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1. Introduction

Throughout this paper, graphs are assumed to be connected, undirected and simple
unless otherwise stated, and groups are assumed to be finite. For a graph Γ, the notation
VΓ, EΓ and Aut(Γ) are denoted by its vertex set, edge set, and full group of automorphism
respectively. Let G ≤ Aut(Γ) be a group of automorphism of Γ. Then, Γ is called G-vertex-
transitive or G-edge-transitive if G is transitive on VΓ or EΓ respectively.

An arc in Γ is an ordered pair of edges. The graph Γ is called G-arc transitive if G acts
transitively on the set of all arcs in Γ. For each α ∈ VΓ, let Γ(α) = {β ∈ VΓ|{α, β} ∈ EΓ}
be the set of vertices to which α is adjacent. Then, Γ is called G-locally primitive if the
stabilizer Gα = {x ∈ G|αx = α} acts primitively on Γ(α).

A graph Γ is called (G, s)-arc-transitive for a positive integer s if G acts transitively
on the set of s-arcs of Γ. Then, the Γ is called G-arc-transitive (namely symmetric graph)
when s = 1. Γ is called (G, s)-transitive if it is (G, s)-arc-transitive but not (G, s + 1)-arc-
transitive. We know that the (G, s)-arc-transitive graphs with s ≥ 2 and the arc-transitive
graphs with prime valency are both locally primitive. If Γ is G-locally primitive, then it is
G-edge transitive.

Moreover, if Γ is both G-vertex transitive and G-locally primitive, then Γ is also G-arc
transitive; in this case, Γ is called G-locally primitive arc-transitive. A permutation group G
on a set Ω is called quasiprimitive if each nontrivial normal subgroup of G is transitive on
Ω. The group G is called bi-quasiprimitive if each nontrivial normal subgroup of G has at
most two orbits and there exists at least one normal subgroup of G that has exactly two
orbits. A graph Γ is called G-basic if G is quasiprimitive or bi-quasiprimitive on VΓ for
some G ≤ AutΓ.

The study of locally primitive graphs has a long and rich history and has been one
of the central topics in algebraic graph theory for decades, see for example [1,2]. The
main approach to study locally primitive graphs is global-action analysis, which was first
systematically investigated by Cheryl Praeger in 1992 [2]. It proved that if a graph Γ is
G-locally primitive arc-transitive then either Γ is a G-basic graph or a normal cover of
the basic graphs. In this paper, we mainly study the basic locally primitive arc-transitive
graphs of order 2p2. The classification of some special symmetric graphs of order 2p2 has
received much attention in the literature.
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For instance, references [3–6] gave a classification of arc-transitive graphs of order 2p2

with valency 3, 5 and 7. Reference [7] showed that if a graph of order 2p2 is both vertex
transitive and edge transitive, then it must be arc transitive. Recently, reference [8] gave a
classification of tetravalent non-normal Cayley graphs of order 2p2. Here, we characterised
the locally primitive arc-transitive graphs of order 2p2. There are many typical examples,
including:

(i) the complete graph K2p2 ;
(ii) the complete bipartite graph Kp2,p2 ;
(iii) the graph Kp2,p2 − p2K2 obtained by deleting a 1-factor from Kp2,p2 ;
(iv) the incidence graph PH(d, q) and the nonincidence graph PH(n, q) of the projective

geometry PG(d− 1, q), where n ≥ 3 and qn−1
q−1 = p2;

(v) the bidirect square of the incidence graph D1
2(11, 5) and the nonincidence graph

D1
2(11, 5) of the 2− (11, 5, 1)-design; and

(vi) the bidirect square of PH(d, q) and PH(n, q), where qn−1
q−1 = p.

This paper gives a classification of vertex quasiprimitive or bi-quasiprimitive locally
primitive graph of order 2p2. The case when p = 2 is characterised in [9]. The main result
of the paper is stated as follows.

