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Abstract: In this paper, we study the global dynamics of a delayed virus dynamics model with
apoptosis and both virus-to-cell and cell-to-cell infections. When the basic reproduction number
R0 > 1, we obtain the uniform persistence of the model, and give some explicit expressions of the
ultimate upper and lower bounds of any positive solution of the model. In addition, by constructing
the appropriate Lyapunov functionals, we obtain some sufficient conditions for the global attractivity
of the disease-free equilibrium and the chronic infection equilibrium of the model. Our results extend
existing related works.
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1. Introduction

It is well known that human health and safety have been seriously threatened by
known or emerging new viral infections, such as human immunodeficiency virus (HIV),
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), etc. The mechanisms of
transmission of viral infections have become increasingly complex, due to the mutation and
evolution of viruses caused by changes in the physical environment, the use of drugs, and
other factors. Since the 1980s, differential equations have been widely used in the study
of important issues, such as the transmission mechanisms and control strategies of virus
infection, and have gradually developed and established the important interdisciplinary
research branch of virus dynamics [1–5]. In particular, in [1,2], the authors proposed the
following classical viral infection dynamics model, describing the interactions among
uninfected cells, infected cells and free viruses:

ẋ(t) =s− dx(t)− βx(t)v(t),

ẏ(t) =βx(t)v(t)− py(t),

v̇(t) =ky(t)− uv(t),

(1)

where x(t), y(t) and v(t) denote the concentrations of uninfected cells, infected cells and
free viruses at time t, respectively. The constant s > 0 is the rate at which new uninfected
cells are generated. The constant d > 0 is the death rate of uninfected cells. The constant
β ≥ 0 is the characterizing infection of the cells. The constant p > 0 is the death rate of
infected cells. The infected cells produce virus particles at the constant rate k ≥ 0, and the
constant u > 0 is the rate at which the virus is cleared. The term βx(t)v(t) denotes the rate
at which uninfected cells become infected cells through their contact with free viruses.

Based on model (1), many scholars have extended the linear growth rate s− dx(t) of
uninfected cells to classical logistic growth or more general nonlinear functions, and ex-
tended the bilinear functional response function βx(t)v(t) to the following classical forms,
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βx(t)v(t)/(1 + v(t)), βx(t)v(t)/(1 + ax(t) + bv(t)), βx(t)v(t)/(1 + av(t)), and more gen-
eral nonlinear functions (see, for example, [6–17] and the references therein). Addition-
ally, important factors, such as delay and immune response, were considered, and a
series of important results on global stability and existence of Hopf bifurcations were
obtained [16,18–23].

In addition, recent studies have also shown that a large number of viral particles can
also be transferred from infected cells to uninfected cells through the formation of virally
induced structures termed virological synapses [24,25]. The direct fusion between infected
cells and uninfected cells can also lead to cell infection, which is also known as cell-to-cell
infection [25–27]. Based on this important fact, many scholars have proposed several
important classes of viral dynamics models, considering the more general nonlinear growth
rate of uninfected cells (which can include linear and logistic growth), while introducing
important factors such as virus-to-cell infection, cell-to-cell infection, and immune response
and delay, and have thoroughly investigated the local and global dynamics of equilibria
and the existence of Hopf bifurcations. For details, see, for example, [18–21,25–31] and the
references cited therein. In particular, based on the studies in [7,25,26], the authors [28]
proposed and studied the following virus infection dynamic model:

ẋ(t) =rx(t)
(

1− x(t) + αy(t)
K

)
− β1x(t)y(t)− β2x(t)v(t),

ẏ(t) =β1x(t)y(t) + β2x(t)v(t)− py(t),

v̇(t) =ky(t)− uv(t).

(2)

In model (2), the constant K > 0 denotes the effective carrying capacity of the en-
vironment of uninfected cells and infected cells. The term rx(1− (x + αy)/K) indicates
that the growth of uninfected cells conforms to the logistic growth function and takes into
account the effect of infected cells on the maximum carrying capacity of the environment,
the constant r > 0 is the growth rate, and α ≥ 0 is a constant; the constant β1 ≥ 0 is the
cell-to-cell infection rate, and the constant β2 ≥ 0 is the virus-to-cell infection rate. All other
parameters in model (2) have the same biological meaning as that in model (1). In [28],
for model (2), the authors obtained the local stability of the equilibria, uniform persistence
and the existence of Hopf bifurcations caused by the cell-to-cell infection rate β1 or the
virus-to-cell infection rate β2.

HIV gene expression products can produce toxicity, which directly or indirectly in-
duces apoptosis in uninfected cells [32]. Studies have shown that viral proteins interact
with uninfected cells and induce an apoptotic signal, which induces the death of uninfected
cells [33]. In [34], the authors considered the following virus infection dynamic model
with delay: 

ẋ(t) =s− dx(t)− cx(t)y(t)− βx(t)v(t),

ẏ(t) =δx(t− τ)v(t− τ)− py(t),

v̇(t) =ky(t)− uv(t),

(3)

where the constant δ = βe−m0τ > 0 denotes the surviving rate of infected cells before it
becomes productively infected, m0 ≥ 0 is a constant, and τ ≥ 0 is a delay. The constant
c ≥ 0 is the rate of apoptosis at which infected cells induce uninfected cells [32,33]. All
other parameters in model (3) have the same biological meaning as that in model (1). Based
on models (2) and (3), in [22,23,35], the authors further considered virus dynamics models
with the logistic growth of uninfected cells, nonlinear infection rate, cell-to-cell infection,
virus-to-cell infection and delay, and investigated the permanence, the global stability of
the disease-free equilibrium, the local stability of the chronic infection equilibrium and the
existence of Hopf bifurcations.



Mathematics 2022, 10, 975 3 of 16

In this paper, based on [18–23,25,28,30,34,35], etc., we continue to consider the follow-
ing delayed virus dynamic model with apoptosis and both virus-to-cell and cell-to-cell
infections:

ẋ(t) =s− dx(t) + rx(t)
(

1− x(t) + αy(t)
K

)
− cx(t)y(t)− β1x(t)y(t)− β2x(t)v(t),

ẏ(t) =β1e−m1τ1 x(t− τ1)y(t− τ1) + β2e−m2τ2 x(t− τ2)v(t− τ2)− py(t),

v̇(t) =ky(t)− uv(t).

