a CR on S, then Θ̂(ξ) ◦ Θ̂(ρ) ⊆ Θ̂(ξ ◦ ρ) for any ξ, ρ ∈ BF(S).

Proof. As Θ̂ is a CR on S, [u]Θ̂[v]Θ̂ ⊆ [uv]Θ̂ for all u, v ∈ S. Let ξ, ρ ∈ BF(S). The
following two cases arise for z ∈ S:

Case (i): If z 6= ∑n
i=1 aibi for ai, bi ∈ S, then it is obvious.

Case (ii): If z = ∑n
i=1 aibi for ai, bi ∈ S, then we have

(Θ̂ξ p ◦ Θ̂ρp)(z) =
∨

z=∑n
i=1 aibi

{ n∧
i=1

(
Θ̂ξ p(a) ∧ Θ̂ρp(b)

)}

=
∨

z=∑n
i=1 aibi

[ n∧
i=1

{( ∨
s∈[ai ]Θ̂

ξ p(s)
)
∧
( ∨

t∈[bi ]Θ̂

ρp(t)
)}]

=
∨

z=∑n
i=1 aibi

[ n∧
i=1

{ ∨
s∈[ai ]Θ̂

∨
t∈[bi ]Θ̂

(
ξ p(s) ∧ ρp(t)

)}]

≤
∨

z=∑n
i=1 aibi

[ n∧
i=1

{ ∨
st∈[aibi ]Θ̂

∨
st=∑n

i=1 siti

(
ξ p(si) ∧ ρp(ti)

)}]
where, st ∈ [ai]Θ̂[bi]Θ̂ ⊆ [aibi]Θ̂

=
∨

z=∑n
i=1 aibi

[ ∨
st∈[aibi ]Θ̂

∨
st=∑n

i=1 siti

{ n∧
i=1

(
ξ p(si) ∧ ρp(ti)

)}]

=
∨

z=∑n
i=1 aibi

{ ∨
st∈[aibi ]Θ̂

(
ξ p ◦ ρp)(st)

}
=

∨
z=∑n

i=1 aibi

Θ̂
(
ξ p ◦ ρp)(aibi)

≤
∨

z=∑n
i=1 aibi

Θ̂
(
ξ p ◦ ρp)(Σn

i=1aibi)

= Θ̂
(
ξ p ◦ ρp)(z).

Similarly, (Θ̂ξn ◦ Θ̂ρn)(z) ≥ Θ̂
(
ξn ◦ ρn)(z). Hence, Θ̂(ξ) ◦ Θ̂(ρ) ⊆ Θ̂(ξ ◦ ρ).

Theorem 3. If Θ̂ is a CCR on S, then Θ̂(ξ) + Θ̂(ρ) ⊆ Θ̂(ξ + ρ) for any ξ, ρ ∈ BF(S).
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Proof. Since the CR Θ̂ is complete on S, [u]Θ̂ + [v]Θ̂ = [u + v]Θ̂ for all u, v ∈ S. Let
ξ, ρ ∈ BF(S) and z ∈ S. Consider

(Θ̂ξ p + Θ̂ρp)(z) =
∨

z=u+x

(
Θ̂ξ p(u) ∧ Θ̂ρp(x)

)
=

∨
z=u+x

{( ∧
b∈[u]Θ̂

ξ p(b)
)
∧
( ∧

c∈[x]Θ

ρp(c)
)}

=
∨

z=u+x

{ ∧
b∈[u]Θ̂

∧
c∈[x]Θ̂

(
ξ p(b) ∧ ρp(c)

)}

=
∨

z=u+x

{ ∧
b∈[u]Θ̂ ,c∈[x]Θ̂

(
ξ p(b) ∧ ρp(c)

)}

≤
∨

z=u+x

{ ∧
b∈[u]Θ̂ ,c∈[x]Θ̂

∨
b+c=m+n

(
ξ p(m) ∧ ρp(n)

)}

=
∨

z=u+x

{ ∧
(b+c)∈[u+x]Θ̂

(
ξ p + ρp)(b + c)

}
=

∨
z=b+c

(
Θ̂
(
ξ p + ρp)(b + c)

)
= Θ̂

(
ξ p + ρp)(z).