Theorem 1. Let Γ be a G-locally primitive graph of order 2p2 with valency at least three, where
G ≤ Aut(Γ) and p is an odd prime. Assume that G is quasiprimitive or biquasiprimitive on
the vertices of Γ. Then, Γ is either the bi-normal Cayley graph of the generalized dihedral group
Dih(Z2

p), or one of the following graphs:

(1) Γ ∼= K2p2 , Kp2,p2 , Kp2,p2 − p2K2;
(2) Γ ∼= HS(50) is Hoffman–Singleton graph, and G = PSU(3, 5).Z2;

(3) PH(n, q) or PH(n, q), where n ≥ 3 and qn−1
q−1 = p2;

(4) the standard double cover of Σ×2, where Σ = Kp; or

(5) Γ ∼= Σ×bi2, a bidirect square of Σ, where Σ = D1
2(11, 5) or D1

2(11, 5), PH(n, q) or PH(n, q)

with qn−1
q−1 = p.

After the introduction, we give some preliminary results in Section 2. In Section 3, we
study the basic graphs and complete the proof of Theorem 1.

2. Preliminary Results

First, we collect the description of the eight types of quasiprimitive permutation
groups. Let G be a quasiprimitive permutation group on Ω and let N = soc(G), the socle
of G. Then, either N is the unique minimal normal subgroup of G or N is the product of
two isomorphic and nonabelian minimal normal subgroups of G. Thus, N = T1 × · · · × Tk,
where k ≥ 1 and T is simple. Quasiprimitive permutation group G is divided into eight
different types according to the structure and the action of N by O’Nan–Scott’s theorem.
This was obtained by Praeger in 1992; see [2].

Theorem 2. Let G be a quasiprimitive permutation group on Ω and N = soc(G). Then, G is one
of the eight types as follows:

(1) HA : N is abelian, and thus N = Zk
p is regular on Ω and G ≤ Hol(N) = AGL(d, p), where

p is a prime and k ≥ 1;
(2) HS : N = M × L such that M ∼= L ∼= T are nonabelian simple and regular on Ω, and

G ≤ Hol(T) = T:Aut(T);
(3) HC : N = M × L such that M ∼= L ∼= Tl with l ≥ 2 and T nonabelian simple, and

G ≤ Hol(M) = M:Aut(M);
(4) AS : N = T is a nonabelian simple group, and T ≤ G ≤ Aut(T);
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(5) SD : N = Tk with k ≥ 2 and T nonabelian simple, and Nω = {(t, t, · · · , t)|t ∈ T} ∼= T for
each ω ∈ Ω;

(6) CD : N = Tk with k ≥ 2 and T nonabelian simple, and Nω
∼= Tl with l ≥ 2 and l

∣∣ k, where
ω ∈ Ω;

(7) TW : N is nonabelia, non-simple and minimal normal in G acting regularly on Ω; and
(8) PA : N is a nonabelian minimal normal subgroup that has no regular normal subgroup.

Let a and d be positive integers. A prime r is called a primitive prime divisor of ad − 1
if r divides ad − 1 but not ai − 1 for 1 ≤ i < d. The following lemma is a well-known result
called the Zsigmondy theorem.

Lemma 1 ([10], p. 508). For any positive integers a and d, either ad − 1 has a primitive prime
divisor, or (d, a) = (6, 2) or (2, 2m − 1), where m ≥ 2.

The next lemma can be easily obtained by Lemma 1.

Lemma 2. Let q = r f with r a prime and f a positive integer. Assume that p is an odd prime and
n, m, s are positive integers. Then, the following statements hold.

(1) If qn−1
q−1 = pm, then n is a prime.

(2) If qn−1
q−1 = 2ps, then n = 2.

The following lemma may be deduced from the classification of permutation groups
of the degree of a product of two prime powers (refer to [11]).

Lemma 3. Let T be a nonabelian simple group that has a subgroup H of index 2p2 with p a prime.
Then, T, H and |T:H| are as in Table 1.

Table 1. Non-abelian simple group containing subgroups with index 2p2.

Row T H |T :H| Remark

1 A2p2 A2p2−1 2p2

2 PSU(3, 5) A7 2 · 52

3 PSL(n, q) P1 2p2 = qn−1
q−1 n = 2, and q = 2e

4 PSL(n, q) H1 2p2 = 2 qn−1
q−1 q = 2e

Remark 1. P1 = [qn−1] : (Z q−1
(n,q−1) .PSL(n− 1, q)) ∼= H1.Z4, which is the parabolic subgroup

of PSL(n, q).

The following lemma presents the non-abelian simple groups with a subgroup of
prime-power index.