(4)

In model (4), the delay τ1 ≥ 0 represents the time between infected cells spreading
viruses into uninfected cells and the production of new free viruses; the delay τ2 ≥ 0
represents the time between viral entry into an uninfected cell and the production of new
free viruses. m1 ≥ 0 and m2 ≥ 0 are constants, and δ1:=β1e−m1τ1 and δ2:=β2e−m2τ2 denote
the survival rates of uninfected cells during successful infection with infected cells and
free viruses, respectively. All other parameters have the same biological meaning as that in
models (1)–(3).

Let τ = max{τ1, τ2}. The initial condition of model (4) is given as follows, x(θ) =
φ1(θ), y(θ) = φ2(θ), v(θ) = φ3(θ) (θ ∈ [−τ, 0]), where φ = (φ1, φ2, φ3) ∈ C+:= {φ ∈
C | φi ≥ 0, i = 1, 2, 3}, C = C([−τ, 0],R3) is the Banach space of continuous functions from
[−τ, 0] to R3 equipped with the supremum norm.

By using the standard theory of functional differential equations (see [36–39]), it is
easy to show that the solution (x(t), y(t), v(t)) of model (4) with the above initial condition
is existent, unique, non-negative on [0,+∞), and satisfies

lim sup
t→∞

x(t) ≤ x0, lim sup
t→∞

y(t) ≤ M2, lim sup
t→∞

v(t) ≤ M3, (5)

where

x0 =
K
2r

(
r− d +

√
(d− r)2 +

4rs
K

)
, M2 =

2n0(e−m1τ1 + e−m2τ2)

p̄
, M3 =

kM2

u
,

n0 = max
x∈[0,x0]

(
s− dx + rx

(
1− x

K

))
, p̄ = min

{
p,

n0

x0

}
.

Obviously, model (4) always has a disease-free equilibrium (boundary equilibrium)
E0 = (x0, 0, 0). We can easily derive the expression of the basic reproduction number of
model (4) as

R0 =
x0(uβ1e−m1τ1 + kβ2e−m2τ2)

pu
=

x0(uδ1 + kδ2)

pu

by the method of the next generation matrix [40,41]. The basic reproduction number R0 is
positively correlated with respect to the cell-to-cell infection rate β1 and the virus-to-cell
infection rate β2. Hence, when only one route of infection is considered, the evolution of
the disease infection may be underestimated.

The function is defined as

Γ(z) = s− dz + rz
(

1− z
K

)
=

r
K
(z + x1)(x0 − z) (z ≥ 0), x1 = − K

2r

(
r− d−

√
(d− r)2 +

4rs
K

)
> 0.

Note that if R0 = x0
x∗ > 1, then model (4) has a unique chronic infection equilibrium

(positive equilibrium) E∗ = (x∗, y∗, v∗), where

x∗ =
pu

uδ1 + kδ2
, y∗ =

Γ(x∗)
x∗ξ

=
r(x∗ + x1)(x0 − x∗)

Kx∗ξ
> 0, v∗ =

ky∗

u
, ξ =

rα

K
+ c + β1 +

kβ2

u
. (6)
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It is noted that the apoptosis rate c has effects in reducing the loads of both infected
cells and free viruses. In addition, it is easy to show that the set G := {φ = (φ1, φ2, φ3) ∈
C+ | 0 ≤ φ1 ≤ x0} is attractive and positively invariant with respect to model (4).

For the global asymptotic stability (global attractivity) of the disease-free equilibrium
E0 of model (4), using the method similar to that in [18,23,34,35], the following conclusion
can be obtained (the proof is omitted): if R0 < 1 (R0 = 1), then the disease-free equilibrium
E0 is globally asymptotically stable (globally attractive) in G.

As far as we know, the global attractivity of the chronic infection equilibrium E∗ of
model (4) is still a difficult mathematical question and worthy of further study. This paper
has the following two main purposes. First of all, we study the uniform persistence of
model (4) in Section 2, and give explicit expressions of the ultimate upper and lower bounds
of any positive solution of model (4). Second, by constructing some appropriate Lyapunov
functionals and combining inequality analysis, some sufficient conditions for the global
attractivity of the chronic infection equilibrium E∗ of model (4) are given in Section 3. The
brief summary of the conclusions of this paper is given in Section 4.

2. Uniform Persistence

In this section, we assume that R0 > 1. It is not difficult to find that the function

f1(z) :=
K
2r

(
z +

√
z2 +

4rs
K

)

is strictly monotonically increasing with respect to z on R. According to the first equation
of model (4), x∗ can be rewritten as x∗ = f1(l0), where l0 = r− d−

( rα
K + c + β1

)
y∗ − β2v∗.

For convenience, let us define the following parameters:

ν1 = f1(l1), x∗1 = f1(l2), x̂∗1 =
K
2r

(
l2 −

√
l2
2 +

4rs
K

)
,

l1 = r− d−
( rα

K
+ c + β1

)
M2 − β2M3, l2 = r− d− 1

2

( rα

K
+ c + β1

)
y∗ − β2v∗.

Note that x0 = f1(r− d) and r− d > l2 > l0 > l1, we can obtain x0 > x∗1 > x∗ > ν1 >
0. For the uniform persistence of model (4), we have the following main results.

Theorem 1. If R0 > 1, then model (4) is uniformly persistent in X+ := {φ = (φ1, φ2, φ3) ∈
C+ | φ2(0) > 0, φ3(0) > 0}, and the solution (x(t), y(t), v(t)) of model (4) with any φ ∈ X+

satisfies

lim inf
t→∞

x(t) ≥ ν1, lim inf
t→∞

y(t) ≥ y∗

2
e−pv ≡ ν2, lim inf

t→∞
v(t) ≥ ky∗

2u
e−pv =

k
u

ν2 ≡ ν3, (7)

where v = T0 + T1 + T2 + τ1 + τ2,

T0 = − 1
u

ln
(

y∗

2M2

)
> 0, T1 =

−K
r(x∗1 − x̂∗1)

ln

[(
x∗1 − x0

x0 − x̂∗1

)(
γν1 − x̂∗1
x∗1 − γν1

)]
> 0,

T2 =
q

u(1− q)
> 0, γ ∈ (0, 1), x0 ∈ (x∗, x∗1), q =

x∗

x0 < 1.