Similarly, (Θ̂ξn + Θ̂ρn)(z) ≥ Θ̂
(
ξn + ρn)(z). Thus, Θ̂(ξ) + Θ̂(ρ) ⊆ Θ̂(ξ + ρ).

Theorem 4. If Θ̂ is a CR on S, then Θ̂(ξ) + Θ̂(ρ) ⊆ Θ̂(ξ + ρ) for any ξ, ρ ∈ BF(S).

Proof. As Θ̂ is a CR on S, [u]Θ̂ + [v]Θ̂ ⊆ [u + v]Θ̂ for all u, v ∈ S. Let ξ, ρ ∈ BF(S). Then,
for any z ∈ S, consider

(Θ̂ξ p + Θ̂ρp)(z) =
∨

z=u+x

(
Θ̂ξ p(u) ∧ Θ̂ρp(x)

)
=

∨
z=u+x

{( ∨
b∈[u]Θ̂

ξ p(b)
)
∧
( ∨

c∈[x]Θ̂

ρp(c)
)}

=
∨

z=u+x

{ ∨
b∈[u]Θ̂

∨
c∈[x]Θ̂

(
ξ p(b) ∧ ρp(c)

)}

=
∨

z=u+x

{ ∨
b∈[u]Θ̂ ,c∈[x]Θ̂

(
ξ p(b) ∧ ρp(c)

)}

≤
∨

z=u+x

{ ∨
b+c∈[u+x]Θ̂

(
ξ p(b) ∧ ρp(c)

)}
=

∨
b+c∈[z]Θ̂

(
ξ p(b) ∧ ρp(c)

)
=

∨
r∈[z]Θ̂ ,r=b+c

(
ξ p(b) ∧ ρp(c)

)
=

∨
r∈[z]Θ̂

( ∨
r=b+c

(ξ p(b) ∧ ρp(c))
)

=
∨

r∈[z]Θ̂

(ξ p + ρp)(r)

= Θ̂
(
ξ p + ρp)(z).
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Similarly, (Θ̂ξn + Θ̂ρn)(z) ≥ Θ̂
(
ξn + ρn)(z). Hence, Θ̂(ξ) + Θ̂(ρ) ⊆ Θ̂(ξ + ρ).

Definition 5. Let Θ̂ be a CR on S and ξ ∈ BF(S). Then, ξ is a lower (resp. upper) RBF
subsemiring of S if Θ̂(ξ) (Θ̂(ξ)) is a BF subsemiring of S.

A BF subset ξ of S which is both a lower and upper RBF subsemiring of S is known as an
RBF subsemiring of S.

Theorem 5. If Θ̂ is a CR on S, then each BF subsemiring ξ = (S; ξ p, ξn) of S is an upper RBF
subsemiring of S.

Proof. For all u, z ∈ S, consider

Θ̂ξ p(u + z) =
∨

s∈[u+z]Θ̂

ξ p(s)

≥
∨

s∈([u]Θ̂+[z]Θ̂)

ξ p(s), since [u]Θ̂ + [z]Θ̂ ⊆ [u + z]Θ̂

=
∨

(b+c)∈([u]Θ̂+[z]Θ̂)

ξ p(b + c)

≥
∨

b∈[u]Θ̂ ,c∈[z]Θ̂

(ξ p(b) ∧ ξ p(c))

=

( ∨
b∈[u]Θ̂

ξ p(b)
)
∧
( ∨

c∈[z]Θ̂

ξ p(c)
)

= Θ̂ξ p(u) ∧ Θ̂ξ p(z) .

