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Abstract: Random invariant manifolds are geometric objects useful for understanding dynamics near
the random fixed point under stochastic influences. Under the framework of a dynamical system, we
compared perturbed random non-autonomous partial differential equations with original stochastic
non-autonomous partial differential equations. Mainly, we derived some pathwise approximation
results of random invariant manifolds when the Gaussian white noise was replaced by colored noise,
which is a type of Wong–Zakai approximation.
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1. Introduction

Invariant manifolds play an important role in qualitative dynamical behaviors by
providing geometric structures (i.e., to understand or reduce stochastic dynamics) [1–4].
The existence and regularity properties of invariant manifolds for stochastic partial dif-
ferential equations with linear noise are reasonably understood. However, for general
stochastic partial differential equations, random invariant manifolds consist of samples
that are subsets of an infinite dimensional space. Thus, it is difficult to describe random
invariant manifolds, let alone the dynamics of them. Many authors have attempted to
describe and approximate such invariant manifolds.

If the Brownian motion has the form W(t, ω) = ω(t), then for each δ ∈ R, define
G◦ : Ω→ R by

G◦(ω) =
1
δ

ω(δ),

we have
G◦(θtω) =

1
δ
(ω(t + δ)−ω(t)),

where θt is the Wiener shift. G◦(θtω) can be viewed as an approximation of white noise. It
was proved in [5,6] that as δ→ 0,

Wδ(t, ω) =
∫ t

0
G◦(θsω)ds

converges to W(t, ω) uniformly on any finite time interval, almost surely. In [6–8], the
authors used the same approximation to study random invariant manifolds and invariant
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foliations of autonomous systems. In [9,10], the authors considered stochastic evolution-
ary equations driven by an integrated Ornstein–Uhlenbeck process by another Wong–
Zakai-type approximation of random invariant stable manifolds. Blomker and Wang [11],
Sun et al. [4] have also derived some meaningful results from approximating such in-
variant manifolds. The purpose of the present paper is to extend the result in [9] to a
nonautonomous case. In other words, we approximated the invariant manifolds for a class
of nonautonomous stochastic partial differential equations via the integrated Ornstein–
Uhlenbeck process, which is colored (or correlated) noise. Similar results can be obtained if
we replace the integrated Ornstein–Uhlenbeck process by a stationary stochastic process
G◦(θtω).

Wong and Zakai’ [12,13] conducted the study of approximating a Wiener process by
its piecewise linear counterpart. For many subjects, concerning the asymptotic behavior of
stochastic differential equations, their results are of great importance. Their theorems have
discovered the “correction term” in the limit equation.

The classical Wong–Zakai approximation [12,13] states that when piecewise linear
approximations approach the Brownian motion, the corresponding ordinary integrals con-
verge to the stochastic integral in Stratonovich sense. Moreover, the solution of a stochastic
differential equation (SDE) with Gaussian white noise is approximated by differential equa-
tions with smooth noises, in the Stratonovich sense. In an infinite dimensional case, the
situation becomes more complicated. For stochastic partial differential equations (PDEs),
with space–time white noise, the authors in [14] derived a general Wong–Zakai correction
term instead of the ô-Stratonovich correction term. The pathwise convergence between a
family of random PDEs and the original stochastic PDE was finally derived. The result
of [14] has been generalized to the generalized KPZ equations, where one has the Itô’s isom-
etry property for the solution, see [15]. A weak convergence result was derived by Tessitore
and Zabczyk [16] for Wong–Zakai approximations for a stochastic PDE of multiplicative
noise. Moreover, the Wong–Zakai approximation for stochastic evolutionary equations has
also been considered by other authors—references [17–19] are included among the earliest
investigations. Important contributions are also due to [20–22]. These authors mainly
considered the case of one space variable for stochastic evolution equations. For stochastic
differential equations driven by semi-martingales, an approximation theorem can be found
in [23], where the authors use a sequence of processes with piecewise monotonic sample
functions to approximate semi-martingales. When the state space is a domain in Rd, the
boundary conditions are indispensable. We refer to [24–27] for more interesting work.

In this paper, we focus on a Wong–Zakai type approximation of a random invari-
ant manifold for random dynamical systems. The systems are generated by stochastic
evolutionary equations, which are driven by the integrated Ornstein–Uhlenbeck process.