Proof. Let (x(t), y(t), v(t)) be any solution of model (4) with any φ ∈ X+. By (5), for
any ε > 0, there exists a sufficiently large t̂ > τ such that, for t > t̂, y(t) ≤ M2 + ε and
v(t) ≤ M3 + ε. From the first equation of model (4), we have, for t > t̂,
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ẋ(t) ≥s− dx(t) + rx(t)
(

1− x(t) + α(M2 + ε)

K

)
− (c + β1)(M2 + ε)x(t)− β2(M3 + ε)x(t)

=− r
K
(x(t)− ν1(ε))(x(t)− ν̂1(ε)),

where

ν1(ε) =
K
2r

(
l1(ε) +

√
l2
1(ε) +

4rs
K

)
> 0, ν̂1(ε) =

K
2r

(
l1(ε)−

√
l2
1(ε) +

4rs
K

)
< 0,

l1(ε) = r− d−
( rα

K
+ c + β1

)
(M2 + ε)− β2(M3 + ε).

Using the arbitrariness of ε, we have lim inft→∞ x(t) ≥ ν1(0) = ν1.
Next, using a method similar to that in [34,35], let us prove that lim inft→∞y(t) ≥ ν2.
Note that γ ∈ (0, 1), then there exists a sufficiently large T > 0 such that for t ≥ T,

x(t) > γν1, v(t) ≤ kM2

u
+

ky∗

2u
.

Let us first claim that, for any t0 ≥ T, when t ≥ t0, the inequality y(t) ≤ y∗
2 cannot

always hold.
If this claim is not true, then there exists a t0 ≥ T such that y(t) ≤ y∗

2 for all t ≥ t0.
Then, from the third equation of model (4), we have for t ≥ t0, v̇(t) ≤ 1

2 ky∗ − uv(t), which
implies that, for t ≥ t0,

v(t) ≤ ky∗

2u
+

(
v(t0)−

ky∗

2u

)
e−u(t−t0) ≤ ky∗

2u
+

kM2

u
e−u(t−t0).

Hence, we have, for t ≥ t0 + T0, v(t) ≤ k
u y∗ = v∗. Then, from the first equation of

model (4), we have, for t ≥ t0 + T0,

ẋ(t) ≥s− dx(t) + rx(t)
(

1− x(t)
K

)
− rαy∗

2K
x(t)− cy∗

2
x(t)− β1y∗

2
x(t)− β2v∗x(t)

=− r
K
(x(t)− x∗1)(x(t)− x̂∗1),

which implies that, for t ≥ t0 + T0,

x(t) ≥
x∗1 − x̂∗1

(
x(t0+T0)−x∗1
x(t0+T0)−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )(t−t0−T0)

1−
(

x(t0+T0)−x∗1
x(t0+T0)−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )(t−t0−T0)

>

x∗1 + x̂∗1

(
x∗1−γν1

γν1−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )(t−t0−T0)

1 +
(

x∗1−γν1

γν1−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )(t−t0−T0)

.

Hence, we have, for t ≥ t0 + T0 + T1,

x(t) >
x∗1 + x̂∗1

(
x∗1−γν1

γν1−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )T1

1 +
(

x∗1−γν1

γν1−x̂∗1

)
e−

r
K (x∗1−x̂∗1 )T1

= x0 > x∗. (8)

Define m = min{ȳ, uv̄
k } > 0, where

ȳ = min
θ∈[−(τ1+τ2),0]

y(T∗ + θ) > 0, v̄ = min
θ∈[−(τ1+τ2),0]

v(T∗ + θ) > 0, T∗ = t0 + T0 + T1 + τ1 + τ2.
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Next, we show that y(t) ≥ m for t ≥ t0 + T0 + T1. In fact, otherwise, there exists a
T̂1 ≥ 0 such that y(t) ≥ m for t0 + T0 + T1 ≤ t ≤ T∗+ T̂1, y(T∗+ T̂1) = m and ẏ(T∗+ T̂1) ≤
0. Then, from the third equation of model (4), we have, for t0 + T0 + T1 ≤ t ≤ T∗ + T̂1,
v̇(t) ≥ km− uv(t), which implies that, for t0 + T0 + T1 ≤ t ≤ T∗ + T̂1,

v(t) ≥
(

v(t0 + T0 + T1)−
km
u

)
e−u(t−t0−T0−T1) +

km
u

≥ (v(t0 + T0 + T1)− v̄)e−u(t−t0−T0−T1) +
km
u

≥ km
u

.

(9)

Therefore, from (8) and (9), we have, for t = T∗ + T̂1,

ẏ(t) =δ1x(t− τ1)y(t− τ1) + δ2x(t− τ2)v(t− τ2)− pm

≥δ1x0m + δ2x0 km
u
− pm

=pm
(

x0

x∗
− 1
)
> 0.

This is a contradiction to ẏ(T∗ + T̂1) ≤ 0. This shows that for t ≥ t0 + T0 + T1,
y(t) ≥ m.

Using the derivation completely similar to (9), we have, for t ≥ t0 + T0 + T1, v(t) ≥ km
u .

Consider the following auxiliary function:

V(t) = y(t) +
δ2

u
x∗v(t) + δ1

∫ t

t−τ1

x(θ)y(θ)dθ + δ2

∫ t

t−τ2

x(θ)v(θ)dθ.

Then, we have, for t ≥ t0 + T0 + T1,

V̇(t) = δ1(x(t)− x∗)y(t) + δ2(x(t)− x∗)v(t) ≥ m
(

δ1 +
k
u

δ2

)
(x0 − x∗) > 0,

which leads to, for t ≥ t0 + T0 + T1,

V(t) ≥ V(t0 + T0 + T1) + m
(

δ1 +
k
u

δ2

)
(x0 − x∗)(t− t0 − T0 − T1),

which implies that V(t)→ +∞(t→ +∞). This is a contradiction with the boundedness of
V(t). Therefore, the claim is proved.

Below, there are two remaining cases that need to be discussed.
(i) y(t) ≥ y∗

2 for sufficiently large t. (ii) y(t) oscillates about y∗
2 for sufficiently large t.

For the case (i), it clearly has lim inft→+∞ y(t) ≥ ν2.
For the case (ii), let t1 and t2 be sufficiently large such that y(t1) = y(t2) =

y∗
2 , y(t) <

y∗
2 (t1 < t < t2).