Lemma 4 (Guralnick [12]). Let T be a non-abelian simple group with a subgroup H of index pe.
Then, T and H are listed in Table 2. Further, either T is 2-transitive on [T : H] or T = PSU(4, 2).
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Table 2. Non-abelian simple group containing subgroups with index pe.

Row T H |T : H|
1 Ape Ape−1 pe

2 PSL(n, q) P1 pe = qn−1
q−1

3 PSL(2, 11) A5 11
4 M11 M10 11
5 M23 M22 23
6 PSU(4, 2) Z4

2 : A5 27

A group X is called a generalized dihedral group, if there exists an abelian subgroup
H and an involution τ such that X = H:〈τ〉 and hτ = h−1 for each h ∈ H. This group is
denoted by Dih(H). Locally primitive graphs must be edge-transitive. The following result
can be easily obtained from ([13] Lemma 2.4).

Lemma 5. Let Γ be a G-locally primitive graph of valency k, where G ≤ Aut(Γ). Assume that G
contains an abelian normal subgroup N that has exactly two orbits on VΓ. Then, Γ is a bi-normal
Cayley graph of the generalized dihegral group Dih(N).

Let Σi be a connected graph with vertex set Vi, where i = 1 or 2. Recall that the
direct product Σ1 × Σ2 is the graph with vertex set V1 ×V2 such that two vertices (v1, v2)
and (v′1, v′2) are adjacent if and only if vi and v′i are adjacent in Σi for i = 1 and 2. For
convenience, we denote Σ×2 = Σ× Σ.

For a graph Σ with vertex set V, the standard double cover is defined to be the graph
Σ̄ with the vertex set V × {1, 2} and two vertices (α, i) and (β, j) are adjacent if and only if
i 6= j and α and β are adjacent in Σ. It is easily shown that Σ̄ = Σ×K2, a bipartite graph
with biparts V × {1} and V × {2}. Clearly, the standard double cover of Kn is Kn,n − nK2.

Lemma 6 ([14] Lemma 3.3). Let Γ = (V, E) be a connected bipartite graph with biparts B1 and
B2. Assume that G ≤ Aut(Γ) is transitive on E and intransitive on V such that Gα and Gβ are
conjugate in G, where α ∈ B1 and β ∈ B2. Then, Γ is the standard double cover of the orbital graph
Σ of G acting on B2. Furthermore, Γ is G-locally primitive if and only if Σ is.

We end this section by introducing the definition of the bidirect product of graphs.
Let Σ be a connected bipartite graph with biparts U and W. The bidirect square Σ×bi2 is
defined to be the graph with vertex set (U ×U) ∪ (W ×W) such that (u1, u2) ∼ (w1, w2)
if and only if that both u1 ∼ w1 and u2 ∼ w2 in Σ (where ∼ denotes adjacency). Clearly,
Σ×bi2 is a connected component of Σ×2.

3. Basic Graphs

In this section, let Γ be a G-locally primitive and vertex-transitive graph of order 2p2,
where G ≤ AutΓ and p is an odd prime. The vertex-quasiprimitive case is considered in
Section 3.1, and the vertex-biquasiprimitive case is studied in Section 3.2.

3.1. Vertex-Quasiprimitive Case

Suppose that G is quasiprimitive on VΓ. Then, G is a permutation group of degree 2p2.
Set N := soc(G), which is the product of all minimal normal subgroups of G. By Theorem 2,
G is of type AS or PA.

We first give an example satisfying the main theorem.

Example 1. Let X = PSU(3, 5).Z2 and H(∼= S7) be a maximal subgroup of X. By Magma, there
exists an involution g ∈ X\H such that 〈H, g〉 = X and H ∩ Hg = A6.Z2. Define a coset
graph HS(50) := Cos(X, H, HgH). A calculation by Magma shows that Aut(Γ) = X, HS(50) is
(X, 3)-transitive, which is essentially the Hoffman–Singleton graph of order 50 with valency 7.
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Now, we consider the case that G is almost simple.

Lemma 7. Suppose that G is almost simple and quasiprimitive on VΓ. Then, Γ is 2-arc transitive,
and Γ is one of the following:

(1) Γ ∼= K2p2 and soc(G) = A2p2 or PSL(2, q);
(2) Γ ∼= HS(50) is a Hoffman–Singleton graph, which is a 3-transitive non-Cayley graph.