Similarly, Θ̂ξn(u + z) ≤ Θ̂ξn(u) ∨ Θ̂ξn(z). In addition,

Θ̂ξ p(uz) =
∨

s∈[uz]Θ̂

ξ p(s)

≥
∨

s∈([u]Θ̂ [z]Θ̂)

ξ p(s), since [u]Θ̂[z]Θ̂ ⊆ [uz]Θ̂

=
∨

bc∈([u]Θ̂ [z]Θ̂)

ξ p(bc)

≥
∨

b∈[u]Θ̂ ,c∈[z]Θ̂

(ξ p(b) ∧ ξ p(c))

=

( ∨
b∈[u]Θ̂

ξ p(b)
)
∧
( ∨

c∈[z]Θ̂

ξ p(c)
)

= Θ̂ξ p(u) ∧ Θ̂ξ p(z).

Similarly, Θ̂ξn(uz) ≤ Θ̂ξn(u) ∨ Θ̂ξn(z). Thus, Θ̂(ξ) is a BF subsemiring of S. There-
fore, ξ is an upper RBF subsemiring of S.

Theorem 6. If Θ̂ is a CCR on S, then each BF subsemiring ξ = (S; ξ p, ξn) of S is a lower RBF
subsemiring of S.
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Proof. Let ξ = (S; ξ p, ξn) be a BF subsemiring of S. Now, for all u, z ∈ S, consider

Θ̂ξ p(u + z) =
∧

s∈[u+z]Θ̂

ξ p(s)

=
∧

s∈([u]Θ̂+[z]Θ̂)

ξ p(s), since [u]Θ̂ + [z]Θ̂ = [u + z]Θ̂

=
∧

(b+c)∈([u]Θ̂+[z]Θ̂)

ξ p(b + c)

≥
∧

b∈[u]Θ̂ ,c∈[z]Θ̂

(ξ p(b) ∧ ξ p(c))

=

( ∧
b∈[u]Θ̂

ξ p(b)
)
∧
( ∧

c∈[z]Θ̂

ξ p(c)
)

= Θ̂ξ p(u) ∧ Θ̂ξ p(z).

Similarly, Θ̂ξn(u + z) ≤ Θ̂ξn(u) ∨ Θ̂ξn(z). In addition,

Θ̂ξ p(uz) =
∧

s∈[uz]Θ̂

ξ p(s)

=
∧

s∈([u]Θ̂ [z]Θ̂)

ξ p(s), since [u]Θ̂[z]Θ̂ = [uz]Θ̂

=
∧

bc∈([u]Θ̂ [z]Θ̂)

ξ p(bc)

≥
∧

b∈[u]Θ̂ ,c∈[z]Θ̂

(ξ p(b) ∧ ξ p(c))

=

( ∧
b∈[u]Θ̂

ξ p(b)
)
∧
( ∧

c∈[z]Θ̂

ξ p(c)
)

= Θ̂ξ p(u) ∧ Θ̂ξ p(z) .

Similarly, Θ̂ξn(uz) ≤ Θ̂ξn(u) ∨ Θ̂ξn(z). Thus, Θ̂(ξ) is a BF subsemiring of S. There-
fore, ξ is a lower RBF subsemiring of S.

The example defined below illustrates that Theorem 6 does not hold if the CR Θ̂ is
not complete.

Example 1. Let S = {0, 1, ι, κ, ν} be a semiring with the addition “+” and multiplication “·
” given in Tables 2 and 3.

Table 2. Table of binary addition. (S = {0, 1, ι, κ, ν}).

+ 0 1 ι κ ν

0 0 1 ι κ ν

1 1 κ 1 ι 1

ι ι 1 ι κ ι

κ κ ι κ 1 κ

ν ν 1 ι κ ν
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Table 3. Table of binary multiplication. (S = {0, 1, ι, κ, ν}).

· 0 1 ι κ ν

0 0 0 0 0 0

1 0 1 ι κ ν

ι 0 ι ι ι ν

κ 0 κ ι 1 ν

ν 0 ν ν ν ν

Consider a binary relation Θ̂ = {(0, 0), (1, 1), (ι, ι), (κ, κ), (ν, ν), (ι, ν), (ν, ι)} on S.
Then, Θ̂ is a CR on S, defining the congruence classes {0}, {1}, {ι, ν} and {κ}, and
Θ̂ is not complete, since {1}+ {κ} = {ι} ⊆ {ι, ν}. We take a BF subset ξ of S, as below.

