# Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{*}

## Abstract

**:**

## 1. Introduction

#### Governing Model

## 2. Mathematical Start-Up

## 3. Application of SVP

#### 3.1. Kerr Law

#### 3.2. Parabolic Law

#### 3.3. Polynomial Law

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## References

- Alqahtani, R.T.; Babatin, M.M.; Biswas, A. Bright optical solitons for Lakshmanan–Porsezian–Daniel model by semi–inverse variational principle. Optik
**2018**, 154, 109–114. [Google Scholar] [CrossRef] - Biswas, A.; Milovic, D.; Kumar, S.; Yildirim, A. Perturbation of shallow water waves by semi–inverse variational principle. Indian J. Phys.
**2013**, 87, 567–569. [Google Scholar] [CrossRef] - Biswas, A.; Alqahtani, R.T. Optical soliton perturbation with complex Ginzburg–Landau equation by semi–inverse variational principle. Optik
**2017**, 147, 77–81. [Google Scholar] [CrossRef] - Biswas, A.; Alqahtani, R.T. Chirp–free bright optical solitons for perturbed Gerdjikov–Ivanov equation by semi–inverse variational principle. Optik
**2017**, 147, 72–76. [Google Scholar] [CrossRef] - Biswas, A.; Asma, M.; Guggilla, P.; Mullick, L.; Moraru, L.; Ekici, M.; Alzahrani, A.K.; Belic, M.R. Optical soliton perturbation with Kudryashov’s equation by semi–inverse variational principle. Phys. Lett. A
**2020**, 384, 126830. [Google Scholar] [CrossRef] - Biswas, A.; Ekici, M.; Dakova, A.; Khan, S.; Moshokoa, S.P.; Alshehri, H.M.; Belic, M.R. Highly dispersive optical soliton perturbation with Kudryashov’s sextic–power law nonlinear refractive index by semi–inverse variation. Results Phys.
**2021**, 27, 104539. [Google Scholar] [CrossRef] - Biswas, A.; Edoki, J.; Guggilla, P.; Khan, S.; Alzahrani, A.K.; Belic, M.R. Cubic–quartic optical soliton perturbation with Lakshmanan–Porsezian–Daniel model by semi–inverse variational principle. Ukr. J. Phys. Opt.
**2021**, 22, 122–127. [Google Scholar] [CrossRef] - Biswas, A.; Dakova, A.; Khan, S.; Ekici, M.; Moraru, L.; Belic, M.R. Cubic–quartic optical soliton perturbation with Fokas–Lenells equation by semi–inverse variation. Semicond. Phys. Quantum Electron. Optoelectron.
**2021**, 24, 431–435. [Google Scholar] [CrossRef] - Collins, T.; Kara, A.H.; Bhrawy, A.H.; Triki, H.; Biswas, A. Dynamics of shallow water waves with logarithmic nonlinearity. Rom. Rep. Phys.
**2016**, 68, 943–961. [Google Scholar] - Girgis, L.; Biswas, A. A study of solitary waves by He’s variational principle. Wave Random Complex.
**2011**, 21, 96–104. [Google Scholar] [CrossRef] - He, J.H. Semi-inverse method and generalized variational principles with multi-variables in elasticity. Appl. Math. Mech.
**2000**, 21, 797–808. [Google Scholar] - He, J.H. Variational principle and periodic solution of the Kundu–Mukherjee–Naskar equation. Results Phys.
**2020**, 17, 103031. [Google Scholar] [CrossRef] - Kheir, H.; Jabbari, A.; Yildirim, A.; Alomari, A.K. He’s semi–inverse method for soliton solutions of Boussinesq system. World J. Model. Simul.
**2013**, 9, 3–13. [Google Scholar] - Kohl, R.; Milovic, D.; Zerrad, E.; Biswas, A. Optical solitons by He’s variational principle in a non–Kerr law media. J. Infrared Millim. Terahertz Waves
**2009**, 30, 526–537. [Google Scholar] [CrossRef] - Kohl, R.W.; Biswas, A.; Ekici, M.; Zhou, Q.; Khan, S.; Alshomrani, A.S.; Belic, M.R. Highly dispersive optical soliton perturbation with cubic–quintic–septic refractive index by semi–inverse variational principle. Optik
**2019**, 199, 163322. [Google Scholar] [CrossRef] - Kohl, R.W.; Biswas, A.; Ekici, M.; Zhou, Q.; Khan, S.; Alshomrani, A.S.; Belic, M.R. Sequel to highly dispersive optical soliton perturbation with cubic–quintic–septic refractive index by semi–inverse variational principle. Optik
**2020**, 203, 163451. [Google Scholar] [CrossRef] - Li, X.W.; Li, Y.; He, J.H. On the semi–inverse method and variational principle. Therm. Sci.