Proof. Note that G is quasiprimitive on VΓ and T = soc(G). Then

Gα/Tα
∼= Gα/T ∩ Gα

∼= TGα/T ∼= G/T ∼= O,

where O ≤ Out(T). Thus, G is primitive if and only if T is primitive, and |VΓ| = |αG| =
|αT | = |T : Tα| = 2p2 for some α ∈ VΓ. Thus, the couple (T, Tα) is listed in Table 1.

For row 1, T = soc(G) = A2p2 is primitive on VΓ, and T is 2-transitive on [T : Tα].
Thus, it follows that Γ ∼= K2p2 is a complete graph. Since G = Aut(Γ) = S2p2 , Γ is (G, 2)-arc
transitive. Clearly, Γ is G-locally primitive arc-transitive.

For row 2, T = soc(G) = PSU(3, 5), and Tα = A7. Since Gα is primitive on Γ(α), the
arc stabilizer Gαβ is a maximal subgroup of the vertex stabilizer Gα for each β ∈ Γ(α).
Note that G/T ∼= Gα/Tα ≤ Out(T). Then, Tαβ is a maximal subgroup of Tα. Thus,
k = val(Γ) = |Gα : Gαβ| = |Tα : Tαβ|. By Atlas [15], one knows that the possible value of
k is 7, 21 or 35. If k = 7, by Example 1, Γ ∼= HS(50), which is a 3-transitive non-Cayley
graph. If k = 21 or 35, by Magma, Tαβ = PSL(2, 7), S5 or (A4 × Z3) : Z2. In these cases,
one has that NT(Tαβ) = Tαβ. Thus, Γ is not connected. Therefore, there is no graphs in
these cases.

For row 3, T = soc(G) = PSL(2, q), and Tα = [q] : Zq+1, which is a parabolic subgroup
of T. Since PSL(2, q) is 2-transitive on VΓ = [T : Tα] with q = 2p2 − 1. Hence, Γ ∼= K2p2

with val(Γ) = q, and PSL(2, q) ≤ G ≤ PΓL(2, q).
Finally, let T = PSL(n, q) and Tα = H1. Note that qn−1

q−1 = p2. By Lemma 2, n is a
prime. Suppose that n = 2. Note that (p + 1)(p − 1) = q = 2e. It follows that p = 3
and e = 3. Thus, T = PSL(2, 8) and P1

∼= Z3
2:Z7, and thus Tα = H1

∼= D14. Now,
|T:Tα| = 36 6= 2p2, a contradiction occurred. Suppose that n ≥ 3. If (n, q) = (n, 2e) = (3, 2),
then T = PSL(3, 2) ∼= PSL(2, 7) and Tα = H1

∼= D6. Now, |VΓ| = |T:Tα| = 28 6= 2p2 for
any prime p, which is a contradiction. Assume that (n, q) = (3, 2e) and e ≥ 2. Let r be an
odd prime divisor of q + 1 = 2e + 1. As (q− 1, q + 1) = (2e − 1, 2e + 1) = 1, we have that
(r, q(q− 1)) = (r, 2e(2e − 1)) = 1.

Now, it follows that (r, |P1|
|PSL(n−1,q)| ) = 1. Since (q + 1)

∣∣ |H1|, |H1| and |HΓ(α)
1 | have

the same prime divisors, one has that r
∣∣ |HΓ(α)

1 |. It follows that PSL(n− 1, q) = PSL(2, 2e)

is a combinatorial factor of HΓ(α)
1 . As HΓ(α)

1 = TΓ(α)
α is a primitive permutation group, it

concludes with Theorem 2 that TΓ(α)
α is almost simple and soc(TΓ(α)

α ) = PSL(2, 2e). By
checking the maximal subgroup of PSL(2, 2e), we have that either 2e = 11 or 2e + 1 is a
prime. Clearly, the former case is impossible. For the later case that 2e + 1 is a Fermat prime,
then e = 2 f for some positive integer f . Now, q2 + q + 1 = 22e + 2e + 1 = (2e + 1)2 − 2e =

(22 f
+ 1)2 − (22 f−1

)2 = (22 f
+ 1 + 22 f−1

)(22 f
+ 1− 22 f−1

). By easy calculation, there exists
no prime p satisfying q2 + q + 1 = p2.