ξ = {(0, 0.6,−0.7), (1, 0.6,−0.4), (ι, 0.6,−0.5), (κ, 0.6,−0.4), (ν, 0.5,−0.2)}.

Then, ξ is a BF subsemiring of S. Now,

Θ̂(ξ) = {(0, 0.6,−0.7), (1, 0.6,−0.4), (ι, 0.6,−0.5), (κ, 0.6,−0.4), (ν, 0.6,−0.5)},
Θ̂(ξ) = {(0, 0.6,−0.7), (1, 0.6,−0.4), (ι, 0.5,−0.2), (κ, 0.6,−0.4), (ν, 0.5,−0.2)}.

It can be vindicated by simple calculations that Θ̂(ξ) is also a BF subsemiring of S,
whereas Θ̂(ξ) is not, as Θ̂(ξ p)(1 + κ) � Θ̂(ξ p)(1) ∧ Θ̂(ξ p)(κ).

Definition 6. If Θ̂ is a CR on S and ξ ∈ BF(S), then ξ is a lower (resp. upper) RBF left (resp.
right) ideal of S if Θ̂(ξ) (resp. Θ̂(ξ)) is a BF left (resp. right) ideal of S.

Theorem 7. If Θ̂ is a CR on S, then each BF left (resp. right) ideal ξ = (S; ξ p, ξn) of S is an
upper RBF left (resp. right) ideal of S.

Proof. For u, z ∈ S, consider

Θ̂ξ p(u + z) =
∨

s∈[u+z]Θ̂

ξ p(s)

≥
∨

s∈([u]Θ̂+[z]Θ̂)

ξ p(s), since [u]Θ̂ + [z]Θ̂ ⊆ [u + z]Θ̂

=
∨

(b+c)∈([u]Θ̂+[z]Θ̂)

ξ p(b + c)

≥
∨

b∈[u]Θ̂ ,c∈[z]Θ̂

(
ξ p(b) ∧ ξ p(c)

)
=

( ∨
b∈[u]Θ̂

ξ p(b)
)
∧
( ∨

c∈[z]Θ̂

ξ p(c)
)

= Θ̂ξ p(u) ∧ Θ̂ξ p(z) .
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Similarly, Θ̂ξn(u + z) ≤ Θ̂ξn(u) ∨ Θ̂ξn(z). In addition,

Θ̂ξ p(uz) =
∨

s∈[uz]Θ̂

ξ p(s)

≥
∨

s∈([u]Θ̂ [z]Θ̂)

ξ p(s), since [u]Θ̂[z]Θ̂ ⊆ [uz]Θ̂

=
∨

bc∈([u]Θ̂ [z]Θ̂)

ξ p(bc)

=
∨

b∈[u]Θ̂ ,c∈[z]Θ̂

ξ p(bc)

≥
∨

c∈[z]Θ̂

ξ p(c)

= Θ̂ξ p(z) .

Similarly, Θ̂ξn(uz) ≤ Θ̂ξn(z). This implies that Θ̂(ξ) is a BF left ideal. Therefore, ξ is
an upper RBF left ideal of S. Similarly, the case of a BF right ideal can be verified.

Theorem 8. Let Θ̂ be a CCR on S. Then, each BF left (resp. right) ideal ξ = (S; ξ p, ξn) of S is a
lower RBF left (resp. right) ideal of S.

Proof. For u, z ∈ S, consider

Θ̂ξ p(u + z) =
∧

s∈[u+z]Θ̂

ξ p(s)

=
∧

s∈([u]Θ̂+[z]Θ̂)

ξ p(s), since [u]Θ̂ + [z]Θ̂ = [u + z]Θ̂

=
∧

(b+c)∈([u]Θ̂+[z]Θ̂)

ξ p(b + c)

≥
∧

b∈[u]Θ̂ ,c∈[z]Θ̂

(
ξ p(b) ∧ ξ p(c)

)
=

( ∧
b∈[u]Θ̂

ξ p(b)
)
∧
( ∧

c∈[z]Θ̂

ξ p(c)
)

= Θ̂ξ p(u) ∧ Θ̂ξ p(z) .

