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Abstract: In this work, we consider a family of nonlinear third-order evolution equations, where two
arbitrary functions depending on the dependent variable appear. Evolution equations of this type
model several real-world phenomena, such as diffusion, convection, or dispersion processes, only to
cite a few. By using the multiplier method, we compute conservation laws. Looking for traveling
waves solutions, all the the conservation laws that are invariant under translation symmetries are
directly obtained. Moreover, each of them will be inherited by the corresponding traveling wave
ODEs, and a set of first integrals are obtained, allowing to reduce the nonlinear third-order evolution
equations under consideration into a first-order autonomous equation.

Keywords: third-order partial differential equations; conservation laws; multi-reduction method;
partial differential equations

MSC: 35B06; 35C07; 35L65

1. Introduction

Over the last years, the analysis of integrable equations to understand phenomena
in the real world has drawn the attention of a significant part of the research community.
In [1], Qiao and Liu considered the third-order partial differential equation (PDE) given by

ut =
1
2

(
1
u2

)
xxx
− 1

2

(
1
u2

)
x
. (1)

The authors showed that Equation (1) is completely integrable and its corresponding
Lax pair and bi-Hamiltonian structure were stated. In [2], the authors considered the
generalized equation

ut = (g(u))xxx + ( f (u))x. (2)

In the following u : Ix × It → R, with Ix and It suitable intervals in R, is an analytic
function of the spatial coordinate x and the time coordinate t, whereas f , g : D ⊆ R→ R
are arbitrary analytic functions of the dependent variable u.

They determined the subclasses of family (2) which are self-adjoint and quasi self-
adjoint. Then, by using Ibragimov’s formula [3], they found conservation laws for some
equations belonging to class (2). Nevertheless, as we will explain in detail hereafter,
Ibragimov’s method does not guarantee that all conservation laws will be obtained, which
motivates the present study.

Conservation laws present themselves in several branches of science. They allow
to find the solution of problems which involve physical characteristics that remain un-
changed over time in an isolated physical system. Conservation laws, which are physically
important, possess conserved densities and fluxes with low differential orders, whereas
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those involving higher order derivatives are usually related to integrability. Furthermore,
the accuracy, existence, uniqueness and stability of numerical solutions of PDEs as well as
the construction of exact solutions can be investigated through the use of conservation laws.

A conservation law for PDE (2) is a space–time divergence expression DtT + DxX = 0
which holds on all solutions of the given PDE, where T represents the conserved density
and X represents the spatial flux. Both T and X are functions of t, x, and u, and partial
derivatives of u. The pair (T, X) is called a conserved current, whereas Dt and Dx are
total derivatives.

There are different methods to obtain conservation laws. For variational problems,
Noether’s theorem is the best known and important result [4]. This theorem establishes a
one-to-one correspondence between each differentiable symmetry and the conservation
laws of its Euler–Lagrange equations.

Nevertheless, several differential equations (DEs) with interesting physical and math-
ematical applications are not variational systems. This has motivated a great number of
works over the last decades devoted to generalize Noether’s theorem to non-variational
DEs [5–13].

Noether’s theorem is completely generalized by a direct method based on adjoint
symmetries, whose theoretical basis framework was established in [14,15] and developed
in a systematic way, including algorithms for the determination of conservation laws,
in [5,16–18]. The direct method can be applied to any PDE and reduce the issue of con-
structing conservation laws to find sets of local multipliers.

A local multiplier is a function depending on the independent variables, dependent
variables and at most a finite number of derivatives of the dependent variable of the
considered PDE, in a manner that a divergence expression is obtained for any dependent
variable, not only solutions of the given PDE, after multiplying the given PDE by the
local multiplier.