If t2 − t1 ≤ v, from the second equation of model (4), we have, for t1 ≤ t ≤ t2,
ẏ(t) ≥ −py(t), which implies that for t1 ≤ t ≤ t2,

y(t) ≥ y(t1)e−p(t−t1) ≥ y∗

2
e−pv = ν2.

If t2 − t1 > v, it is easily obtained that, for t1 ≤ t ≤ t1 + v, y(t) ≥ ν2. Further, we
prove that for t1 + v ≤ t ≤ t2, y(t) ≥ ν2.

If not, there exists a T̂2 ≥ 0 such that for t1 ≤ t ≤ t1 + v + T̂2(< t2), y(t) ≥ ν2,
y(t1 + v + T̂2) = ν2 and ẏ(t1 + v + T̂2) ≤ 0. Using the derivation method similar to (8),
treating t1 as t0, we have, for t1 + T0 + T1 ≤ t ≤ t1 + v + T̂2, x(t) > x0 > x∗. Then, let us
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prove that there exists t̄ ∈ [t1, t1 + T0 + T1 + T2] such that v(t̄) ≥ qkν2
u . If not, then we have,

for t1 ≤ t ≤ t1 + T0 + T1 + T2, v(t) < qkν2
u . From the third equation of model (4), we have,

for t1 ≤ t ≤ t1 + T0 + T1 + T2,

v̇(t) ≥ kν2 − uv(t) ≥ kν2(1− q),

which implies that, for t = t1 + T0 + T1 + T2,

v(t) ≥ v(t1) + kν2(1− q)(t− t1) > v(t1) + kν2(1− q)T2 >
qkν2

u
,

which is a contradiction. Hence, we conclude that there exists t̄ ∈ [t1, t1 + T0 + T1 + T2]

such that v(t̄) ≥ qkν2
u .

Note that, for t̄ ≤ t ≤ t1 + v + T̂2, v̇(t) ≥ qkν2 − uv(t), which implies that, for
t̄ ≤ t ≤ t1 + v + T̂2,

v(t) ≥
(

v(t̄)− qkν2

u

)
e−u(t−t1) +

qkν2

u
≥ qkν2

u
.

Hence, we have from the second equation of model (4) that for t = t1 + v + T̂2,

ẏ(t) =δ1x(t− τ1)y(t− τ1) + δ2x(t− τ2)v(t− τ2)− pν2

≥pν2

(
δ1

p
x(t− τ1) +

qkδ2

up
x(t− τ2)− 1

)
>pν2

(
qx0

x∗
− 1
)
= 0.

(10)

This is a contradiction to ẏ(t1 + v + T̂2) ≤ 0. Based on the above analysis, we have
y(t) ≥ ν2 for t ∈ [t1, t2]. Since this kind of interval [t1, t2] is chosen in an arbitrary way, we
conclude that y(t) ≥ ν2 for any sufficiently large t. Thus, lim inft→∞y(t) ≥ ν2.

Finally, according to the third equation of model (4), we have lim inft→∞ v(t) ≥ kν2
u =

ν3.

3. Global Attractivity of the Chronic Infection Equilibrium

Now, we continue to discuss global attractivity of the chronic infection equilibrium E∗.
The following lemma is used.

Lemma 1. (Barbalat’s lemma [42]) Let q(t) be a real valued differentiable function defined on some
half line [ϑ,+∞), ϑ ∈ (−∞,+∞). If limt→+∞q(t) = ϑ1 (|ϑ1| < +∞) and q̇(t) is uniformly
continuous for t > ϑ, then limt→+∞ q̇(t) = 0.

Due to the technical requirements of the proof, we assume that m1τ1 = m2τ2.
For any sufficient small 0 < ε < ν1, we define
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ν1(ε) =ν1 − ε, x0(ε) = x0 + ε, M2(ε) = M2 + ε, M3(ε) = M3 + ε, Λ1 =
rα

K
+ c + β1,

Υ1(ε) =d− r +
r
K
(x0(ε) + x∗) + Λ1y∗ + β2v∗, Υ2(ε) = β1x0(ε) + β1y∗ + β2x0(ε) + β2v∗ + pem1τ1 ,

Ψ1(ε) =
1
2

β1[x0(ε)e−m1τ1 Υ2(ε) + M2(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε))],

Ψ2(ε) =
1
2

β2[M3(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε)) + (k + u)x0(ε)],

Ψ3(ε) =
1
2

β2
1x0(ε)y∗(1 + e−m1τ1), Ψ4(ε) =

1
2

β1β2x0(ε)v∗(1 + e−m1τ1),

Ψ5(ε) =
1
2

Υ1(ε)β1M2(ε)(1 + em1τ1), Ψ6(ε) =
1
2

β2
1x2

0(ε)(1 + e−m1τ1),

Ψ7(ε) =
1
2

pβ1x0(ε)(1 + em1τ1) +
1
2

Λ1x0(ε)β1M2(ε)(1 + em1τ1), Ψ8(ε) =
1
2

β1β2x2
0(ε)(1 + e−m1τ1),

Ψ9(ε) =
1
2

β2x0(ε)β1M2(ε)(1 + em1τ1), Ψ10(ε) =
1
2

Υ1(ε)β2M3(ε)(1 + em1τ1),

Ψ11(ε) =
1
2

kβ2x0(ε)(1 + em1τ1) +
1
2

Λ1x0(ε)β2M3(ε)(1 + em1τ1),

Ψ12(ε) =
1
2

uβ2x0(ε)(1 + em1τ1) +
1
2

β2x0(ε)β2M3(ε)(1 + em1τ1).

Let us define the real symmetric matrices as follows,

J(ε) =

 A11(ε) −A12(ε) 0
−A12(ε) A22(ε) −A23(ε)

0 −A23(ε) A33(ε)

,

where

A11(ε) =
1

x0(ε)

[
d− r +

rx∗

K
+
( rα

K
+ c
)

y∗
]
+

r
K
+ θ1

{
d− r +

r
K
(ν1(ε) + x∗) +

(
c +

rα

K

)
y∗

− [(Ψ1(ε) + Ψ3(ε) + Ψ4(ε) + Ψ5(ε))τ1 + (Ψ2(ε) + Ψ10(ε))τ2]

}
,

A12(ε) =
1
2

(
c +

rα

K

)
+

1
2

θ1

{
em1τ1

[
d− r +

r
K
(x0(ε) + x∗) +

(
c +

rα

K

)
y∗ + p

]
+
(

c +
rα

K

)
x0(ε)

}
,

A22(ε) =θ1

{
em1τ1

[
em1τ1 p +

(
c +

rα

K

)
ν1(ε)

]
− [(Ψ1(ε)em1τ1 + Ψ6(ε) + Ψ7(ε))τ1 + (Ψ2(ε)em1τ1 + Ψ11(ε))τ2]

}
,

A23(ε) =
1
2

θ2k, A33(ε) = θ2u− θ1[(Ψ8(ε) + Ψ9(ε))τ1 + Ψ12(ε)τ2],

where θ1 and θ2 are arbitrary positive constants.