Consider the following non-autonomous stochastic PDE in a separable Hilbert space
H with norm | · |.

du(t)
dt

= A(t)u(t) + F(t, u(t)) + gḂ(t), (1)

where g is an element in H. Precise definitions of A(t), B(t), and F will be provided in the
next section.

We approximate the system above by the following system:

duε(t)
dt

= A(t)uε(t) + F(t, uε(t)) + gΦ̇ε(t), . (2)

Φε is an integrated Ornstein–Uhlenbeck process whose definition will be provided in the
following section. We first show that, as ε tends 0, the solution u can be approximated by
uε. Then we prove the Wong–Zakai type approximation of the random invariant manifold.

The paper is organized as follows. After we recall some basic concepts for random
dynamical systems in Section 2, we will show that hyperbolic equilibrium/solutions of
perturbation random PDEs converge to that of the original stochastic PDEs, presented in
Section 3.1. The existence theorem for stable manifold is presented in Section 3.2. Then,
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we derive some approximation results for random invariant manifolds for colored noise in
Section 4.

2. Random Dynamical Systems

In this section, we first introduce some basic notations, assumptions, and concepts on
stochastic evolutionary equations and random dynamical systems.

2.1. Stochastic Evolutionary Equations with Additive Noise

Consider the non-autonomous stochastic PDE in H,

du(t)
dt

= A(t)u(t) + F(t, u(t)) + gḂ(t). (3)

Here, B(t) is a standard scalar Brownian motion. Denote the domain of the oper-
ator A(t) by D(A(t)). Under the following hypotheses, system (3) has a unique mild
solution [28].

Hypothesis 1 (H1). The linear operators A(t) : D(A(t))→ H generates a two-parameter family
of a strongly continuous semigroup T(t, τ) on H, which satisfies

∂T(t, τ)

∂t
= A(t)T(t, τ) (4)

∂T(t, τ)

∂τ
= −T(t, τ)A(τ) (5)

and there exists a continuous projection P+
t on H, such that, for any x ∈ H,

|T(t, τ)P+
τ x| ≤ Keα(t−τ)|x|, t ≤ τ,

|T(t, τ)P−τ x| ≤ Keβ(t−τ)|x|, t ≥ τ,
(6)

where P−τ = I − P+
τ , α > 0 > β and K is positive. Denote H−τ = P−τ H and H+

τ = P+
τ H. Then,

H = H+
τ ⊕ H−τ . We will call H−τ the stable subspace and H+

τ the unstable subspace, respectively.

Hypothesis 2 (H2). The nonlinear term F is Lipschitz continuous on the second variable, i.e., for
any x1, x2 ∈ H,

|F(τ, x1)− F(τ, x2)| ≤ L|x1 − x2|,

with the Lipschitz constant L > 0.

Hypothesis 3 (H3). The family of operators A(t) is uniformly bounded in the operator norm:
|A(t)| ≤ C for all t ∈ R.

2.2. Random Cocycle

Let (Ω,F ,P, {θt}t∈R) be an ergodic metric dynamical system (briefly MDS θ).

Remark 1. A family of mappings ϕ : R×R×Ω× H → H, (t, τ, ω, x) 7→ ϕ(t, τ, ω, x) is called
a random cocycle on H over an MDS θ if for all s, t ∈ R, τ ∈ R, and ω ∈ Ω, the following
statements are satisfied:

1. ϕ(., τ, ., .) : R×Ω× H → H is (B(R)⊗F ⊗B(H),B(H))−measurable;
2. ϕ(0, τ, ω, .) is the identity on H;
3. ϕ(t, τ, ω, .) = ϕ(t, s, θs−τω, ϕ(s, τ, ω, .)).

A random cocycle ϕ is said to be continuous in H if the mapping ϕ(0, τ, ω.): H → H
is continuous for each t ∈ R, τ ∈ R, and ω ∈ Ω. Then ϕ together with the MDS θ form a
non-autonomous random dynamical system.
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2.3. A Random Equation Approximating a Stochastic Equation

Let Bt be a two-sided Brownian motion with trajectories in the space C0(R,R) of real
continuous functions defined on R, taking zero value at t = 0. This set is equipped with
the compact open topology. A set Ω is called {θt}t∈R-invariant if θtΩ = Ω for t ∈ R. We
will consider, instead of the whole C0(R,R), a {θt}t∈R-invariant subset Ω ⊂ C0(R,R) of
P-measure one and the trace g-algebra F of B(C0(R,R)) with respect to Ω.