In general, the set of multiplier determining equations consists of the adjoint of the
symmetry determining equations to which further equations similar to Helmholtz con-
ditions are added. Moreover, the set of multiplier determining equations can be solved
analogously to the usual procedure for solving the set of symmetry determining equa-
tions. Each set of local multipliers yields local conservation laws of the considered PDE.
Consequently, all local conservation laws admitted by a given PDE can be determined
systematically, without requiring any extra restriction or the use of a specified ansatz. More
importantly, conservation laws can be obtained by using an homotopy integral formula or
by direct integration of the characteristic equation [15,17–20]. The situation for variational
systems is especially interesting since the determining system for multipliers includes
the determining system for symmetries. Therefore, each set of local multipliers yields a
local symmetry, in evolutionary form, of the considered PDE. The general method given
in [5,16–18] was extensively revised and further developed in [21]. On the other hand,
in [22,23], the symmetry properties of conservation laws of PDEs were examined through
the use of the multiplier method.

In the last few years, Ibragimov [3] promoted a conservation law formula which does
not need the existence of a classical Lagrangian. This formula is based on the notion of
adjoint equation for nonlinear DEs. Similarly, the concepts of self-adjoint, quasi self-adjoint,
weak self-adjoint and nonlinear self-adjoint DEs were developed [24–26]. However, in [22],
the equivalence between the formula given by Ibragimov for constructing conservation
laws and a standard formula for the action of an infinitesimal symmetry on a conservation
law multiplier was demonstrated. Furthermore, it was recently proved that Ibragimov’s
formula can yield trivial conservation laws [27]. Most importantly, this formula does not
necessarily ensure that all nontrivial conservation laws are obtained, except if the action of
the symmetry on the admitted conservation laws is transitive, a property which cannot be
checked prior to determining all admitted conservation laws.

One of the most effective applications of symmetries is the construction of group-
invariant solutions of nonlinear PDEs, i.e., interesting classes of solutions invariant under
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a specific symmetry group which verify a reduced DE system with a fewer number of
independent variables. However, in order to obtain the desired group-invariant solutions
in an explicit form, one must solve this reduced DE system. For that purpose, it is necessary
to obtain sufficient reductions of order using first integrals, which lead to a quadrature.
A different approach arises when taking into account the relationship between symmetries
and conservation laws. In [28–30], a double reduction method which can be applied to non-
variational PDEs was proved. This method consists in finding a symmetry which leaves
the conserved current for a local conservation law of the considered PDE invariant. In the
case of a PDE with two independent variables, the invariance under the symmetry reduces
the given PDE to an ordinary differential equation (ODE) and therefore, the subsequent
reduction of the conserved current leads to a first integral of this ODE.

In [31], the double reduction method proposed in [28–30] was naturally extended
to PDEs with any number of independent and dependent variables. Here, the reduced
PDE involves one less independent variable, whereas the reduction of the corresponding
conserved current leads to a conservation law of the reduced PDE.

In [32], an alternative and improved generalization of the double reduction method,
called multi-reduction method, for PDEs in k ≥ 2-independent variables which admit
a symmetry algebra of dimension at least k− 1 was presented. This general method of
symmetry reduction of PDEs with conservation laws provides an explicit algorithm to
determine all symmetry-invariant conservation laws that will reduce to first integrals for
the ODE that describes the symmetry-invariant solutions of the PDE.

In [33] a third-order PDE was analyzed from the point of view of point symmetries
and reductions. In particular, the three- and four-dimensional solvable symmetry algebras
admitted by the considered family depending on its arbitrary functions were determined.
In this way, one is able to reduce the considered PDE into a first-order ODE. Nevertheless,
this ODE does not admit an obvious quadrature. Therefore, by using solvable symmetry
algebras, the reduction of the considered PDE to the quadrature can be only obtained for
special forms of the functions involved. It turns out that these cases are included in family
(2). In this paper, we show that taking into account symmetry-invariant conservation laws,
a triple reduction in PDE (2) is obtained. Most importantly, the reduced ODE is separable,
yielding a straightforward quadrature which gives the general traveling wave solution of
PDE (2) for arbitrary f (u) and g(u). Thus, the results obtained in this paper on traveling
wave solutions generalize those included in [33].