Theorem 2. If R0 > 1, d− r + rx∗
K ≥ 0, m1τ1 = m2τ2 and matrix J(0) is positive definite, then

the chronic infection equilibrium E∗ is globally attractive in X+.

Proof. Let (x(t), y(t), v(t)) ∈ X+(t ≥ 0) be any solution of model (4). If J(0) is positive
definite, then J(ε) is also positive definite for any sufficiently small 0 < ε < ν1. For the
above ε, there exists a sufficiently large T(ε) > τ1 + τ2 such that, for t > T(ε),

0 < ν1(ε) < x(t) < x0(ε), y(t) < M2(ε), v(t) < M3(ε).
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Let g(z) = z− 1− ln z (z > 0). Clearly, g(z) ≥ 0 (z > 0), and g(z) = 0 if and only if
z = 1. Define

U1 =x∗g
(

x(t)
x∗

)
+ em1τ1 y∗g

(
y(t)
y∗

)
+

β2x∗v∗

ky∗
v∗g
(

v(t)
v∗

)
+ β1x∗y∗

∫ t

t−τ1

g
(

x(s)y(s)
x∗y∗

)
ds + β2x∗v∗

∫ t

t−τ2

g
(

x(s)v(s)
x∗v∗

)
ds.

Hence, U1 is positive definite with respect to the chronic infection equilibrium E∗ =
(x∗, y∗, v∗). Similar to the calculation in [18,19], for t ≥ 0, the derivative along the solution
of model (4) satisfies

dU1

dt
=− 1

x(t)

(
d− r +

rx∗

K

)
(x(t)− x∗)2 − r

K
(x(t)− x∗)2

+
( rα

K
+ c
)(

1− x∗

x(t)

)
(x∗y∗ − x(t)y(t))

+ β1x∗y∗
{
−g
(

x(t− τ1)y(t− τ1)

x∗y(t)

)
− g
(

x∗

x(t)

)}
+ β2x∗v∗

{
−g
(

x(t− τ2)v(t− τ2)y∗

x∗v∗y(t)

)
− g
(

x∗

x(t)

)
− g
(

y(t)v∗

y∗v(t)

)}
=− 1

x(t)

[
d− r +

rx∗

K
+
( rα

K
+ c
)

y∗
]
(x(t)− x∗)2 − r

K
(x(t)− x∗)2

−
( rα

K
+ c
)
(x(t)− x∗)(y(t)− y∗)

+ β1x∗y∗
{
−g
(

x(t− τ1)y(t− τ1)

x∗y(t)

)
− g
(

x∗

x(t)

)}
+ β2x∗v∗

{
−g
(

x(t− τ2)v(t− τ2)y∗

x∗v∗y(t)

)
− g
(

x∗

x(t)

)
− g
(

y(t)v∗

y∗v(t)

)}
.

(11)

It is worth mentioning that if α = c = 0 and d− r + rx∗
K ≥ 0, then dU1

dt ≤ 0, which
leads to E∗ is stable (see [37,38]). Then, it follows from [19] that E∗ is globally attractive.
Thus, E∗ is globally asymptotically stable.

If α and c are not 0 at the same time, inspired by [43,44], we define

U2 =
1
2
[(x(t)− x∗) + em1τ1(y(t)− y∗)]2.

From model (4), we have, for t > T(ε),

ẋ(t) + em1τ1 ẏ(t) =s− dx(t) + rx(t)
(

1− x(t)
K

)
−
(

c +
rα

K

)
x(t)y(t)− em1τ1 py(t)

+ β1x(t− τ1)y(t− τ1)− β1x(t)y(t) + β2x(t− τ2)v(t− τ2)− β2x(t)v(t)

=−
[
d− r +

r
K
(x(t) + x∗) +

(
c +

rα

K

)
y∗
]
(x(t)− x∗)

−
[
em1τ1 p +

(
c +

rα

K

)
x(t)

]
(y(t)− y∗)

+ β1x(t− τ1)(y(t− τ1)− y(t)) + β1y(t)(x(t− τ1)− x(t))

+ β2x(t− τ2)(v(t− τ2)− v(t)) + β2v(t)(x(t− τ2)− x(t)).
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Further, we have, for t > T(ε),

dU2

dt
=[(x(t)− x∗) + em1τ1(y(t)− y∗)](ẋ(t) + em1τ1 ẏ(t))

=−
[
d− r +

r
K
(x(t) + x∗) +

(
c +

rα

K

)
y∗
]
(x(t)− x∗)2

− em1τ1
[
em1τ1 p +

(
c +

rα

K

)
x(t)

]
(y(t)− y∗)2

−
{

em1τ1
[
d− r +

r
K
(x(t) + x∗) +

(
c +

rα

K

)
y∗ + p

]
+
(

c +
rα

K

)
x(t)

}
× (x(t)− x∗)(y(t)− y∗) + Γ1(t) + Γ2(t) + Γ3(t) + Γ4(t),

(12)

where

Γ1(t) =− β1x(t− τ1)[(x(t)− x∗) + em1τ1(y(t)− y∗)]
∫ t

t−τ1

ẏ(s)ds,

Γ2(t) =− β1y(t)[(x(t)− x∗) + em1τ1(y(t)− y∗)]
∫ t

t−τ1

ẋ(s)ds,

Γ3(t) =− β2x(t− τ2)[(x(t)− x∗) + em1τ1(y(t)− y∗)]
∫ t

t−τ2

v̇(s)ds,

Γ4(t) =− β2v(t)[(x(t)− x∗) + em1τ1(y(t)− y∗)]
∫ t

t−τ2

ẋ(s)ds.