The driving system θ = (θt, t ∈ R) on Ω is defined by the shifts

(θtω)(s) := ω(t + s)−ω(t), ω ∈ Ω. (7)

The mapping (t, ω)→ θtω is continuous, thus measurable. The probability measure
is ergodic and θ-invariant, i.e.,

P(θ−1
t (A)) = P(A)

for all A ∈ F .
We consider a Langevin equation{

dzε = − 1
ε zεdt + 1

ε dBt, ε > 0
zε(0) = 1

ε

∫ 0
−∞ e

s
ε dBs.

(8)

For simplicity, from now on, we will assume ε to be discrete, say, ε = 1
n , n ∈ N+.

So, ε → 0 actually means n → ∞. A solution of this equation is called an Ornstein–
Uhlenbeck process.

Define

Φε
t ,

∫ t

0
zε(s)ds.

We recall a result from [19]:

Lemma 1. Let Bt be a scalar standard Brownian motion. Then,Φε
t → Bt uniformly in [0, T] almost

surely for every finite T > 0, as ε→ 0.

Moreover, we have the following results:

Lemma 2. Let B(t) be a standard Brownian motion on Rd. Then we have (I) There exists a
{θt : t ∈ R}-invariant set Ω of full measure, such that the sample paths ω(t) of B(t) satisfies

lim
t→±∞

ω(t)
t

= 0, ω ∈ Ω.

(II) The random variable

zε(ω) =
∫ 0

−∞
e

s
ε dB(s) = −

∫ 0

−∞

1
ε

e
s
ε ω(s)ds, ω ∈ Ω,

is well-defined. Moreover,

zε(θtω) = −
∫ 0

−∞

1
ε

e
s
ε θtω(s) ds = ω(t)−

∫ 0

−∞

1
ε

e
s
ε ω(t + s) ds

is the unique stationary solution of (8)
(III)

lim
t→±∞

|zε(θtω)|
|t| = 0 and lim

t→±∞

1
t

∫ t

0
zε(θsω)ds = 0.

(IV) For any fixed γ > 0,

lim
ε→0+

sup
0≤t≤T

∫ t

0
eγ(t−s)|Φε(s)− B(s)|ds = 0,



Mathematics 2022, 10, 992 5 of 12

and for any η ≥ 0,

lim
ε→0+

sup
0≤t<∞

e−ηt|
∫ ∞

t
T(t, s)P+

s gd(Bs −Φε
s)(ω)| = 0.

(V) Similarly, for any fixed γ > 0,

lim
ε→0+

sup
−T≤t≤0

∫ 0

t
e−γ(t−s)|Φε(s)− B(s)|ds = 0,

and for any η ≥ 0,

lim
ε→0+

sup
−∞<t≤0

eηt
∫ t

−∞
T(t, s)P−s gd(Bs −Φε

s)(ω)| = 0.

Proof. For the proof of part (I) to (III), see [1]. Since the proof of (IV) applies to (V), we only
prove (IV). Denote

sup
0≤t<∞

e−ηt|
∫ ∞

t
T(t, s)P+

s gd(Bs −Φε
s)(ω)|

by I1. By integration by parts for s, Equations (5) and (6), the trajectory property of B(t)
and Φε

t in (III), and the property of the two-parameter operator T(t, s), we can derive that∫ t

∞
T(t, s)P+

s gd(Bs −Φε
s)(ω) = P+

t g(Bt −Φε
t)−

∫ t

∞
T(t, s)P+

s A(s)g(Bs −Φε
s)(ω)ds.

Thus,

I1 ≤ sup
t∈[0,∞)

e−ηt|P+
s g||Bt −Φε

t |+ sup
t∈[0,∞)

e−ηt
∫ ∞

t
|T(t, s)P+

s A(s)g||(Bs −Φε
s)(ω)|ds

≤ sup
t∈[0,∞)

e−ηt|P+
s g||Bt −Φε

t |+ sup
t∈[0,∞)

e−ηt
∫ ∞

t
e−α(s−t)|A(s)g||(Bs −Φε

s)(ω)|ds.
(9)

Denote the two terms of the last inequality above by I11 and I12, respectively. It is
easy to see that I11 → 0 as ε→ 0. As to I12, by the trajectory property of Bt and Φε

t (I) and
(III), it is not difficult to derive that: for ∀ε̃, there exists T, such that e−

αt
2 |Bt −Φε

t | ≤ ε̃, if
t ≥ T. By Lemma 1, for every finite T, there exists a ε0 > 0 such that |Bt − Φε

t | ≤ ε̃ for
ε ≤ ε0, t ∈ [0, T].