The goal of this paper is to study PDE (2) from the point of view of conservation laws
in order to apply the multi-reduction method. In Section 2, the direct method presented
in [5,16–18] is successfully applied to the generalized third-order PDE (2) and a complete
classification of zero-order multipliers admitted by family (2) depending on not constant
functions f (u) and g(u), with f (u) and g(u) both being non-linear, is determined. Further-
more, taking into account the zero-order multipliers obtained, we construct conservation
laws of family (2). In Section 3, we determine those zero-order multipliers admitted by PDE
(2) which are invariant under a traveling wave translation with arbitrary constant wave
speed. From the corresponding invariant conservation laws, we obtain two functionally
independent first integrals which are combined to yield a first-order autonomous equation
whose general solution can be determined in implicit form. Therefore, the general solution
of PDE (2) starting from a traveling wave reduction is found. Finally, in Section 4, we
present the conclusions.

2. Conservation Laws

We recall same relevant elements on conservation laws; for more details, see, for
example, [15,17–19].

Let E be a PDE of order n, in the unknown function u(x, t), with x and t being the
spatial and the time coordinates, respectively. A conservation law is an expression

DtT(t, x, u, ut, ux, ...) + DxX(t, x, u, ut, ux, ...) = 0, (3)
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true for all solutions u(x, t) of equation E. Here, T represents the conserved density and X
the associated flux, while Dt and Dx given by

Dt = ∂t + ut∂u + utx∂ux + utt∂ut + . . . ,
Dx = ∂x + ux∂u + uxx∂ux + uxt∂ut + . . . ,

denote the total derivatives with respect to t and x respectively.
A conserved current (T, X) is called trivial if the conservation law (3) of PDE E holds

for any smooth function u(x, t).
Two conserved currents (T1, X1) and (T2, X2) are called equivalent if they differ by

a trivial conserved current; we will use this in order to simplify the conserved currents
that we construct in this section. Then, in the following, a conservation law of E is an
equivalence class of conservation laws of E.

In [18], it is proved that when an equation admits a Cauchy–Kovalevskaya form, every
nontrivial (up to equivalence) local conservation law emerges from multipliers; moreover,
there is a one-to-one correspondence between equivalence classes of conservation laws and
multipliers, which do not depend on ut and its differential consequences.

As the Equation (2) admits a Cauchy–Kovalevskaya form with respect to the inde-
pendent variable t, this implies that for each multiplier Q there exists a nontrivial (up
to equivalence) local conservation law (that is a conserved current (T, X)) such that the
equation

DtT + DxX = (ut − (g(u))xxx − ( f (u))x)Q, (4)

is true for all functions u(t, x) (not just solutions of PDE (2)). Then multipliers Q are
obtained by requiring that the divergence condition must be satisfied

δ

δu
((ut − (g(u))xxx − ( f (u))x)Q) = 0, (5)

where
δ

δu
= ∂u − Dx∂ux − Dt∂ut + D2

x∂uxx + DxDt∂uxt + D2
t ∂utt + ..., denotes the Euler op-

erator.
We consider the zero-order multipliers admitted by PDE (2) which have the form

Q(x, t, u). (6)

Here, we consider Q : Ix × It ×R→ R an analytic function.
The corresponding Equation (5) splits into an overdetermined system linear in the

unknown Q but that involves two arbitrary functions f and g of u. By solving these
determining equations, and taking into account that f and g cannot be both linear functions,
we obtain the following result.

Proposition 1. The low-order multipliers of differential order zero (6) admitted by the generalized
third-order PDE (2) with f (u) and g(u) not being linear functions simultaneously, are:

Q1 = 1, (7)

Q2 = g(u). (8)

Additional multipliers are admitted in the following cases:

1. If f (u) and g(u) satisfy the relation g(u) = g0 f ′(u) + g1, then the additional multiplier is

Q3 = x + f ′(u)t. (9)



Mathematics 2022, 10, 954 5 of 13

2. If f (u) and g(u) satisfy the relation g(u) = −g0 f (u) + g1u + g2, with g0 > 0, then the
additional multipliers are

Q4 = exp

(
g0x + g1t

g3/2
0

)
, (10)

Q5 = exp

(
− g0x + g1t

g3/2
0

)
. (11)

3. If f (u) and g(u) satisfy the relation g(u) = g0 f (u) + g1u + g2, with g0 > 0, then the
additional multipliers are

Q6 = sin

(
g1t− g0x

g3/2
0

)
, (12)

Q7 = cos

(
g1t− g0x

g3/2
0

)
. (13)

4. If f (u) = f0equ + f1u + f2 and g(u) = g̃0equ + g̃1, with g̃0
f0

< 0, then the additional
multipliers are Q3, Q4|g0=−

g̃0
f0

,g1=−
f1 g̃0

f0

and Q5|g0=−
g̃0
f0

,g1=−
f1 g̃0

f0

.

