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1. Introduction

Some of the most famous inequalities in mathematics are surely the Jensen inequality
and its converse. The converse Jensen inequality is given by Lah and Ribari¢ in [1] and
separately by Edmundson in [2], so it is sometimes referred by Edmundson-Lah-Ribari¢
inequality. The Jensen inequality and its converse are closely connected with the Hermite-
Hadamard inequality, and these three inequalities have always been the great inspiration
for further investigations, generalizations, refinements, improvements and extensions. An
interested reader can consult several very new papers, published just in the last few months,
in order to obtain a more comprehensive understanding of the recent research progress in
this field (see for example [3-10]).

In the recent papers [11,12] the authors investigated the sharpness of the Jensen
inequality. However, how sharp is the converse of the Jensen inequality?

Let [, B] be an interval in R. Consider the Green functions Gy : [, ] X [a, ] = R,
(k=0,1,2,3,4) defined by

Golt,s) (tflg)f(i;“) fora <s<t,
,8) =
0 (S_/g (;_'X) fort <s < B,
7 f < <tl
Gult,s) = ®—s ora <s <
o —t, fort <s < B,
t— B, f <s<t,
Goltys) = P ore ==
s—B, fort <s <,
t—u«, f <s<t,
Ga(ts) = % ora <s <
s—a, fort <s < B,
— o f < <t/
Galts) = B—s ora <s<
B—t, fort <s < B.

By means of these functions, the authors in [13,14] gave the uniform treatment of
the Jensen type inequalities, allowing the measure also to be negative. In this paper, we
continue this investigation, and we concentrate on the converse Jensen inequality.
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The paper is organized as follows: after this introduction, in the Section 2 we give
our main results. We analyse the sharpness of the converse of the Jensen inequality. Here,
instead of the convexity of the function, we use previously mentioned Green functions.
After the first theorem, the following corollaries give us some further results and an
example with the condition which is easier to verify. In the Section 3, the analogous
results in discrete case are presented. As we know, the Jensen inequality is important
when obtaining inequalities for divergences. Therefore, in our Section 4 we use our results
with the converse Jensen inequality in order to derive new inequalities for different types
of generalized f-divergences. According to their definition, divergences measure the
differences between probability distributions. So, to conclude the paper, in the Section 5
we apply our results with f-divergences on the special kind of a probability distribution
defined as Zipf-Mandelbrot law.

2. Main Results

To simplify the notation, we denote

We give our first result.

Theorem 1. Let g : [a,b] — R be continuous function and ¢ : [, B] — R, ¢ € C*([a, B]), where
Im(g) C [a,Bl. Let m, M € [a,B] (m # M) be such that m < g(t) < M forall t € [a,b].
Let A : [a,b] — R be a function of bounded variation, such that A(a) # A(b). Let p,q € R,
1 < p,q < oo, be such that % + % =1

Then

<Q-llo"l,

holds, where
1
_ b q q
S Gilm,s) + frmGy(M, 5) — L GGG G"}ggj’sm(x) dS] L gt
}, forq = co.

ik
©- M-g g 2 Gelg(x))dA(x)
SUPge(a,)Y | 1= Ok (1,5) + §=35 Gk (M, 5) — W

Proof. Using the functions Gy (k = 0,1,2,3,4) we can represent every function ¢ : [«, f] —
R, ¢ € C2([a, B]), as

P0x) = g 0@ + g0 B)+ [ Gols)g"(5)s,

0() = pla) + (v~ g/ (B) + [ Grlx9)g (),
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which can be easily shown by integrating by parts. For instance, for k = 0 we have

B B
/ Go(x,s)¢" (s)ds = /x Go(x,s)q)” (s ds+/ Go( x,s)go”(s)ds

f/ x_ _[x ” d+/ )<p”(s)ds
ﬁ/ ds+;_z/j(s—ﬁ)fp”(s)ds

- ;_f (5= 2¢O~ 9] + 5= (=B @)1} - 9(o)1]