Since E∗ is a positive equilibrium of model (4), ẋ(t), ẏ(t) and v̇(t) can be rewritten as

ẋ(t) =−
[
d− r +

r
K
(x(t) + x∗)

]
(x(t)− x∗) + Λ1x∗y∗ −Λ1x(t)y(t) + β2x∗v∗ − β2x(t)v(t)

=−
[
d− r +

r
K
(x(t) + x∗)

]
(x(t)− x∗) + Λ1(x∗ − x(t))y∗ + Λ1x(t)(y∗ − y(t))

+ β2(x∗ − x(t))v∗ + β2x(t)(v∗ − v(t))

=− Υ̃1(t)(x(t)− x∗) + Λ1x(t)(y∗ − y(t)) + β2x(t)(v∗ − v(t)),

(13)

where Υ̃1(t) = d− r + r
K (x(t) + x∗) + Λ1y∗ + β2v∗,

ẏ(t) =β1e−m1τ1 x(t− τ1)(y(t− τ1)− y∗) + β1e−m1τ1 y∗(x(t− τ1)− x∗)

+ β2e−m2τ2 x(t− τ2)(v(t− τ2)− v∗) + β2e−m2τ2 v∗(x(t− τ2)− x∗) + p(y∗ − y(t)),
(14)

v̇(t) = k(y(t)− y∗) + u(v∗ − v(t)). (15)

From (14), we have, for t > T(ε) + 2(τ1 + τ2),
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|Γ1(t)| =β1x(t− τ1)|[(x(t)− x∗) + em1τ1 (y(t)− y∗)]|

×
∣∣∣∣ ∫ t

t−τ1

{
β1e−m1τ1 x(s− τ1)(y(s− τ1)− y∗) + β1e−m1τ1 y∗(x(s− τ1)− x∗)

+ β2e−m2τ2 x(s− τ2)(v(s− τ2)− v∗) + β2e−m2τ2 v∗(x(s− τ2)− x∗) + p(y∗ − y(s))
}

ds
∣∣∣∣

≤β1x0(ε)
∫ t

t−τ1

{
β1e−m1τ1 x0(ε)

2
[(x(t)− x∗)2 + (y(s− τ1)− y∗)2]

+
β1x0(ε)

2
[(y(t)− y∗)2 + (y(s− τ1)− y∗)2]

+
β1e−m1τ1 y∗

2
[(x(t)− x∗)2 + (x(s− τ1)− x∗)2] +

β1y∗

2
[(y(t)− y∗)2 + (x(s− τ1)− x∗)2]

+
β2e−m2τ2 x0(ε)

2
[(x(t)− x∗)2 + (v(s− τ2)− v∗)2] +

β2x0(ε)

2
[(y(t)− y∗)2 + (v(s− τ2)− v∗)2]

+
β2e−m2τ2 v∗

2
[(x(t)− x∗)2 + (x(s− τ2)− x∗)2] +

β2v∗

2
[(y(t)− y∗)2 + (x(s− τ2)− x∗)2]

+
p
2
[(x(t)− x∗)2 + (y(s)− y∗)2] +

pem1τ1

2
[(y(t)− y∗)2 + (y(s)− y∗)2]

}
ds

=
1
2

β1x0(ε)e−m1τ1 Υ2(ε)(x(t)− x∗)2τ1 +
1
2

β1x0(ε)Υ2(ε)(y(t)− y∗)2τ1

+
1
2

β2
1x2

0(ε)(1 + e−m1τ1 )
∫ t

t−τ1

(y(s− τ1)− y∗)2ds

+
1
2

β2
1x0(ε)y∗(1 + e−m1τ1 )

∫ t

t−τ1

(x(s− τ1)− x∗)2ds

+
1
2

β1β2x2
0(ε)(1 + e−m1τ1 )

∫ t

t−τ1

(v(s− τ2)− v∗)2ds

+
1
2

β1β2x0(ε)v∗(1 + e−m1τ1 )
∫ t

t−τ1

(x(s− τ2)− x∗)2ds

+
1
2

pβ1x0(ε)(1 + em1τ1 )
∫ t

t−τ1

(y(s)− y∗)2ds.

Similarly, from (13) and (15), we have, for t > T(ε) + 2(τ1 + τ2),

|Γ2(t)| ≤β1M2(ε)|[(x(t)− x∗) + em1τ1(y(t)− y∗)]|

×
∫ t

t−τ1

{
Υ1(ε)|(x(s)− x∗)|+ Λ1x0(ε)|(y(s)− y∗)|+ β2x0(ε)|(v(s)− v∗)|

}
ds

≤1
2

β1M2(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε))(x(t)− x∗)2τ1

+
1
2

β1M2(ε)em1τ1(Υ1(ε) + Λ1x0(ε) + β2x0(ε))(y(t)− y∗)2τ1

+
1
2

Υ1(ε)β1M2(ε)(1 + em1τ1)
∫ t

t−τ1

(x(s)− x∗)2ds

+
1
2

Λ1x0(ε)β1M2(ε)(1 + em1τ1)
∫ t

t−τ1

(y(s)− y∗)2ds

+
1
2

β2x0(ε)β1M2(ε)(1 + em1τ1)
∫ t

t−τ1

(v(s)− v∗)2ds,

|Γ3(t)| ≤β2x0(ε)[|(x(t)− x∗)|+ em1τ1 |(y(t)− y∗)|]
∫ t

t−τ2

[k|(y(s)− y∗)|+ u|(v∗ − v(s))|]ds,

≤1
2

β2x0(ε)(k + u)(x(t)− x∗)2τ2 +
1
2

β2x0(ε)(k + u)em1τ1(y(t)− y∗)2τ2

+
1
2

kβ2x0(ε)(1 + em1τ1)
∫ t

t−τ2

(y(s)− y∗)2ds +
1
2

uβ2x0(ε)(1 + em1τ1)
∫ t

t−τ2

(v(s)− v∗)2ds,
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|Γ4(t)| ≤β2M3(ε)[|(x(t)− x∗)|+ em1τ1 |(y(t)− y∗)|]

×
∫ t

t−τ2

{
Υ1(ε)|(x(s)− x∗)|+ Λ1x0(ε)|(y(s)− y∗)|+ β2x0(ε)|(v(s)− v∗)|

}
ds

≤1
2

β2M3(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε))(x(t)− x∗)2τ2

+
1
2

β2M3(ε)em1τ1(Υ1(ε) + Λ1x0(ε) + β2x0(ε))(y(t)− y∗)2τ2

+
1
2

Υ1(ε)β2M3(ε)(1 + em1τ1)
∫ t

t−τ2

(x(s)− x∗)2ds

+
1
2

Λ1x0(ε)β2M3(ε)(1 + em1τ1)
∫ t

t−τ2

(y(s)− y∗)2ds

+
1
2

β2x0(ε)β2M3(ε)(1 + em1τ1)
∫ t

t−τ2

(v(s)− v∗)2ds.