5. If f (u) = f0equ + f1u + f2 and g(u) = g̃0equ + g̃1, with g̃0
f0

> 0, then the additional
multipliers are Q3, Q6|g0=

g̃0
f0

,g1=−
f1 g̃0

f0

and Q7|g0=
g̃0
f0

,g1=−
f1 g̃0

f0

.

6. If f (u) = f0u + f1, then the additional multipliers are Q3 and

Q8 = (x + f0t)2. (14)

7. If f (u) = f0u + f1 and g(u) = g1 + g0equ, then the additional multipliers are Q3, Q8 and

Q9 = (x + f0t)3 + 6qg0tequ. (15)

In the above, q 6= 0, f0 6= 0, f1, f2, g0 6= 0, g1, g2, g̃0 6= 0 and g̃1 are real arbitrary constants.

Proof. Divergence condition (5) in the unknown function Q(x, t, u) leads to the following
linear system of six determining equations

g′Qxu = 0, g′Qxxu = 0, g′Qxuu = 0,
g′Quu − g′′Qu = 0,

f ′Qx −Qt + g′Qxxx = 0,
g′Quuu − g′′′Qu = 0.

(16)

Taking into account that g′(u) 6= 0, from the fourth equation of system (16), we obtain

Q(x, t, u) = p(x, t) + r(x, t)g(u), (17)

where p, r : Ix × It → R are smooth functions which must be determined. Substituting the
form of the multiplier (17) in the remaining equations, we obtain that r(x, t) = r(t) and p,
r, f and g are related by the following equation:

pxxxg′ + px f ′ − rtg− pt = 0. (18)

We solve Equation (18) depending on functions f and g, which leads to different
solutions for functions p and r, and consequently for solution Q. Moreover, every multiplier

Q may be written in the form
k

∑
i=1

ciQi, with ci being arbitrary real constants for some integer
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k, where {Q1, . . . , Qk} represents a basis for the set of all zero-order multipliers admitted
by PDE (2) depending on the form of f and g. This leads to the different cases listed in the
present proposition.

Each zero-order multiplier Qi, i = 1, . . . , 9, given in Proposition 1, yields a correspond-
ing conserved density Ti and flux Xi. The conserved current (Ti, Xi) can be constructed
by integrating the characteristic Equation (4) or by using an homotopy formula [15,17–20].
The following result is obtained.

Theorem 1. The conservation laws associated with the zero-order multipliers given in Proposition 1
which are admitted by the generalized third-order PDE (2) for arbitrary f (u) and g(u), not being
linear functions simultaneously, are given by

T1 = u, (19)

X1 = −(g(u))xx − f (u).

T2 =
∫

g(u) du, (20)

X2 = −g(u)
(

g′(u)uxx + g′′(u)u2
x

)
+ 1

2 g′(u)2u2
x −

∫
g(u) f ′(u) du.

The generalized third-order PDE (2) admits additional conservation laws associated with the
zero-order multipliers given in Proposition 1 in the following cases:

• If f (u) and g(u) satisfy the relation g(u) = g0 f ′(u) + g1, then the additional conservation
law admitted is

T3 = xu + t f (u),
X3 = −g0(t f ′(u) + x)

(
f ′′(u)uxx + f ′′′(u)u2

x

)
+g0 f ′′(u)2ux

(
1 +

t
2

f ′′(u)ux

)
−
∫

f ′(u)(t f ′(u) + x) du.
(21)

• If f (u) and g(u) satisfy the relation g(u) = −g0 f (u) + g1u + g2, with g0 > 0, then the
additional conservation laws admitted are

T4 = exp
(

g0x+g1t
g3/2

0

)
u,

X4 = exp
(

g0x+g1t
g3/2

0

)(
(g0 f ′(u)− g1)

(
uxx − 1√

g0
ux

)
+g0 f ′′(u)u2

x −
g1
g0

u

)
.