= o)~ = p®) = 55 p(p),

which proves the first identity. For k = 1 we have
‘B 2 * 2 ‘B 2
/ Gi(x,s)@" (s)ds = / Gi(x,s)9" (s)ds + / Gi(x,s)9" (s)ds
o 24 X

= /ax(zx —5)¢"(s)ds + ./xﬁ(vc —x)¢" (s)ds
= ((a—s)¢'(9)F + @) 3 + (a — x)g' ()%
= ¢(x) — p(a) + (a — x)¢'(B),

and this gives us the second identity. The other identities can be proved analogously.
Furthermore, by simple calculation using these identities it can be shown that for

every function ¢ : [a, 8] = R, ¢ € C?([a, B]), and for any k € {0,1,2,3,4} holds

p(m) + S (M) -

_ b
= / [M 8 Gi(m,s) + ;\Q/I—_T;f; Gr(M,s) — J Gk}?;)\'(i)f/\(x)] @' (s)ds.

Now, using the triangle inequality for integrals we get

M-3 g—m 2 p(g(x))dA(x)

A= P + 3 @(M) — e )

_|fmM-3 g—m Ju Gilg(x),9)dAx)] ,

_ / [M_ Gi(m,s) + 3 Gi(M,s) — G ] (s)ds
pl[m-3 g—m Ji Grlg(),9)dAm)]

< [M— Gi(m,s) + M_mGk(M,s)— fabd)\(x) ]q) (s)|ds,

and then applying the Holder inequality we get the statement of our theorem. [

Let us see what happens for g = 1, p = c. If the term

I Gilg(x),5)dA(x)

M-g
S dA(x)

g—m -
- mGk(m,s) + - mGk(M,s)

has the same positivity for all s € [«, f], then we can calculate Q. The following result
holds.
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Corollary 1. Let g : [a,b] — R be continuous function and ¢ : [x,B] — R, ¢ € C?([w, ]),
where Im(g) C [«,B]. Let m,M € [a,B] (m # M) be such that m < g(t) < M for all
t € [a,b]. Let A : [a,b] — R be a function of bounded variation, such that A(a) # A(b). If for any
k €{0,1,2,3,4} forall s € [, B] the inequality

_ _ b
M8 Gotm,s) + 2 G (M5) — d OO )

M—m —m fabd)\(x)

holds, or if for any k € {0,1,2,3,4} for all s € |«, B] the reverse inequality in (1) holds, then

M-g g—m Ji 9(8(x))dA(x)
m) + > (M) —
‘M_mqv( )t V= M) Parce
_ _ b 2
1 M — —m x)) dA(x
SE'H(P”HOO' M—g'm2+1§4— M2 fa(gg)) (%) @)
" " Ja dA(x)
Proof. Applying Theorem 1 for g =1, p = oo we get
_ _ b
M-g g—m Jo 9(8(x))dA(x)
(m) + £ () — o
‘M‘mq) M—m® P dA(x)
bl Mg g—m J; Gi(g(x), 5)dA (x)
< " / _Jda
<ol ‘M_mGk(m,sH o Gr(M, 5) o ds.  (3)
If the term 7]\1\//11:51 Gy(m,s) + —5;"; Gk(M,s) — W doesn’t change it’s posi-

tivity for all s € [, B], we can calculate the integral on the right side of (3).
Let us start with the case when k = 0. We have

/fGO(t,s)ds:/“ (t—‘é%)_(s—ad —|—/ 5_72‘_“)(15

L [ was =2 [y

— b (3 ) —att-w) )+ =5 (G- - (s 0)
= 2(t- )t~ p),

and therefore it is

z\]f:i fG (m,5)ds + 5 / o(M, 5)ds — f:dl}\(x) /ab(/j Go(g(x),s)ds>dA(x)
%ﬁ:iw—axm—migﬂ " (M~ 2)(M - p)

i (36600~ s ) Jarco

AL e f”b(gfix;izM )
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Similarly, when we consider the case when k = 1, we have
B ot B
/ Gi(t,s)ds = / (a fs)ds+/ (o« —t)ds
Ju Ju Jt
t t B
:a/ ds—/ sds+(rx—t)/ ds
o« o t
= ot~ )~ (P~ )+ (a~ (B~ 1)
1
=—(t—a)(t+a—2p),