If t ≥ T, then, with the aid of (H3),

e−ηt
∫ ∞

t
e−α(s−t)|A(s)g||(Bs −Φε

s)(ω)|ds

≤ C|g|ε̃e−(η−α)t
∫ ∞

t
e−

αs
2 ds

<
2C|g|ε̃e−(η−α)t

α
.

If t ≤ T, with the aid of (H3), we have
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e−ηt
∫ ∞

t
e−α(s−t)|A(s)g||(Bs −Φε

s)(ω)|ds

= e−ηt
∫ T

t
e−α(s−t)|A(s)g||(Bs −Φε

s)(ω)|ds

+ e−ηt
∫ ∞

T
e−α(s−t)|A(s)g||(Bs −Φε

s)(ω)|ds

≤ e−(η−α)tC|g|ε̃
∫ T

t
e−αsds + e−(η−α)tC|g|ε̃

∫ ∞

T
e−

αs
2 ds.

Hence,

I12 <
C|g|ε̃

α
+

2C|g|ε̃
α

,

which means that I12 → 0 as ε→ 0.

We consider the following process

duε(t)
dt

= A(t)uε(t) + F(t, uε(t)) + gΦ̇ε(t) (10)

to approximate the original system (3).
Equation (10) is a Wong–Zakai type approximation [12,13,16] for Equation (3). We

will consider the dynamical behavior of (3) by random invariant manifold [1–3,29,30].
Random invariant manifolds are geometric objects useful for understanding dynamical
behavior near the random fixed point under stochastic influences. In detail, under some
gap conditions, we will show that the random invariant manifold of (10) converges to that
of (3) as ε tends to 0.

3. Existence of Invariant Manifold

In order to model a non-autonomous system defined on Hilbert space H, we need
the two-parameter flow setup (for example, see [31]) to define the dynamical system and
invariant set.

φ(t, u, ω)φ(u, s, ω)x = φ(t, s, ω)x,

where φ depends measurably on its variables.

Remark 2. A collection of nonempty closed sets M = {M(s, ω)}ω∈Ω, in a complete separable
metric space (H, dH), is called a random set if for any x ∈ H

ω → inf
y∈M(s,ω)

dH(x, y)

is a random variable.

Remark 3. A random set M(s, ω) is called positive invariant set of φ, if, for all s ≤ t,

φ(t, s, ω)M(s, ω) ⊂ M(t, ω).

If an invariant set M∓(τ, ω) can be represented by a graph of a (Lipschitz) mapping

h∓(τ, ·, ω) : H∓τ → H±τ

such that
M−(τ, ω) = {(τ, ξ, h−(τ, ξ, ω))|ξ ∈ H−τ } (11)

and
M+(τ, ω) = {(h+(τ, ξ, ω), τ, ξ)|ξ ∈ H+

τ }, (12)
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then M−(τ, ω) is called a (Lipschitz) stable manifold and M+(τ, ω) is called a (Lipschitz)
unstable manifold. Here, H−τ is the stable subspace and H+

τ is the unstable subspace.

3.1. Existence Theorem for Hyperbolic Equilibrium of Cocycle

Here, we briefly introduce a sufficient condition to ensure the existence of hyper-
bolic equilibriums for Equations (3) and (10). For details, we refer to Section 2.4 in [3].
First, suppose the nonlinear term is Lipschitz continuous with the Lipschitz constant L
and KL( 1

α−η + 1
η−β ) < 1. By contraction mapping arguments, the fixed point defines a

measurable mapping u∗(τ, τ, ω) as below,

u∗(τ, τ, ω) =
∫ τ

−∞
T(τ, s)P−s F(s, u∗(s, τ, ω))ds +

∫ τ

∞
T(τ, s)P+

s F(s, u∗(s, τ, ω))ds

+
∫ τ

−∞
T(τ, s)P−s gdB(s)(ω) +

∫ τ

∞
T(τ, s)P+

s gdB(s)(ω).