(22)

T5 = exp
(
− g0x+g1t

g3/2
0

)
u,

X5 = exp
(
− g0x+g1t

g3/2
0

)(
(g0 f ′(u)− g1)

(
uxx +

1√
g0

ux

)
+g0 f ′′(u)u2

x −
g1
g0

u

)
.

(23)
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• If f (u) and g(u) satisfy the relation g(u) = g0 f (u) + g1u + g2, with g0 > 0, then the
additional conservation laws admitted are

T6 = − sin
(

g1t−g0x
g3/2

0

)
u,

X6 = (g0 f ′(u) + g1)

(
sin
(

g1t−g0x
g3/2

0

)
uxx +

1√
g0

cos
(

g1t−g0x
g3/2

0

)
ux

)
+g0 sin

(
g1t−g0x

g3/2
0

)
f ′′(u)u2

x −
g1
g0

sin
(

g1t−g0x
g3/2

0

)
u.

(24)

T7 = − cos
(

g1t−g0x
g3/2

0

)
u,

X7 = (g0 f ′(u) + g1)

(
cos
(

g1t−g0x
g3/2

0

)
uxx − 1√

g0
sin
(

g1t−g0x
g3/2

0

)
ux

)
+g0 cos

(
g1t−g0x

g3/2
0

)
f ′′(u)u2

x −
g1
g0

cos
(

g1t−g0x
g3/2

0

)
u.

(25)

• If f (u) = f0equ + f1u + f2 and g(u) = g̃0equ + g̃1, with g̃0
f0

< 0, then the additional
conservation laws admitted are (T3, X3),
(T4|g0=−

g̃0
f0

,g1=−
f1 g̃0

f0

, X4|g0=−
g̃0
f0

,g1=−
f1 g̃0

f0

) and (T5|g0=−
g̃0
f0

,g1=−
f1 g̃0

f0

, X5|g0=−
g̃0
f0

,g1=−
f1 g̃0

f0

).

• If f (u) = f0equ + f1u + f2 and g(u) = g̃0equ + g̃1, with g̃0
f0

< 0, then the additional
conservation laws admitted are (T3, X3),
(T6|g0=

g̃0
f0

,g1=−
f1 g̃0

f0

, X6|g0=
g̃0
f0

,g1=−
f1 g̃0

f0

) and (T7|g0=
g̃0
f0

,g1=−
f1 g̃0

f0

, X7|g0=
g̃0
f0

,g1=−
f1 g̃0

f0

).

• If f (u) = f0u + f1, then the additional conservation laws admitted are (T3, X3) and

T8 = −(x + f0t)2u,
X8 = 2g− 2(x + f0t)g′ux + (x + f0t)2(g′′u2

x + g′uxx).
(26)

• If f (u) = f0u + f1 and g(u) = g1 + g0equ, then the additional conservation laws admitted
are (T3, X3), (T8, X8) and

T9 =
(
6g0tequ + (x + f0t)3)u,

X9 = g0equ(q(x + f0t)3(uxx + qu2
x)− 3q(x + f0t)2ux + 6(x + 2 f0t)

)
+ f0(x + f0t)3u + 3q2g2

0te2qu(2uxx + qu2
x).

(27)

Here, we recall (Ti, Xi), i = 1, . . . , 9, represents the conservation law obtained from the
multiplier Qi given in Proposition 1; q 6= 0, f0 6= 0, f1, f2, g0 6= 0, g1, g2, g̃0 6= 0 and g̃1 are real
arbitrary constants.