2

and we obtain

_ _ b
/ﬁ ( M=g Gy(m,s) + 2 :nﬂGl(M,s) L Gl(g(x)'s)d)\(x))ds

M—-m M- fahd/\(x)
=22 [Paimsas+ S [P Gias - ——— ['( [ eulgtasias ) rca
= M ), C1(ms)ds — ), G1Ms)ds fabd)\(x) o\ ), e18 $ x
1M-3% 1g—m
_EMfm<m_a)(m+a_2'B)+§M7m(M_D‘><M+‘X_2ﬁ)
1 br1
~ i b (G =0 +-2p) Jria
1 [M-—% g-m Sy (8(x))*dA(x)
_2.[M—m 2+M— M? fabd)L(x) ]
For k = 2 we have
t
/ G2(t,s)ds:/(t—ﬁ)d5+ (s — B)ds
o o t
= (= B)(t+p—20),
fork =3
t
/ G3(t,s)ds:/ (t—a)ds+ [ (s—a)ds
o« o« t
_1[(t—a)2+(ﬁ—a)2],
and fork =4
t
/ G4(t,s)ds:/(/3—s)ds+ (B — t)ds
o o t
=262+ 6-07],
and using the same procedure, we get the same result. Thus, for k = 0,1,2,3,4 we have
that

g 7 b
/5@44 =G + S G - Gkﬁ(di’(;jA( )>ds

1 [M-g . g-m MWU]
2 [M—m n JrM—m M fabd/\(x) ’
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If for all s € [a, B] the inequality (1) holds, then (3) becomes

M-g J) @(8(x))dA(x)
'M_iqo( )+ S (M) - i)

1 1" M-g —m ﬂb 2d/\
<5 9"l |37 i m2+1§4m.M2_W]

and if for all s € [, B] the reverse inequality in (1) holds, then (3) becomes

g g b
’]\A/f—_g q)(m) + uq)(]\/[) _ fu q)(g(x))d)\(x)

m M—m fabd)xx
b 2 _ _
1 o (8(x))7dA(x) M — —m
<o), |28 SMog e S,
[ dA(x)

So, if for all s € [, B] the inequality (1) holds orif for all s € [a, B] the reverse inequality
in (1) holds, in both cases (2) is valid. [

Remark 1. Note that (2) can also be expressed as

‘M—gq)(m) NS R {Ca)LYED
M—m

M=m Sy dA(x)
Lot L otm e ) Ja G
<5 0"l | BOm A M) —m- M T |

Let us consider the case when k = 0. If we set that m = « and M = 8, we have that
Go(a,s) = Go(B,s) = 0, and the inequality (1) transforms into

J7 Golg(x), )dA) _ W
Par T

Therefore, we have the following result.

Corollary 2. Let g : [a,b] — R be continuous functionand ¢ : [, B] — R, ¢ € C*([«, B]), where
Im(g) C [, B]. Let A : [a,b] — R be a function of bounded variation, such that A(a) # A(D). If

forall s € [, B] the inequality (4) holds, or if for all s € |, B] the reverse inequality in (4) holds
then

_ _ b
|£:i¢<"‘) AL Ja qv(f(X))dA(x)

p-a S dA(x)
Lo [B=8 o 8o ISV
<3 le"l B—ua B—a P [P dn(x)
) H(P Hoo g(“+18) a-p fubd)\(x) .

As we can see, this case looks much simpler, while the condition (4) is easier to verify
than the condition (1). Similar results could also be given in cases when k = 1,2, 3, 4, but
we are not mentioning them here, because their conditions are not so simple.
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3. On the Converse Jensen Type Inequality in Discrete Case
In this section, we give our results in the discrete case. We omit the proofs, as they are
similar to those in the integral case from the previous section. We introduce the notation:

U, = 2?11 Uj, X = uin Z?:l Uix;.
For x; € [a,b] C [a,B],a # b, u; € R (i = 1,...,n) such that U, # 0, we have that for

every function ¢ : [a, f] = R, ¢ € C?([a, 8]), holds:

Pl + () — g Lol
—/< z )+;§7Gkbs ——Zquxl, > '(s)ds.