Then, similar to Proposition 2.4.2 of [3], it can be checked that the above u∗(τ, τ, ω)
is the desired unique hyperbolic equilibrium. u∗(t, τ, ω) is the hyperbolic solution with
initial value u∗(τ, τ, ω).

For each positive η, with η < a, define Banach space

C+
η = {φ : [τ, ∞)→ H | φ is continuous and sup

t∈[τ,∞)

e−η(t−τ)|φ(t)| < ∞}

with norm
|φ(·)|C+

η
= sup

t∈[τ,∞)

e−η(t−τ)|φ(t)|,

and

C−η = {φ : (−∞, τ]→ H | φ is continuous and sup
t∈(−∞,τ]

e−η(t−τ)|φ(t)| < ∞}

with norm
|φ(·)|C−η = sup

t∈(−∞,τ]
e−η(t−τ)|φ(t)|.

Denote Cη = C−η ∩ C+
η and define the norm as

|φ(·)|Cη
= |φ(·)|C−η + |φ(·)|C+

η
.

Taking the above arguments, we give the following result on the hyperbolic equilib-
rium.

Theorem 1. Let u∗(t), u∗,ε(t) be the hyperbolic solutions of (3) and (10), respectively. As-
sume that the exponential dichotomy parameters K, α, β and the Lipschitz constant L satisfy
the gap condition

K L (
1

η − β
+

1
α− η

) < 1,

and there exists a positive constant C, such that, supt |A(t)g| ≤ C. Then the hyperbolic
solutions of (10) converge to that of (3); that is, limε→0+ |u∗,ε(·)− u∗(·)|Cη

= 0, i.e.,

lim
ε→0+

[ sup
t∈[τ,+∞)

e−ηt|u∗,ε(t)− u∗(t)|+ sup
t∈(−∞,τ]

eηt|u∗,ε(t)− u∗(t)|] = 0.
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Proof. By the expression of the mapping for the fix point u∗(τ, τ, ω), we obtain that,

|u∗,ε(t)− u∗(t)| ≤ |
∫ t

−∞
T(t, s)P−s [F(s, u∗,ε(s, τ, ω))− F(s, u∗(s, τ, ω))]ds|

+ |
∫ t

∞
T(t, s)P+

s [F(s, u∗,ε(s, τ, ω))− F(s, u∗(s, τ, ω))]ds|

+ |
∫ t

∞
T(t, s)P+

s gd(B(s)−Φε(s))(ω)|

+ |
∫ t

−∞
T(t, s)P−s gd(B(s)−Φε(s))(ω)|.

Denote the sum of the first two terms on the right side by I. By the Hypothesis 1(H1),
we can derive that

I ≤
∫ t

−∞
e−β(s−t)P−s |F(s, u∗,ε(s, τ, ω))− F(s, u∗(s, τ, ω))|ds

+
∫ ∞

t
e−α(s−t)P+

s |F(s, u∗,ε(s, τ, ω))− F(s, u∗(s, τ, ω))|ds

≤
∫ t

−∞
e−β(s−t)KL|u∗,ε(s, τ, ω)− u∗(s, τ, ω)|ds

+
∫ ∞

t
e−α(s−t)KL|u∗,ε(s, τ, ω)− u∗(s, τ, ω)|ds

Thus, we can obtain that

[1− KL(
1

α− η
+

1
η − β

)][|u∗,ε(s, τ, ω)− u∗(s, τ, ω)|C+
η
+ |u∗,ε(s, τ, ω)− u∗(s, τ, ω)|C−η ]

≤ |
∫ ·

∞
T(·, s)P+

s gd(B(s)−Φε(s))(ω)|Cη
+ |

∫ ·
−∞

T(·, s)P−s gd(B(s)−Φε(s))(ω)|Cη

Then by (IV), (V) of Lemma 2, this result follows. This completes the proof.