Proof. For each of the multipliers Qi, i = 1, . . . , 9, along with the form of the functions f
and g, given in Proposition 1, the conserved currents (Ti, Xi) are obtained by applying inte-
gration by parts to the terms in (ut − (g(u))xxx − ( f (u))x)Q in order to obtain a total time
derivative DtTi plus a total space derivative DxXi [17]. Furthermore, since PDE (2) admits
a Cauchy–Kovalevskaya form, there is a one-to-one correspondence between conserved
currents (Ti, Xi) (up to equivalence) and multipliers Qi. Therefore, the only conservation
laws admitted by PDE (2) are linear combinations of the admitted conserved currents
(Ti, Xi), depending on the form of functions f and g. Now we show a detail proof of the
construction of conservation law (T2, X2). Let us consider Q2 = g(u) given in Proposition 1.
The conserved current (T2, X2) can be derived in terms of the multiplier Q2 by applying
integration by parts to the terms in

(ut − (g(u))xxx − ( f (u))x)Q2, (28)
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to obtain a total time derivative DtT2 plus a total space derivative DxX2, which yields
(T2, X2). Taking into account the coefficient of uxxx in (28), we observe that

Dx(−gg′uxx) = −gg′uxxx − (g′2 + gg′′)uxuxx.

Consequently, expression (28) can be written as

gut + (g′2 − 2gg′′)uxuxx − gg′′′u3
x − f ′gux + Dx(−gg′uxx). (29)

Now, we take into account the coefficient of uxx in (29) and observe that

Dx

(
1
2 (g′2 − 2gg′′)u2

x

)
= (g′2 − 2gg′′)uxuxx − gg′′′u3

x.

Therefore, expression (29) can be written as

gut − f ′gux + Dx

(
1
2 (g′2 − 2gg′′)u2

x − gg′uxx

)
. (30)

We take into account the coefficient of ux in (30) and observe that

Dx

(
−
∫

f ′g du
)
= − f ′gux.

Finally, the coefficient of ut in (30) can be obtained by using Dt(
∫

g du). Thus, we
conclude that expression (30) can be written as

Dt

(∫
g du

)
+ Dx

(
1
2 (g′2 − 2gg′′)u2

x − gg′uxx −
∫

f ′g du
)

, (31)

which leads to the result presented in this theorem. The remaining conservation laws can
be determined analogously.

3. Multi-Reduction Method

A great number of the interesting solutions of nonlinear PDEs are traveling wave
solutions. In the last years, many direct methods were developed to obtain exact solutions
of the reduced ODE by traveling wave reduction. The double reduction method proposed
in [29,30] has been mostly applied to reduce a qth-order PDE with two independent
variables, with conservation laws invariant under translations, to a (q− 1)-order ODE.
Recently, in [32], a new method was proposed. In this method, starting from a symmetry
which is used for the reduction of a PDE, all the conservation laws that are invariant under
this symmetry are directly obtained. Moreover, each of them is inherited by the reduced
ODE and a set of first integrals are obtained, allowing further reductions in the ODE.

A traveling wave has the form

u(x, t) = U(x− ct) (32)

where c 6= 0 is an arbitrary constant. Invariance of a PDE G(t, x, u, ut, ux, . . .) = 0 under
the translation symmetry

X = ∂t + c∂x, (33)

gives rise to traveling wave solutions, with

z = x− ct, u = U(z), (34)

being the invariants.
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Proposition 2. The multipliers of the generalized third-order PDE (2) which are invariant under
the translation symmetry (33), with c arbitrary constant, are Q1 and Q2, given respectively by (7)
and (8).

Proof. For each of the multipliers Qi, i = 1, . . . , 9, the invariance condition with respect to
the operator (33), X(Qi) = 0, leads to the following constraint

Qi t + cQix = 0. (35)

It is straightforward to verify that the multipliers Q1 and Q2 satisfy condition (35).
When i = 3, condition (35) is not verified when f ′′(u) 6= 0, while if f is linear, it is
satisfied for a specific value of the constant c. Finally, for the multipliers Qi, i = 4, . . . , 7,
the constraint (35) is satisfied for different specific values of the constant c. Therefore,
the only multipliers invariant under the translation symmetry (33), with c arbitrary constant,
are Q1 and Q2.