Using that fact, we obtain the following result.

Theorem 2. Let x; € [a,b] C [a,B],a # b, u; € R (i = 1,...,n) be such that U, # 0, and let
¢ |a, Bl %R,(pECz([ ,Bl)- Let p,g e R, 1 < p,q < oo, besuchthat%+% =1
Then

<L-flo"l,

‘b ~Zpla)+ T200) - - 1 o)

i=1

holds, where

1
- q i
$)+ F2Gk(b,5) — ¢ Ty wiGelxiys)|'as] T, forq £ oo

L = [faﬁ leTgG a a
}, for g = oo.

SUPe |y, p] { ’ ¥=XGy(a,s) + 3=2Gx(b,s) — - Tiy uiGr(xi,9)

Let us now see what happens for g = 1, p = c. If the term

b—x X —
bin(a s) + b—Gk (b,s) zu Gi(xj, s

has the same positivity for all s € [«, B], then we can calculate L. The following result holds.

Corollary 3. Let x; € [a,b] C [«,B],a # b, u; € R (i = 1,...,n) be such that U, # 0, and let
@:la, Bl =R, ¢ C?(aBl) Ifforany k € {0,1,2,3,4} forall s € [, B] the inequality

b—x X —
bka(a S) + er b S Zu Gk X,, = (5)

holds, or if for any k € {0,1,2,3,4} for all s € |«, B] the reverse inequality in (5) holds, then

a—i—b)x—ab——Zux

U i=

1 1
’ <209l

b—x X—a 1 &
p(a) + —o(b) — — Y uip(x;)| <
b u, =

In the case when k = 0, 2 = @ and b = B, the inequality (5) transforms into

. ZuGoxz,)SO ©)
n

i=

and we obtain the following result.
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Corollary 4. Let x; € [a,B], « # B, u; € R (i = 1,...,n) be such that U, # 0, and let
@:la,pl =R, ¢ C*a,pl). Ifforall s € [w, B] the inequality (6) holds, or if for all s € [u, B]
the reverse inequality in (6) holds, then

B—x X—a 1 &
ﬁ_aq)(w) + 5_a¢(ﬁ) T, & ui@(x;)

1 - B 1 L
<5 0"l |(wt BT — B m;u,xi.

4. Inequalities for Generalized f-Divergences

I. Csiszar in [15] defined the f-divergence

p) = iémf(gi)

for a function f : Ry — R and two positive probability distributions p = (p1,.--, pn) e R%,
q = (491,---,9n) € R’.. He considered the case when the function f is convex. Although
several other authors ([16,17]) also introduced and studied this divergence, it is well known
as the Csiszér f-divergence.

There exist various kinds of divergences, and all of them measure the differences
between probability distributions. We focus here on the f-differences which are generalized
using weights (see [18,19]), and we apply our results from the previous section in order to
get new results and inequalities for these generalized f-divergences.

The generalized Csiszar f-divergence is defined by

Cr(q, p;1) erf(ﬂ

where f : Ry — Rand p,q,r € R".
To simplify our results, we use the following notations

QV_ Prlzzlrlql
Theorem 3. Let p,q,r € R be such that qi € [a,b] Ca B, (i=1,.,n),a#b, and let
p,qER1<p,q<oobesuchthat1+lf1 Iff i [, ]%Rfecz([aﬁ]) then
Qr_a

b-0, 1
e+ S0 - 5 Chlapin

<L-[If"]],
holds, where

i

P, { |52 Gila, ) + G Gulb,) = Tioa ripiGel( )

1
_ q q
b— Qer (a, S)JrQr 2Gy(b,s) — er” 1rIp,Gk(p, )‘ ds} , for q # oo; )
}, for g = oo.