**2013**, 17, 1565–1568. [Google Scholar] [CrossRef] - Liu, H.M. The variational principle for Yang–Mills equation by semi–inverse method. Facta Univ. Ser. Mech. Autom. Control Robot.
**2004**, 4, 169–171. [Google Scholar] - Liu, W.Y.; Yu, Y.J.; Chen, L.D. Variational principles for Ginzburg–Landau equation by He’s semi–inverse method. Chaos Solit. Fractals
**2007**, 33, 1801–1803. [Google Scholar] [CrossRef] - Ozis, T.; Yildirim, A. Application of He’s semi–inverse method to the nonlinear Schrodinger equation. Comput. Math. Appl.
**2007**, 54, 1039–1042. [Google Scholar] [CrossRef] [Green Version] - Sassaman, R.; Heidari, A.; Biswas, A. Topological and non–topological solitons of nonlinear Klein–Gordon equations by He’s semi–inverse variational porinciple. J. Franklin Inst.
**2010**, 347, 1148–1157. [Google Scholar] [CrossRef] - Singh, S.S. Bright and dark 1–soliton solutions to perturbed Schrodinger–Hirota equation with power law nonlinearity via semi–inverse variation method and ansatz method. Int. J. Phys. Res.
**2017**, 5, 39–42. [Google Scholar] [CrossRef] - Tao, Z.L. Solving the breaking soliton equation by He’s variational method. Comput. Math. Appl.
**2009**, 58, 2395–2397. [Google Scholar] [CrossRef] - Yan, W.; Liu, Q.; Zhu, C.M.; Zhao, Y.; Shi, Y. Semi–inverse method to the Klein–Gordon equation with quadratic nonlinearity. Appl. Comput. Electromagn. Soc. J.
**2018**, 33, 842–846. [Google Scholar] - Zayed, E.M.E.; Gepreel, K.A.; El–Horbaty, M.; Biswas, A.; Yildirim, Y.; Alshehri, H.M. Highly dispersive optical solitons with complex Ginzburg–Landau equation having six nonlinear forms. Mathematics
**2021**, 9, 3270. [Google Scholar] [CrossRef] - Zhang, J.; Yu, J.Y.; Pan, N. Variational principles for nonlinear fiber optics. Chaos Solit. Fractals
**2005**, 24, 309–311. [Google Scholar] [CrossRef] - Abdel–Gawad, H.I. Chirped, breathers, diamond and W-shaped optical waves propagation in nonself–phase modulation medium. Biswas–Arshed equation. Int. J. Mod. Phys. B
**2017**, 35, 2150097. [Google Scholar] [CrossRef] - Abdel–Gawad, H.I. A generalized Kundu–Eckhaus equation with an extra–dispersion: Pulses configuration. Opt. Quantum Electron.
**2021**, 53, 705. [Google Scholar] [CrossRef] - Abdel–Gawad, H.I. Study of modulation instability and geometric structures of multisolitons in a medium with high dispersivity and nonlinearity. Pramana
**2021**, 95, 146. [Google Scholar] [CrossRef] - Tantawy, M.; Abdel–Gawad, H.I. On multi–geometric structures optical waves propagation in self–phase modulation medium: Sasa–Satsuma equation. Eur. Phys. J. Plus
**2020**, 135, 928. [Google Scholar] [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Biswas, A.; Berkemeyer, T.; Khan, S.; Moraru, L.; Yıldırım, Y.; Alshehri, H.M.
Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation. *Mathematics* **2022**, *10*, 987.
https://doi.org/10.3390/math10060987

**AMA Style**

Biswas A, Berkemeyer T, Khan S, Moraru L, Yıldırım Y, Alshehri HM.
Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation. *Mathematics*. 2022; 10(6):987.
https://doi.org/10.3390/math10060987

**Chicago/Turabian Style**

Biswas, Anjan, Trevor Berkemeyer, Salam Khan, Luminita Moraru, Yakup Yıldırım, and Hashim M. Alshehri.
2022. "Highly Dispersive Optical Soliton Perturbation, with Maximum Intensity, for the Complex Ginzburg–Landau Equation by Semi-Inverse Variation" *Mathematics* 10, no. 6: 987.
https://doi.org/10.3390/math10060987