Proposition 3. The conservation laws of the generalized Equation (2) which are invariant under the
translation symmetry (33), with c arbitrary constant, are (T1, X1) and (T2, X2), given respectively
by (20) and (21).

Proof. The proof is immediately followed by taking into account that a conservation law is
invariant under the translation symmetry (33) if, and only if, the corresponding multiplier
is invariant with respect to the translation symmetry [32], and using the fact that from
Proposition 2, only multipliers Q1 and Q2, given respectively by (7) and (8), are invariant
under the translation symmetry (33) for c arbitrary constant.

Substitution of the traveling wave expression (32) into PDE (2) yields a nonlinear
third-order ODE

g′U′′′ + U′(3g′′U′′ + g′′′(U′)2 + f ′ + c) = 0.

By using the two translation-invariant conservation laws, we obtain the following two
first integrals

Ψ1 := g′U′′ + g′′U′2 + f + cU = C1,

Ψ2 := g(g′U′′ + g′′(U′)2)− 1
2
(g′)2(U′)2 +

∫
g( f ′ + c) du = C2,

with C1 and C2 real arbitrary constants. By combining these first integrals, we have obtained
a triple reduction in PDE (2) to a first-order autonomous equation

(U′)2 = − 2
(g′)2

(
f g−

∫
g( f ′ + c) dU + cgU − C1g + C2

)
. (36)

Equation (36) is of the form U′ = h(U) with

h(U) = ±

√
− 2
(g′)2

(
f g−

∫
g( f ′ + c) dU + cgU − C1g + C2

)
.

Consequently, the general solution of ODE (36) is given in implicit form as

z =
∫ dU

h(U)
+ C3,

where C3 is a real arbitrary constant.
We recall that functions f (u) and g(u)cannot be both linear functions for obtaining

local low-order conservation laws. However, conservation laws (T1, X1) and (T2, X2),
which are invariant under the translation symmetry (33), are admitted by PDE (2) also
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when f (u) and g(u) are both linear functions. Therefore, the above results are directly
extended to all equations of class (2), with f and g being non-constant functions.

Consequently, we determined the general traveling wave solution of PDE (2) for
arbitrary f (u) and g(u) by taking into account symmetry-invariant conservation laws,
which yield a triple reduction in PDE (2) plus a final quadrature.

This result can be used to determine large families of solutions of PDE (2). For instance,
by considering C1 = C2 = 0 in ODE (36), one can easily obtain exact solutions for numerous
PDEs belonging to family (2), in particular, soliton solutions. Solitons are interesting
solutions which exhibit both dispersive and nonlinear effects. They arise in several physical
systems, e.g., shallow and deep water waves, tsunamis, optimal fiber signals or atmospheric
waves, among others.

By way of example, let us consider f (u) = − a
n + 1

un+1 − b
2n + 1

u2n+1, g(u) = −µu,

with a and b being not simultaneously zero, µ 6= 0, n ≥ 1, and arbitrary parameters, then
PDE (2) becomes the generalized Gardner equation

ut + aunux + bu2nux + µuxxx = 0, (37)

whose soliton solutions were previously determined in the existing literature by using
different techniques. For b = 0 and n = 1, PDE (37) becomes the well-known Korteweg–De
Vries equation. By considering C1 = C2 = 0, the separable first-order ODE (36) takes
the form

(U′)2 =
c
µ

U2 − 2a
µ(n + 1)(n + 2)

Un+2 − b
µ(n + 1)(2n + 1)

U2n+2, (38)

whose general solution is given by

U(z) =

 c(n + 1)(n + 2)

a
(

1 +
√

1 + bc(n+1)(n+2)2

a2(2n+1) cosh
(

n
√

c
µ (z + z0

))


1/n

, (39)

where z0 is an arbitrary real constant. Undoing the change of variables (34), we finally
obtain the analytical expression of the solitons admitted by PDE (37)

u(x, t) =

 c(n + 1)(n + 2)

a
(

1 +
√

1 + bc(n+1)(n+2)2

a2(2n+1) cosh
(

n
√

c
µ (x− ct + z0

))