Remark 4. Here, we use the spectral gap condition KL( 1
α−η + 1

η−β ) < 1, the same as [2], which
is sufficient to ensure the existence of the hyperbolic stationary solution and the invariant manifold
by the contraction mapping argument. We should note that this strategy has been utilized by
others. For example, in [29], a different gap condition (3.4) was formulated to ensure the strict
contraction of a mapping, of which the unique fixed point was the stationary solution. We also
present a rough interpretation of the form of the gap condition here. It is easy to deduce from the gap
condition that the larger L signifies a larger gap between exponents α and β, i.e., α− β. While a
large Lipschitz constant means a big fluctuation of the nonlinear function F, the large gap α− β
implies hyperbolicity of the linear operator A. Therefore, in some sense, the gap condition actually
requires that the fluctuations of nonlinear function not destroy the hyperbolicity of the linear term
A. We should note that this condition cannot always be satisfied. However, quite a large class
of equations satisfy this condition locally. If the condition is satisfied locally, then the stationary
solution and invariant manifolds exist locally.

3.2. Existence Theorem for Invariant Manifold

Denote the solutions of Equations (3) and (10) by φ(t, ω, u0) and φε(t, ω, uε
0) with the

initial data φ(0, ω, u0) = (P−0 u0, P+
0 u0) and φε(0, ω, uε

0) = (P−0 uε
0, P+

0 uε
0), respectively.

Let

M−(ω) = {u0 ∈ H | φ(·, ω, u0) ∈ C+
η }; Mε,−(ω) = {uε

0 ∈ H | φε(·, ω, uε
0) ∈ C+

η }.

Now we formulate the existence theorem of stable manifolds for the random sys-
tems (3) and (10). In fact, by the method of the standard Banach fixed point argument, we
have the following result [2]:
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Lemma 3 (Random stable manifold). Suppose the gap condition

KL(
1

η − β
+

1
α− η

) < 1

is satisfied by the parameters K, α, β, and the Lipschitz constant L in Hypotheses 1(H1) and 2(H2).
Then the stochastic systems of (3) and random systems (10) possess random stable manifolds.
Moreover, the random stable manifolds for (3) are represented by

M−(τ, ω) = {(ξ, h−(τ, ξ, ω))
∣∣ξ ∈ H−τ },

where h−(τ, ξ, ω) : H−τ → H+
τ is Lipschitz continuous mapping, as below,

h−(τ, ξ, ω) =
∫ τ

∞
T(τ, s)P+

s F(s, us)ds +
∫ τ

∞
T(τ, s)P+

s gdB(s).

The random stable manifolds for (10) are represented by

Mε,−(τ, ω) = {(ξ, hε,−(τ, ξ, ω))
∣∣ξ ∈ H−τ },

where hε,−(τ, ξ, ω) : H−τ → H+
τ is Lipschitz continuous mapping as below,

hε,−(τ, ξ, ω) =
∫ τ

∞
T(τ, s)P+

s F(s, uε(s))ds +
∫ τ

∞
T(τ, s)P+

s gdΦε
s.

Proof. The first part of this lemma is by the method of the standard Banach fixed point
argument, as [2]. As for the second part, for (10), we have the graph of the random manifold
as follows,

hε,−(τ, ξ, ω) =
∫ τ

∞
T(τ, s)P+

s F(s, uε(s))ds +
∫ τ

∞
T(τ, s)P+

s gdΦε
s.

For (3), by random transformation v(t) = u(t)− u∗(t), v(t) satisfies a random PDE,
as below,

dv(t)
dt

= A(t)v(t) + F(t, u(t))− F(t, u∗(t)).

Then, similar to [2], we can find the graph of random manifold for v(t) given by

h̃−(τ, ξ, ω) =
∫ τ

∞
T(τ, s)P+

s [F(s, v(s) + u∗(s))− F(s, u∗(s))]ds.

By the fact that v(t) = u(t)− u∗(t) and following expression for hyperbolic solutions
of (3),

u∗(t, τ, ω) =
∫ t

−∞
T(t, s)P−s F(s, u∗(s, τ, ω))ds +

∫ t

∞
T(t, s)P+

s F(s, u∗(s, τ, ω))ds

+
∫ t

−∞
T(t, s)P−s gdB(s)(ω) +

∫ t

∞
T(t, s)P+

s gdB(s)(ω),

we have the graph of random manifold for u given by

h−(τ, ξ, ω) =
∫ τ

∞
T(τ, s)P+

s F(s, u(s))ds +
∫ τ

∞
T(τ, s)P+

s gdB(s).