Assume that n ≥ 4. If (n, q) = (7, 2), then 7
∣∣ |H1|, but 7 - |P1|

|PSL(n−1,q)| =
|P1|

|PSL(6,2e)| .

If (n, q) 6= (7, 2), then by Lemma 1 qn−1 − 1 has a primitive prime divisor, say r, and
r - |P1|

|PSL(n−1,q)| . Since |H1| and |HΓ(α)
1 | have the same prime divisors, we conclude that

PSL(n− 1, q) is a combinatorial factor of HΓ(α)
1 . Hence, the primitive permutation group

HΓ(α)
1 is almost simple with socle PSL(n− 1, q). Thus, qn−1−1

q−1 = (2e)n−1−1
2e−1 is a prime. It

follows from Lemma 2 that n− 1 is a prime, noting that n is a prime. Then, n = 3, which is
a contradiction with the assumption.
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The following lemma considers the case that G is of type PA.

Lemma 8. Suppose that G is a quasiprimitive permutation group of product action type on VΓ.
Then, no graphs appear.

Proof. By assumption, let N = soc(G) = T × · · · × T = Td. Then, N is not regular and
also has no subgroup that is regular on VΓ. Further, there exists an almost simple group
U with socle T satisfying that G ≤ U o Sd. If U is a permutation group on a set ∆, then
VΓ := ∆× · · · × ∆ = ∆d. For a vertex α = (δ, · · · , δ) ∈ VΓ, then |N:Nα| = |T:Tδ|d = 2p2,
it follows that d = 1, which is a contradiction with d ≥ 2.

3.2. Vertex-Biquasiprimitive Case

Suppose that G acts biquasiprimitively on VΓ with biparts B1, B2. Then, VΓ = B1 ∪B2
and |B1| = |B2| = p2. Set G+ = GB1 = {g ∈ G|Bg

1 = B1}. Then, G+ = GB2 . Clearly, G+ is
the normal subgroup of G with index 2 and quasiprimitive on B1 and B2.

If G+ acts unfaithfully on B1 or B2, by reference [16] (Lemma 5.2), Γ ∼= Kp2,p2 and
Z2

p2 : Z2 ≤ G ≤ Aut(Kp2,p2) = Sp2 o Z2. Suppose that G+ acts faithfully on both B1 and
B2. By [9] (Theorem 2.2), quasiprimitive permutation groups of prime-power degree is
primitive. Then, G+ is primitive on both B1 and B2. Thus, G is a biprimitive permutation
group on VΓ. By Lemma 4 and Theorem 2, the following result is obtained.

Lemma 9. Suppose that G+ is faithful on both B1 and B2. Then the actions of G+ on Bi are
permutationally isomorphic, and one of the following holds:

(1) G+ is affine and soc(G+) = Z2
p;

(2) G+ is almost simple and soc(G+) = Ap2 or PSL(n, q) with n, q satisfying qn−1
q−1 = p2. In

addition, G+ is 2-transtive on Bi, i = 1, 2;
(3) G+ is of product action type and soc(G+) = T2, where T = Ap, M11, M23, PSL(2, 11), or

PSL(n, q) with n, q satisfying qn−1
q−1 = p.

The next lemma determines the graph according to the structure of G+.

Lemma 10. Let Γ be a G-locally primitive graph, and G be biquasiprimitive on VΓ with biparts B1
and B2. Assume that G+ = GB1 = GB2 is faithful on both B1 and B2. Then, one of the follow-
ings holds:

(1) Γ is a bi-normal Cayley graph of the generalized dihedral group Dih(Z2
p);

(2) Γ ∼= Kp2,p2 − p2K2, PH(n, q) or PH(n, q) with qn−1
q−1 = p2;

(3) Γ is the standard double cover of Σ×2, where Σ = K×2
p ; and

(4) Γ = Σ×bi2, where Σ = D1
2(11, 5), D1

2(11, 5), PH(n, q) or PH(n, q) with qn−1
q−1 = p.

Proof. By Lemma 9, G+ is a primitive permutation group of p2 degree and is of type HA,
AS or PA.

Assume that G+ is of type HA. Then, N := soc(G+) = Z2
p, which is regular on Bi.