1/n

. (40)

On the other hand, we consider f (u) = −um, g(u) = −un, then PDE (2) becomes the
K(m, n) equation [34]

ut + (un)xxx + (um)x = 0. (41)

Now, we obtain the same solutions for the particular cases of PDE (41) which were
previously considered in Ref. [34] by using the different approach presented in this paper.
For m = 3, n = 2 and C1 = C2 = 0, the separable first-order ODE (36) takes the form

(U′)2 =
c
3

U − 1
5

U3, (42)

whose general solution is given by

U(z) = −
3√62

3
℘

(√
15 3
√

6
30

z + z0,
5 3√62c

3
, 0

)
, (43)
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where ℘(U; w1, w2) represents the Weierstrass elliptic function and z0 is an arbitrary real
constant. Undoing change of variables (34), we obtain

u(x, t) = −
3√62

3
℘

(√
15 3
√

6
30

(x− ct) + z0,
5 3√62c

3
, 0

)
. (44)

For m = 2, n = 3 and C1 = C2 = 0, ODE (36) becomes

(U′)2 =
c
6
− 2

15
U, (45)

whose general solution is given by

U(z) = − 1
30

z2 + z0z−
15z2

0
2

+
5c
4

, (46)

where z0 is an arbitrary real constant. Undoing change of variables (34), we obtain

u(x, t) = − 1
30

(x− ct)2 + z0(x− ct)−
15z2

0
2

+
5c
4

. (47)

For m = 2, n = 2 and C1 = C2 = 0, ODE (36) becomes

(U′)2 =
c
3

U − 1
4

U2, (48)

whose general solution is given by

U(z) =
2c
3

(
1± sin

(
z− z0

2

))
, (49)

with z0 being an arbitrary real constant. Undoing the change of variables (34), we obtain

u(x, t) =
2c
3

(
1± sin

(
x− ct− z0

2

))
. (50)

Finally, considering m = n = 3 and C1 = C2 = 0, ODE (36) becomes

(U′)2 =
c
6
− 1

9
U2, (51)

whose general solution is given by

U(z) = −
√

6c
2

sin
(

z− z0

3

)
, (52)

with z0 being an arbitrary real constant. Undoing the change of variables (34), we obtain

u(x, t) = −
√

6c
2

sin
(

x− ct− z0

3

)
. (53)

On the other hand, in [33], taking into account three-dimensional solvable algebras,
the general solution of PDE (2) starting from a traveling wave solution is obtained for some
particular forms of f and g. However, in this section, we successfully obtain the general
solution of PDE (2) starting from a traveling wave solution for arbitrary f and g, which
certainly generalizes the above-mentioned results.
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4. Conclusions

In the framework of the symmetry analysis, we studied a family of nonlinear third-
order evolution equations, where two arbitrary functions depending on the dependent
variable appear. This type of equation models several real-world phenomena, such as
diffusion, convection, or dispersion processes. We are interested in the symmetry reduction
in these PDEs with conservation laws by using the multi-reduction method. Then, firstly,
by using the multipliers approach, we determined the conservation laws for this class.
Of course, the number of conservation laws depends on the form of the arbitrary functions
that appear in the PDEs, but we demonstrate that all equations of the family admit at least
two conservation laws and additional conservation laws for special forms of the arbitrary
functions. Both of the two conservation laws admitted by all equations of the class are
invariant under translation symmetries as well as the third-order PDEs considered.

All the conservation laws that are invariant under translation symmetries were directly
transformed to be inherited by the corresponding traveling-wave ODEs; then each of these
conservation laws provided us a first integral of the reduced ODE. Finally, a combination
of the two first integrals allowed us to reduce the nonlinear third-order evolution equa-
tions under consideration with two arbitrary functions of u into a first-order autonomous
equation, whose general solution was obtained in implicit form.

These results generalize the results appearing in our recent paper [33], where, taking
into account solvable algebras, we obtained a quadrature of PDE (2) only for some particular
cases of f and g.

In future work, it is intended to determine the potential symmetries admitted by
family (2) and use them to obtain new reductions and solutions.
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