Proof. Substituting ¢ := f,
U == nrii, X; = ﬁ, i=1,...,n,

Y ripi pi
i=1

our result directly follows from Theorem 2. [
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The generalized Kullback-Leibler divergence is defined by

n .
KL(q,p;r) = ) rigilog %,
1

i=1

where p, q,r € R}.. For this divergence we have the following result.

Theorem 4. Let p,q,r € R} be such that % € [a,b] Clua, Bl (i =
let p,q e R, 1< p,q < oo, besuch that % + % = 1. Then

-Q Qr

b aloga—l—

holds, where id is the identity function and L is as defined in (7).

,n),a#b,a,b>0and

Zblogh - 5KL(q,pir)| < L+ (id-log)"]

Proof. This result follows directly from Theorem 3 by setting f(t) = tlogt, t > 0. [

For the generalized Hellinger divergence defined by

He(q,p;r) = (\F VPi)?

i [\1:

the following result holds.

Theorem 5. Let p,q,r € R} be such that % €lab Cla,pl,(i=1,..,

let p,ge R, 1<p,q< oo, besuch that%+ % = 1. Then

b—Q, Qr 1 .
(L= Va4 S (1—\/5)2—EH6(q,p,r)

holds, where f(t) = (1 — \/t)? and L is as defined in (7).

Proof. This result follows directly from Theorem 3 by setting f(t) =

The generalized Rényi divergence is defined by

Rey(q,p;1) sz pi 7

where v € (1, +00).

Theorem 6. Let p,q,r € R} be such that % €labClapl(i=1,..,

letp,geR,1<p,q < oo, besuch that%+ % = 1. Then

b _ér ér 1

n),a#b,ab>0and

< L-[lf"ll,

1-vH2%t>0. O

n),a #b,a,b>0and

1!
b—aav—i_ biam—FR%(q,p, <L-|f Hp

holds, where f(t) = t7 (t > 0, v > 1) and L is as defined in (7).

Proof. This result follows directly from Theorem 3 by setting f(t) = 7 (t >0,y > 1). O

The generalized x2-divergence is defined by
n . pn.)2
De(qpir) =) 0
i=1 Pi

The following result holds.
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Theorem 7. Let p,q,r € R} be such that % €labl Clapl,(i=1,..,n),a#bab>0and
letp,g e R, 1< p,q < oo, besuch that % + % = 1. Then

b—Q 2, Q—a 2_ 1 ; !
T — 1P+ =12 = 5 Dp(gpin) | <L-[f],

holds, where f(t) = (t —1)%,t > 0, and L is as defined in (7).

Proof. This result follows directly from Theorem 3 by setting f(t) = (t —1)2,t > 0. O

The generalized Shannon entropy of a positive probability distribution p = (p1, ..., pn)
is defined by

n
H(p;r) = — )_ripilog(pi).
=

It is a special case of the generalized Csiszar f-divergence Cr(q, p;r) if we set
q=1(1,...,1)and f(t) = logt, t > 0. We have the following.

Theorem 8. Let p,r € R} be such that % €[ab] Clapl,(i=1,..,n),a#bab>0and let
p,g € R 1< p,q < oo, besuch that % + % = 1. Then

b— g Tt pLiiri—a 1
== == 7 N . <. "
o loga + — log b PrH(p,r) L-|[log Hp

holds, where L is as defined in (7).

5. Applications to Zipf-Mandelbrot Law

Definition 1 ([20]). Zipf~Mandelbrot law is a discrete probability distribution, depends on three
parameters N € {1,2,...},t € [0,00) and v > 0, and it is defined by

1

N, t,v)i= —~————, i=1,...,N,
(P( ) (l+t)vHN,t,v
where
% 1
Hyip =) ,——-
A+

When t = 0, then Zipf~-Mandelbrot law becomes Zipf's law.