Similarly, Θ̂ξn(u + z) ≤ Θ̂ξn(u) ∨ Θ̂ξn(z). In addition,

Θ̂ξ p(uz) =
∧

s∈[uz]Θ̂

ξ p(s)

=
∧

s∈([u]Θ̂ [z]Θ̂)

ξ p(s), since [u]Θ̂[z]Θ̂ = [uz]Θ̂

=
∧

bc∈([u]Θ̂ [z]Θ̂)

ξ p(bc)

=
∧

b∈[u]Θ̂ ,c∈[z]Θ̂

ξ p(bc)

≥
∧

c∈[z]Θ̂

ξ p(c)

= Θ̂ξ p(z) .
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Similarly, Θ̂ξn(uz) ≤ Θ̂ξn(z). Thus, Θ̂(ξ) is a BF left ideal. Therefore, ξ is a lower RBF
left ideal of S. Similarly, the case of a BF right ideal of S can be verified.

The example defined below illustrates that Theorem 8 does not hold if the CR Θ̂ is
not complete.

Example 2. Let S = {ι, κ, ν} be a semiring with the addition “+” and multiplication “·” defined
in Tables 4 and 5.

Table 4. Table of binary addition. (S = {ι, κ, ν}).

+ ι κ ν

ι ι κ ν

κ κ κ κ

ν ν κ ν

Table 5. Table of binary multiplication. (S = {ι, κ, ν}).

· ι κ ν

ι ι ι ι

κ ι ι ι

ν ι ι ι

Consider a binary relation Θ̂ = {(ι, ι), (κ, κ), (ν, ν), (ι, ν), (ν, ι)} on S. Then, Θ̂ is a
CR on S. Defining the congruence classes {κ} and {ι, ν}, Θ̂ is not complete. Therefore,
{κ}{ι, ν} = {ι} ⊆ {ι, ν}.

We take a BF subset ξ of S, as below.

ξ = {(ι, 0.8,−0.45), (κ, 0.7,−0.4), (ν, 0.5,−0.4)}.

Then, ξ is a BF left ideal of S. Now,

Θ̂(ξ) = {(ι, 0.8,−0.45), (κ, 0.7,−0.4), (ν, 0.8,−0.45)},
Θ̂(ξ) = {(ι, 0.5,−0.4), (κ, 0.7,−0.4), (ν, 0.5,−0.4)}.

It can be vindicated by simple calculations that Θ̂(ξ) is also a BF left ideal of S,
whereas Θ̂(ξ) is not, as Θ̂(ξ p)(ι.κ) = 0.5 � 0.7 = Θ̂(ξ p)(κ).

Definition 7. If Θ̂ is a CR on S and ξ ∈ BF(S), then ξ is a lower (resp. upper) RBF bi-ideal of
S if Θ̂(ξ) ( Θ̂(ξ)) is a BF bi-ideal of S.
A BF subset ξ of S which is both a lower and upper RBF bi-ideal is called an RBF bi-ideal of S.

Theorem 9. For a CR Θ̂ on S, each BF bi-ideal ξ = (S; ξ p, ξn) is an upper RBF bi-ideal of S.

Proof. A BF bi-ideal ξ is also a BF subsemiring of S. We have by Theorem 5 that Θ̂(ξ) is a
BF subsemiring of S. Now, for u, x, z ∈ S, consider
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Θ̂ξ p(uxz) =
∨

s∈[uxz]Θ̂

ξ p(s)

≥
∨

s∈([u]Θ̂ [x]Θ̂ [z]Θ̂)

ξ p(s) , since [u]Θ̂[x]Θ̂[z]Θ̂ ⊆ [uxz]Θ̂

=
∨

bcd∈([u]Θ̂ [x]Θ̂ [z]Θ̂)

ξ p(bcd)