Hence, we have, for t > T(ε) + 2(τ1 + τ2),

Γ(t) :=|Γ1(t)|+ |Γ2(t)|+ |Γ3(t)|+ |Γ4(t)|

≤1
2

β1[x0(ε)e−m1τ1 Υ2(ε) + M2(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε))]τ1(x(t)− x∗)2

+
1
2

β1[x0(ε)Υ2(ε) + em1τ1 M2(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε))]τ1(y(t)− y∗)2

+
1
2

β2[M3(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε)) + x0(ε)(k + u)]τ2(x(t)− x∗)2

+
1
2

β2em1τ1 [M3(ε)(Υ1(ε) + Λ1x0(ε) + β2x0(ε)) + x0(ε)(k + u)]τ2(y(t)− y∗)2

+
1
2

β2
1x0(ε)y∗(1 + e−m1τ1 )

∫ t

t−τ1

(x(s− τ1)− x∗)2ds

+
1
2

β1β2x0(ε)v∗(1 + e−m1τ1 )
∫ t

t−τ1

(x(s− τ2)− x∗)2ds

+
1
2

Υ1(ε)β1 M2(ε)(1 + em1τ1 )
∫ t

t−τ1

(x(s)− x∗)2ds

+
1
2

β2
1x2

0(ε)(1 + e−m1τ1 )
∫ t

t−τ1

(y(s− τ1)− y∗)2ds

+

[
1
2

pβ1x0(ε)(1 + em1τ1 ) +
1
2

Λ1x0(ε)β1 M2(ε)(1 + em1τ1 )

] ∫ t

t−τ1

(y(s)− y∗)2ds

+
1
2

β1β2x2
0(ε)(1 + e−m1τ1 )

∫ t

t−τ1

(v(s− τ2)− v∗)2ds

+
1
2

β2x0(ε)β1 M2(ε)(1 + em1τ1 )
∫ t

t−τ1

(v(s)− v∗)2ds

+
1
2

Υ1(ε)β2 M3(ε)(1 + em1τ1 )
∫ t

t−τ2

(x(s)− x∗)2ds

+

[
1
2

kβ2x0(ε)(1 + em1τ1 ) +
1
2

Λ1x0(ε)β2 M3(ε)(1 + em1τ1 )

] ∫ t

t−τ2

(y(s)− y∗)2ds

+

[
1
2

uβ2x0(ε)(1 + em1τ1 ) +
1
2

β2x0(ε)β2 M3(ε)(1 + em1τ1 )

] ∫ t

t−τ2

(v(s)− v∗)2ds

=Ψ1(ε)τ1(x(t)− x∗)2 + Ψ1(ε)em1τ1 τ1(y(t)− y∗)2 + Ψ2(ε)τ2(x(t)− x∗)2 + Ψ2(ε)em1τ1 τ2(y(t)− y∗)2

+ Ψ3(ε)
∫ t

t−τ1

(x(s− τ1)− x∗)2ds + Ψ4(ε)
∫ t

t−τ1

(x(s− τ2)− x∗)2ds + Ψ5(ε)
∫ t

t−τ1

(x(s)− x∗)2ds

+ Ψ6(ε)
∫ t

t−τ1

(y(s− τ1)− y∗)2ds + Ψ7(ε)
∫ t

t−τ1

(y(s)− y∗)2ds

+ Ψ8(ε)
∫ t

t−τ1

(v(s− τ2)− v∗)2ds + Ψ9(ε)
∫ t

t−τ1

(v(s)− v∗)2ds

+ Ψ10(ε)
∫ t

t−τ2

(x(s)− x∗)2ds + Ψ11(ε)
∫ t

t−τ2

(y(s)− y∗)2ds + Ψ12(ε)
∫ t

t−τ2

(v(s)− v∗)2ds.
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For t > T(ε) + 2(τ1 + τ2), we define

U3 =Ψ3(ε)

[∫ t

t−τ1

∫ t

θ
(x(s− τ1)− x∗)2dsdθ + τ1

∫ t

t−τ1

(x(s)− x∗)2ds
]

+ Ψ4(ε)

[∫ t

t−τ1

∫ t

θ
(x(s− τ2)− x∗)2dsdθ + τ1

∫ t

t−τ2

(x(s)− x∗)2ds
]
+ Ψ5(ε)

∫ t

t−τ1

∫ t

θ
(x(s)− x∗)2dsdθ

+ Ψ6(ε)

[∫ t

t−τ1

∫ t

θ
(y(s− τ1)− y∗)2dsdθ + τ1

∫ t

t−τ1

(y(s)− y∗)2ds
]
+ Ψ7(ε)

∫ t

t−τ1

∫ t

θ
(y(s)− y∗)2dsdθ

+ Ψ8(ε)

[∫ t

t−τ1

∫ t

θ
(v(s− τ2)− v∗)2dsdθ + τ1

∫ t

t−τ2

(v(s)− v∗)2ds
]
+ Ψ9(ε)

∫ t

t−τ1

∫ t

θ
(v(s)− v∗)2dsdθ

+ Ψ10(ε)
∫ t

t−τ2

∫ t

θ
(x(s)− x∗)2dsdθ + Ψ11(ε)

∫ t

t−τ2

∫ t

θ
(y(s)− y∗)2dsdθ

+ Ψ12(ε)
∫ t

t−τ2

∫ t

θ
(v(s)− v∗)2dsdθ.