Since Nchar G+ and G+ C G, we have that N C G. By Lemma 5, Γ is stated as in (1);
Assume that G+ is of type AS. Let soc(G+) = T. Then, T is non-abelian simple and

transitive on both B1 and B2. Let C = CG(T) be the centralizer of T in G. Then, C C G.
Suppose that C 6= 1. Since C ∩ G+ = CG+(T) = 1, it follows that 〈C, G+〉 = C× G+ = G,
and thus C = 〈g〉 ∼= Z2, where g interchanges B1 and B2. Clearly, C is semiregular and
has p2 orbits on VΓ. Now, the quotient graph ΓC induced by C is a G+-locally primitive
arc-transitive graph of order p2. By [17] (Lemma 2.2), Γ is the standard double cover of ΓC.
By Lemma 9 (2), we know that G+ is 2-transitive on VΓC. Thus, ΓC = Kp2 . It follows that
Γ ∼= Kp2,p2 − p2K2.
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Suppose that C = 1. Then, T C G ≤ Aut(T). Thus, G is an almost simple group.
Assume that the induced permutations (G+)B1 and (G+)B2 are permutation equivalent. By
Lemma 4, G+ is 2-transitive on Bi, so the orbital graph of G+ acting on Bi is Kp2 . For α ∈ B1
and β ∈ B2, because Gα and Gβ are conjugate in G, by Lemma 6, Γ is the standard double
cover of Kp2 . Thus, Γ ∼= Kp2,p2 − p2K2. Assuming that (G+)B1 and (G+)B2 are permutation

inequivalent, by Lemma 4, T = PSL(n, q) and n, q satisfy qn−1
q−1 = p2. As Gα and Gβ are

not conjugate in G, we get Γ ∼= PH(n, q) or PH(n, q) from [14] (Example 3.6).
Assume that the action of G+ on Bi is of type PA. By Lemma 9, N = soc(G+) = T× T,

where T is stated as in (3) of Lemma 9. Noting that G+ is transitive on Bi and Gα = G+
α ,

then the orbital graph Σ of G+ acting on B2 is G-locally primitive arc transitive. Let
VΣ = B2 = ∆× ∆. For a vertex α = (δ, δ) ∈ VΣ, since GΣ(α)

α is primitive, we have that
Σ(α) is an orbit of Gα on B2 \ {α}. By [14] (Lemma 2.4), Σ(α) = ∆(δ)2, where ∆(δ) is an
orbit of H in ∆ \ {δ} and H is almost simple with socle T and primitive on ∆ satisfying
that G+ ≤ H o S2. It follows that Σ = Π×Π = Π×2. Since T = Ap, M11, M23, PSL(2, 11),

or PSL(n, q) with n, q satisfying qn−1
q−1 = p, which are 2-transitive on ∆. We conclude that

Π = Kp is a complete graph. That is Σ = K×2
p .

Suppose that (G+)B1 and (G+)B2 are permutation equivalent. By Lemma 6, Γ is the
standard double cover of Σ = K×2

p . Suppose that (G+)B1 and (G+)B2 are permutation
inequivalent. By Lemma 9, T = PSL(2, 11), and Tδ1

∼= Tδ2
∼= A5 or T = PSL(n, q) acts on

1-subspace or hyperplane of n-dimensional linear space over the field Fq and n, q satisfying

that qn−1
q−1 = p. Since Γ is N-edge transitive, Nb1 and Nb2 are not conjugate in N, by [14]

(Lemma 3.9), Γ = Σ×bi2, is a bidirect product of Σ, where Σ = D1
2(11, 5), D1

2(11, 5), PH(n, q),
PH(n, q).

Proof of Theorem 1. Now, we are ready to complete the proof of the main Theorem 1. Let
Γ be a G-locally primitive graph of order 2p2, where p is an odd prime.

Assume that G is quasiprimitive on VΓ. By Lemmas 7 and 8, Γ is the complete graph
K2p2 or the Hoffman–Singleton graph HS(50). Thus, the graphs in Theorem 1 (1), (2) hold.

Assume that G is biquasiprimitive on VΓ. Then, Γ = Kp2,p2 or the standard double
cover of Kp2 . By Lemma 10, either Γ is a bi-normal Cayley graph on the generalized dihedral
group Dih(Z2

p), or Γ is the graph as in Theorem 1 (3)–(5). Thus, the proof of Theorem 1
is completed.
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