The Zipf-Mandelbrot law got its name after the linguist George Kingsley Zipf, who
gave its primary form, and after the mathematician Benoit Mandelbrot, who gave its
generalization. The Zipf law goes after the frequency of a certain word in the text, and
it is used in bibliometric and in information science. It is used in linguistics, but also in
economics (as Pareto’s law) when analysing the distribution of the wealth. Apart from
that, this law can be found also in other disciplines like mathematics, physics, biology,
computer science, social sciences, demography, etc. Here we are going to concentrate on
its mathematical aspect of course. (More about the Zipf-Mandelbrot law in mathematical
context can be found in [21].)

As the Zipf-Mandelbrot law is a probability distribution, and f-divergences measure
the differences between two probability distributions, we can apply the results from the
previous section on the Zipf-Mandelbrot law.

Suppose p, q are two Zipf-Mandelbrot laws with parameters N € {1,2,...},t1, £, > 0
and vy, v3 > 0, respectively. Then

1

41,01

. i=1,...,N, ®)
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and .
qi = ¢(i; N, tr,vp) := CE o i=1,...,N, )
where
N1
Hn t, 0, i= ];W k=1,2.

The generalized Csiszar divergence for such p, q, and for r € R} is given by

1Y (i+t1) " Hn o >
Cs(q,p;1) = , ~U7L ) 10
sl pir) Hy b o 1; l+f1 )¥1 ((l+fz)”2HN,tz,vz (10

Using (8) and (9), we get the following expressions for P, and Q,:

P — i ri - 1 i ri (11)
' i=1 (l + tl)vl HN/tlrvl HN,t],’U] i=1 (l + tl)vl
Zz 1 (ith) 2T H YN iy
o N,tq, =1 )92

; 2) Nioy b (i+to) ) (12)

i

N __ n = H N & _
2121 (i+t1) " VHN b 0y Nbor Yim (i+t)1

and we obtain the following result.

Corollary 5. Let p, q be two Zipf~-Mandelbrot laws with parameters N € {1,2,...},t1, 1, >0
and vy, vy > 0, respectively, and r € R'} such that

gi  (i+t)"Hypo :
— = — € la,b] C la, ori=1,...,N, (a #b).
Pi (l + tZ)vzHN,tZ,UZ [ ] [ IB] f ( 7£ )

Let p,g € R,1 < p,q < oo, be such that%+% =1Iff:[aB] =R, feC?aPB]), then

b—0O o "
b—Qarf(u)JrQz;r—aaf(b)_Perf(q'p;r) =L,

where p;, qi, Pr, Q,, Cf(q, p; r) are as defined in (8)—(12), and L is as defined in (7).

The generalized Kullbach-Leibler divergence of two Zipf-Mandelbrot laws p, q with
parameters N € {1,2,...}, f, t > 0 and v, v, > 0, respectively, and r € R, is given by:

1 Y Ny ((i + tl)leN,tl,vl)
og .

. : 13
HN,tz,‘Uz 1:21 (l + tz)vz (l + tz)vzHNrtZrUZ ( )

KL(q,p;1) =

The following holds.

Corollary 6. Let p, q be two Zipf~Mandelbrot laws with parameters N € {1,2,...},t1,tp > 0
and v1,vy > 0, respectively, and x € R’} such that

ql (l + tl)vl HN tl/vl .
LA € [a,b] C |a, ori=1,...,N, (a,b>0, a #b).
b T+ ) Hyye, [a,b] C [a, B] f ( # b)

Let p,g e R, 1 < p,q < oo, be such that%+ % = 1. Then

b-Q,
b—

Qr

uloga + blogb — —KL(q,p, r)| <L-|(d- log)"Hp
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holds, where id is the identity function and p;, q;, Py, Q,, KL(q, p; r) are as defined in (8), (9),
(11)—(13), and L is as defined in (7).

The generalized Hellinger divergence for two Zipf-Mandelbrot laws p, q with param-
eters N € {1,2,...}, t1, to > 0 and vy, v; > 0, respectively, and r € R’}, has the following
representation:

2
1 N (\/(i + 1) Hy ty 0, — \/(i+ tZ)UZHN,tz,vz)

" (i + )% (i + bp)%2 (14)

He(q,p;t) =
(q P ) HN,t1,v1 HN/tZVUZ i=1

The following result holds.