Computing the derivative of U3, we have, for t > T(ε) + 2(τ1 + τ2),

dU3

dt
=Ψ3(ε)

[
−
∫ t

t−τ1

(x(s− τ1)− x∗)2ds + τ1(x(t)− x∗)2
]

+ Ψ4(ε)

[
−
∫ t

t−τ1

(x(s− τ2)− x∗)2ds + τ1(x(t)− x∗)2
]
+ Ψ5(ε)

[
−
∫ t

t−τ1

(x(s)− x∗)2ds + τ1(x(t)− x∗)2
]

+ Ψ6(ε)

[
−
∫ t

t−τ1

(y(s− τ1)− y∗)2ds + τ1(y(t)− y∗)2
]
+ Ψ7(ε)

[
−
∫ t

t−τ1

(y(s)− y∗)2ds + τ1(y(t)− y∗)2
]

+ Ψ8(ε)

[
−
∫ t

t−τ1

(v(s− τ2)− v∗)2ds + τ1(v(t)− v∗)2
]
+ Ψ9(ε)

[
−
∫ t

t−τ1

(v(s)− v∗)2ds + τ1(v(t)− v∗)2
]

+ Ψ10(ε)

[
−
∫ t

t−τ2

(x(s)− x∗)2ds + τ2(x(t)− x∗)2
]
+ Ψ11(ε)

[
−
∫ t

t−τ2

(y(s)− y∗)2ds + τ2(y(t)− y∗)2
]

+ Ψ12(ε)

[
−
∫ t

t−τ2

(v(s)− v∗)2ds + τ2(v(t)− v∗)2
]

.

Hence, we have, for t > T(ε) + 2(τ1 + τ2),

dU3

dt
+ Γ(t) ≤[(Ψ1(ε) + Ψ3(ε) + Ψ4(ε) + Ψ5(ε))τ1 + (Ψ2(ε) + Ψ10(ε))τ2](x(t)− x∗)2

+[(Ψ1(ε)em1τ1 + Ψ6(ε) + Ψ7(ε))τ1 + (Ψ2(ε)em1τ1 + Ψ11(ε))τ2](y(t)− y∗)2

+[(Ψ8(ε) + Ψ9(ε))τ1 + Ψ12(ε)τ2](v(t)− v∗)2.

Further, we have, for t > T(ε) + 2(τ1 + τ2),
dU2

dt
+

dU3

dt

≤−
{

d− r +
r
K
(ν1(ε) + x∗) +

(
c +

rα

K

)
y∗

− [(Ψ1(ε) + Ψ3(ε) + Ψ4(ε) + Ψ5(ε))τ1 + (Ψ2(ε) + Ψ10(ε))τ2]

}
(x(t)− x∗)2

−
{

em1τ1
[
em1τ1 p +

(
c +

rα

K

)
ν1(ε)

]
− [(Ψ1(ε)em1τ1 + Ψ6(ε) + Ψ7(ε))τ1 + (Ψ2(ε)em1τ1 + Ψ11(ε))τ2]

}
(y(t)− y∗)2

+
{

em1τ1
[
d− r +

r
K
(x0(ε) + x∗) +

(
c +

rα

K

)
y∗ + p

]
+
(

c +
rα

K

)
x0(ε)

}
|(x(t)− x∗)(y(t)− y∗)|

+ [(Ψ8(ε) + Ψ9(ε))τ1 + Ψ12(ε)τ2](v(t)− v∗)2.

(16)
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Define
U4 =

1
2
(v(t)− v∗)2,

then we have, for t > T(ε) + 2(τ1 + τ2),
dU4

dt
= (v(t)− v∗)[k(y(t)− y∗) + u(v∗ − v(t))] = k(y(t)− y∗)(v(t)− v∗)− u(v(t)− v∗)2. (17)

Finally, we define
U = U1 + θ1(U2 + U3) + θ2U4.

From (11), (16) and (17), we have, for t > T(ε) + 2(τ1 + τ2),

dU
dt

=
dU1

dt
+ θ1

(
dU2

dt
+

dU3

dt

)
+ θ2

dU4

dt

≤− A11(ε)(x(t)− x∗)2 − A22(ε)(y(t)− y∗)2 − A33(ε)(v(t)− v∗)2

+ 2A12(ε)|x(t)− x∗||y(t)− y∗|+ 2A23(ε)|y(t)− y∗||v(t)− v∗|

=− (|x(t)− x∗|, |y(t)− y∗|, |v(t)− v∗|)J(ε)(|x(t)− x∗|, |y(t)− y∗|, |v(t)− v∗|)T .

(18)

Since J(ε) is positive definite, then using the classic Barbalat’s lemma [42], we have

lim
t→+∞

|x(t)− x∗| = lim
t→+∞

|y(t)− y∗| = lim
t→+∞

|v(t)− v∗| = 0.

Thus, the chronic infection equilibrium E∗ is globally attractive.

4. Conclusions

In this paper, we mainly study the uniform persistence and global attractivity of
chronic infection equilibrium E∗ of model (4). For the uniform persistence of model (4),
Theorem 1 and (5) give explicit expressions of the ultimate upper and lower bounds of
any positive solution of model (4). In fact, the global attractivity of the chronic infection
equilibrium E∗ of model (4) is still a question worthy of further discussion. Using standard
analytical methods, it is not difficult to find that when delay τ1 or τ2 changes, Hopf
bifurcations can appear near the chronic infection equilibrium E∗. Under the condition
m1τ1 = m2τ2, Theorem 2 gives a class of sufficient conditions to determine the global
attractivity of the chronic infection equilibrium E∗. Of course, it is also easy to see that
the verification of these sufficient conditions are complex and highly conservative, relying
strongly on the construction of the Lyapunov functional U = U1 + θ1(U2 + U3) + θ2U4.

To illustrate the feasibility of the application of Theorem 2, we specifically choose the
following parameter values: s = 1, d = 1, r = 0.01, K = 1000, c = 0.01, p = 2, k = 1,
u = 1, α = 2, β1 = 1, β2 = 1.06, τ1 = 0.015, τ2 = 0.01, m1 = 0.02, m2 = 0.03. Then,
we have R0 ≈ 1.040081> 1, m1τ1 = m2τ2, and model (4) has a unique chronic infection
equilibrium E∗ ≈ (0.971165, 0.0191695, 0.0191695). We further choose θ1 = 1 and θ2 = 0.5,
then we can obtain A11(0) ≈ 1.660181 > 0, A12(0) ≈ 1.505625, A22(0) ≈ 1.637131 > 0,
A23(0) = 0.25, and A33(0) ≈ 0.3623425 > 0. It is easy to verify that J(0) is positive definite
and d− r + rx∗

K ≈ 0.99001 > 0. Therefore, the conditions of Theorem 2 are satisfied, and
chronic infection equilibrium E∗ is globally attractive.
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