4. Approximation of Invariant Manifold

In this section, we will consider a type of Wong–Zakai approximation of invariant
manifolds for (3), i.e., the Gaussian white noise is approached by color noises.
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We formulate the main result of this paper:

Theorem 2. Assume that the assumptions (H1–H3) and the gap condition in Theorem 1
hold. Then the invariant manifolds of (10) converge to that of (3); that is,

lim
ε→0+

|hε,−(τ, ξ, ω)− h−(τ, ξ, ω)| = 0.

Proof. By Theorem 3, we have,

hε,−(τ, ξ, ω) =
∫ τ

∞
T(τ, s)P+

s F(s, uε(s))ds +
∫ τ

∞
T(τ, s)P+

s gdΦε
s,

h−(τ, ξ, ω) =
∫ τ

∞
T(τ, s)P+

s F(s, u(s))ds +
∫ τ

∞
T(τ, s)P+

s gdB(s).

Thus, we obtain that

|hε,−(τ, ξ, ω)− h−(τ, ξ, ω)|

≤ |
∫ τ

∞
T(τ, s)P+

s [F(s, uε(s))− F(s, u(s))]ds|

+ |
∫ τ

∞
T(τ, s)P+

s g[dΦε(s)− dB(s)]

≤
∫ ∞

τ
KLeα(τ−s)|uε(s)− u(s)|ds

+
∫ ∞

τ
KLeα(τ−s)|A(s)g||Φε(s)− B(s)|ds.

The solution uε(t) on the manifold Mε,−(τ, ω) is as follows,

uε(t) = T(t, τ)ξ +
∫ t

τ
T(t, s)P−s F(s, uε(s))ds +

∫ t

τ
T(t, s)P−s gdΦε(s)

+
∫ t

∞
T(t, s)P+

s F(s, uε(s))ds +
∫ t

∞
T(t, s)P+

s gdΦε
s.

Similarly, on the manifold M−(τ, ω), u(t) is as follows,

u(t) = T(t, τ)ξ +
∫ t

τ
T(t, s)P−s F(s, u(s))ds +

∫ t

τ
T(t, s)P−s gdB(s)

+
∫ t

∞
T(t, s)P+

s F(s, u(s))ds +
∫ t

∞
T(t, s)P+

s gdB(s).

Thus,

uε(t)− u(t) =
∫ t

τ
T(t, s)P−s [F(s, uε(s))− F(s, u(s))]ds

+
∫ t

∞
T(t, s)P+

s [F(s, uε(s))− F(s, u(s))]ds

+
∫ t

τ
T(t, s)P−s g[dΦε(s)− dB(s)]

+
∫ t

∞
T(t, s)P+

s g[dΦε(s)− dB(s)].
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We have

|uε(·)− u(·)|C+
η
≤ KL(

1
η − β

+
1

α− η
)|uε(·)− u(·)|C+

η

+ sup
t∈[τ,∞)

e−η(t−τ)|
∫ t

τ
T(t, s)P−s g[dΦε(s)− dB(s)]

+
∫ t

∞
T(t, s)P+

s g[dΦε(s)− dB(s)]|.

Thus,

|uε(·)− u(·)|C+
η
≤ C sup

t∈[τ,∞)

e−η(t−τ)|
∫ t

τ
T(t, s)P−s g[dΦε(s)− dB(s)]

+
∫ t

∞
T(t, s)P+

s g[dΦε(s)− dB(s)]|.

Then, by (IV), (V) of Lemma 2, we can deduce that,

|hε,−(τ, ξ, ω)− h−(τ, ξ, ω)| = o(1).

This completes the proof.

5. Conclusions

The Wong–Zakai approximation for the solution of stochastic differential equations
has been studied by many authors since 1965. However, most differential equations that
are investigated are autonomous. Moreover, to the best of our knowledge, few researchers
have investigated the approximation of Gaussian white noise via the Ornstein–Uhlenbeck
process, which is more suitable for calculating and programming. In view of this, we
approximated a stochastic nonautonomous dynamical system by random nonautonomous
dynamical systems driven by the integrated Ornstein–Uhlenbeck process. First, in Theorem
1, we obtained the convergence of the hyperbolic solutions of (10) to that of (3) in a suitable
space. Then, by the method of the standard Banach fixed point argument, we prove in
Lemma 3 the existence of the random stable manifolds for systems (10) and (3) and present
the mapping for the graph of the random manifolds, respectively. Finally, we derive
the main result of this paper in Theorem 2, i.e., the approximation of the random stable
manifolds of (10) to that of (3).
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