≥
∨

b∈[u]Θ̂ ,c∈[x]Θ̂ ,d∈[z]Θ̂

(ξ p(b) ∧ ξ p(d))

=

( ∨
b∈[u]Θ̂

ξ p(b)
)
∧
( ∨

d∈[z]Θ̂

ξ p(d)
)

= Θ̂ξ p(u) ∧ Θ̂ξ p(z) .

and Θ̂ξn(uxz) ≤ Θ̂ξn(u) ∨ Θ̂ξn(z). Thus, Θ̂(ξ) is a BF bi-ideal of S. Therefore, ξ is an
upper RBF bi-ideal of S.

Theorem 10. For a CCR Θ̂ on S, each BF bi-ideal ξ = (S; ξ p, ξn) is a lower RBF bi-ideal of S.

Proof. A BF bi-ideal ξ is also a BF subsemiring of S. In addition, by Theorem 6, Θ̂(ξ) is a
BF subsemiring of S. Now, for u, x, z ∈ S, consider

Θ̂ξ p(uxz) =
∧

s∈[uxz]Θ̂

ξ p(s)

=
∧

s∈([u]Θ̂ [x]Θ̂ [z]Θ̂)

ξ p(s), since [u]Θ̂[x]Θ̂[z]Θ̂ = [uxz]Θ̂

=
∧

bcd∈([u]Θ̂ [x]Θ̂ [z]Θ̂)

ξ p(bcd)

≥
∧

b∈[u]Θ̂ ,c∈[x]Θ̂ ,d∈[z]Θ̂

(ξ p(b) ∧ ξ p(d))

=

( ∧
b∈[u]Θ̂

ξ p(b)
)
∧
( ∧

d∈[z]Θ̂

ξ p(d)
)

= Θ̂ξ p(u) ∧ Θ̂ξ p(z) .

and Θ̂ξn(uxz) ≤ Θ̂ξn(u) ∨ Θ̂ξn(z). This implies Θ̂(ξ) is a BF bi-ideal of S. Therefore, ξ is
a lower RBF bi-ideal of S.

The example defined below illustrates that Theorem 10 does not hold if CR Θ̂ is
not complete.

Example 3. Let S = {ι, κ, ν} be the semiring and Θ̂ be the CR on S, as defined in Example 2,
which is not complete, and define the congruence classes {κ}, {ι, ν}.

We take a BF subset ξ of S, as below.

ξ = {(ι, 0.6,−0.5), (κ, 0.4,−0.2), (ν, 0.2,−0.2)}.

Then, ξ is a BF bi-ideal of S. Then,

Θ̂(ξ) = {(ι, 0.6,−0.5), (κ, 0.4,−0.2), (ν, 0.6,−0.5)},
Θ̂(ξ) = {(ι, 0.2,−0.2), (κ, 0.4,−0.4), (ν, 0.2,−0.2)}.
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It can be seen by simple calculations that Θ̂(ξ) is also a BF bi-ideal, whereas Θ̂(ξ) is not, as

Θ̂(ξ p)(κικ) = 0.2 � 0.4 = Θ̂(ξ p)(κ) ∧ Θ̂(ξ p)(κ).

Definition 8. For a CR Θ̂ on S and ξ ∈ BF(S), ξ is a lower (resp. upper) RBF interior ideal of
S if Θ̂(ξ) ( Θ̂(ξ)) is a BF interior ideal of S.
If ξ is both a lower and upper RBF interior ideal, then it is called an RBF interior ideal of S.

Theorem 11. For a CR Θ̂ on S, each BF interior ideal, ξ = (S; ξ p, ξn) is an upper RBF interior
ideal of S.

Proof. Since a BF interior ideal ξ is also a BF subsemiring of S, by Theorem 5, Θ̂(ξ) is a BF
subsemiring of S. Now, for all u, x, z ∈ S,

Θ̂ξ p(uxz) =
∨

s∈[uxz]Θ̂

ξ p(s)

≥
∨

s∈([u]Θ̂ [x]Θ̂ [z]Θ̂)

ξ p(s), since [u]Θ̂[x]Θ̂[z]Θ̂ ⊆ [uxz]Θ̂

=
∨

bcd∈([u]Θ̂ [x]Θ̂ [z]Θ̂)

ξ p(bcd)

≥
∨

c∈[x]Θ̂

(ξ p(c))

= Θ̂ξ p(x).