Corollary 7. Let p, q be two Zipf~-Mandelbrot laws with parameters N € {1,2,...},t1, £, >0
and vy, vy > 0, respectively, and r € R'} such that

ﬁ L (l + tl)vl HN,t],U]

= — € la,b] C la, ori=1,...,N, (a,b>0, a#Db).
e R b Sl f) f ( #5)

Let p,g e R, 1 < p,q < oo, be such that%—i— % = 1. Then

b—0 1
e OV S VIR | <L,
where f(t) = (1 — \/¥)2, and p;, q;, Pr, Q,, He(q, p; t) are as defined in (8), (9), (11), (12) and
(14), respectively, and L is as defined in (7).

The generalized Rényi divergence for two Zipf-Mandelbrot laws p, q with parameters
N € {1,2,...}, t1, t > 0 and vy, v > 0, respectively, and r € R, has the following
representation:

H N (7 1)o

Nt v l+f1

Rey(q,p;1r) = 7~ § , (15)
Ntzvzz 1+t2 ’WZ

where v € (1, +00). The following result holds.

Corollary 8. Let p, q be two Zipf~Mandelbrot laws with parameters N € {1,2,...}, 11, t, >0
and vy, vy > 0, respectively, and ¥ € R'} such that

» i+ t)""H
9i._ (itt) Hyoo €lab) Cla,p] fori=1,...,N, (a,b >0, a #D).

pi (i+t2)?HNp0,

Let p,g € R, 1 < p,q < oo, be such that % + % = 1. Then

b— Q Q,— 1
e S - gRalapn)| L7,

holds, where f(t) = t7 (t > 0, > 1), and p;, q;, P, Q,, Re(q, p; t) are as defined in (8), (9), (11),
(12) and (15), respectively, and L is as defined in (7).

The generalized x2-divergence for two Zipf-Mandelbrot laws p, q with parameters
N € {1,2,...}, t1, o > 0 and vy, v, > 0, respectively, and r € R',, has the following
representation:

N

1 1 2
D ,p;r) =H Y (i) = — — . 16
Xz(q P ) N,ty,01 1221 l( 1) ( (l T tZ)UZHN,tz,Uz (1 + tl)vl HN,tl,vl ) ( )
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We have the following result.

Corollary 9. Let p, q be two Zipf~Mandelbrot laws with parameters N € {1,2,...}, 11, t, >0
and vy, vy > 0, respectively, and ¥ € R'} such that

gi  (i+t)" Hypo ,
— = — € la,b] C |a, ori=1,...,N, (a,b>0,a#b).
pi T () Hupse, [a,b] C [a, B] f ( #b)

Letp,g e R, 1< p,q < oo, besuch that%—l— % = 1. Then

Q —a

b—Q 1
3 b=z 0V~ pDel@pn| <L/,

holds, where f(t) = (t —1)?,t > 0, and p;, q;, Pr, Q,, sz(q, p; r) are as defined in (8), (9), (11),
(12) and (16), respectively, and L is as defined in (7).

In addition, at the end, we also give the result for the generalized Shannon entropy
of a Zipf~-Mandelbrot law p with parameters N € {1,2,...},#; > 0,v; > 0,and r € R%,
which has the following representation:

_ 1
HN,fMil i

T

1 (l + fl)vl

™=z

H(p;r) log[(i+ t1)" HN 0, ) - (17)

Corollary 10. Let p be a Zipf~-Mandelbrot law with parameters N € {1,2,...}, t1 > 0 and
v1 > 0,and r € R, such that

1
— = (i+t)" Hx o € [a,b] C [0, p] for i=1,...,N, (a,b >0, a#b).

1
Let p,g e R, 1 < p,q < oo, be such that%+ % = 1. Then

1 vn . 1 vn L
b_ﬁr izlrlloga—f—ﬁ’ Tri—a

1
S o logb— 5 H(pir)| <L [log”],

holds, where p;, P,, H(p; ) are as defined in (8), (11) and (17), respectively, and L is as defined
in (7).
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