Similarly, Θ̂ξn(uxz) ≤ Θ̂ξn(x). This implies Θ̂(ξ) is a BF interior ideal of S. Therefore,
ξ is an upper RBF interior ideal of S.

Theorem 12. Consider a CCR Θ̂ on S. Then, each BF interior ideal ξ = (S; ξ p, ξn) is a lower
RBF interior ideal of S.

Proof. We have by Theorem 6 that Θ̂(ξ) is a BF subsemiring of S. Consider, for every
u, x, z ∈ S,

Θ̂ξ p(uxz) =
∧

s∈[uxz]Θ̂

ξ p(s)

=
∧

s∈([u]Θ̂ [x]Θ̂ [z]Θ̂)

ξ p(s) , since [u]Θ̂[x]Θ̂[z]Θ̂ = [uxz]Θ̂

=
∧

bcd∈([u]Θ̂ [x]Θ̂ [z]Θ̂)

ξ p(bcd)

≥
∧

c∈[x]Θ̂

(ξ p(c))

= Θ̂ξ p(x).

Similarly, Θ̂ξn(uxz) ≤ Θ̂ξn(x). Thus, Θ̂(ξ) is a BF interior ideal of S. Therefore, ξ is a
lower RBF interior ideal of S.

The example defined below illustrates that Theorem 12 does not hold if the CR Θ̂ is
not complete.

Example 4. Let S = {ι, κ, ν} be the semiring and Θ̂ be the CR on S, as defined in Example 2,
which is not complete, and define the congruence classes {κ} and {ι, ν}.
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We take a BF subset ξ of S, as below.

ξ = {(ι, 0.6,−0.6), (κ, 0.5,−0.2), (ν, 0.1,−0.5)}.

Thus, ξ is a BF interior ideal of S. Now,

Θ̂(ξ) = {(ι, 0.6,−0.6), (κ, 0.5,−0.2), (ν, 0.6,−0.6)},
Θ̂(ξ) = {(ι, 0.1,−0.5), (κ, 0.5,−0.2), (ν, 0.1,−0.5)}.

It can be seen by simple calculations that Θ̂(ξ) is also a BF interior ideal of S, whereas
Θ̂(ξ) is not, because

Θ̂(ξ p)(ικν) = 0.1 � 0.5 = Θ̂(ξ p)(κ).

4. Comparative Study and Discussion

In this section, a connection between this paper and previous papers [29,32] is de-
scribed. In [32], Ali et al. conducted work on approximations of hemirings (semirings
with additive identity), and in [29], Shabir et al. characterized BF ideals and BF bi-ideals
in semirings. In this paper, we give a new model of approximations of BF subsemirings
(resp. ideals, bi-ideals and interior ideals). Our approach is better than previous approaches
because this tackles the vague and complicated problems in both positive and negative
aspects. Approximation of BF sets has not been commonly used in semirings so far, to
our knowledge. Therefore, consideration of a new framework of approximation of BF
subsemirings (resp. ideals) is reasonable and necessary.

5. Conclusions

In this paper, concepts from [29,32] are combined. The CRs and CCRs are used to
evaluate rough approximations. These relations help us in a fruitful way to consider
roughness in BF ideals of semirings. However, it is probably visible that during the case of
lower approximation, the CR fails to obtain the favored result. To tackle this complication,
CCRs are being taken into consideration. Furthermore, the idea of approximations is
applied to BF subsemirings, BF bi-ideals and BF interior ideals by using CRs and CCRs in
semirings.

In the future, we will study the roughness of BF ideals of ternary semigroups and
ternary semirings. We will also give attention to the roughness of multipolar fuzzy ideals
and multipolar fuzzy hyperideals of semihypergroups.
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