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Abstract: We generalize orbifold models for chords and voice leading to incorporate loudness,
allowing for the modeling of resting voices, which are used frequently by composers and arrangers
across genres. In our generalized setting (strictly speaking, that of orbispaces rather than an orbifolds),
passages with resting voices, passages with two or more voices in unison, and fully harmonized
passages occupy distinct subspaces that interact in mathematically precise and musically interesting
ways. In particular, our setting includes previous orbifold models by way of constant-loudness
subspaces, and provides a way to model voice leading between chords of different cardinalities. We
model voice leading in this general setting by morphisms in the orbispace path groupoid, a category
for which we give a formal definition. We demonstrate how to visualize such morphisms as singular
braids, and explore how our approach relates to (and is consistent with) selected previous work.
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1. Introduction

In the musical Hadestown [1], the Fates function as a single character with three voices.
This vocal multiplicity expands the variety of musical expression available to the Fates, not
only through harmony, but through a carefully crafted mixture of harmonized passages,
solos with resting voices, and unison passages (see Figure 1; other examples abound
throughout and beyond Hadestown). Prior approaches to the mathematical modeling of
voice leading have focused only on harmonized passages, but the judicious use of resting
and unison, hardly unique to the Fates in Hadestown, is widespread across many genres.
The main goal of this paper is to generalize well-known orbifold models for voice leading
to incorporate all three of the passage types listed above as paths in a larger space. A
secondary goal is to clarify and elaborate on the idea of orbifold paths and how they relate
to geometric and topological structures used to study voice leading.

Some mathematical approaches to voice leading use functions between pitch-class
sets as models [2]; others use paths in chord spaces, as in [3–5]. The latter approach allows
one to make finer, musically relevant distinctions, but to do so with precision requires
careful attention to the question of what constitutes a “path” in a chord space. In [6], both
“paths” in their usual topological sense and orbifold paths as defined in orbifold theory are
considered; the latter are found to be more suitable because they account for the branching
that is part of the orbifold structure. In this paper, we extend the idea of orbifold paths
to the larger spaces that we introduce, and provide them with algebraic structure via the
orbispace path groupoid. We leave the important topic of voice leading size, already explored
for chords of differing cardinalities in [7], to later work. We note that the paths we consider
are special cases of gestures as studied in [8–10]. Other connections via category theory
and knot theory can be found in [11]. The general topic of spatialization of music was
previously considered in [9,12].
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Figure 1. Author’s transcription of an excerpt from “Any Way the Wind Blows” from Hadestown
showing the use of solos with resting voices, harmonized voices, and unison voices in quick succes-
sion. In some Broadway performances, the solo in the third measure is taken by Fate 2. The orbifold
path model can distinguish the two different assignments.

Our task, then, is first of all to define a mathematical space that incorporates both
loudness information and pitch-class information for each voice, while allowing for oc-
tave equivalence and voice permutation as in prior models. We then need to define a
suitable analogue of “orbifold path” in our generalized space, along with concatenation
and inverses of such paths that will give the collection of such paths the structure of a
groupoid. (Although groups still play a central role, we generalize to groupoids in this
work to avoid the musically unnatural requirement that passages begin and end on the
same chord.) Next, we need to identify subspaces that correspond to the situations we
wish to distinguish—solos with resting voices, passages with two or more voices in unison,
and fully harmonized passages. Since in all non-trivial cases, the subspaces of interest will
be of dimension at least 4, we need to provide a convenient way to visualize the paths
without having to visualize the full extent of the spaces they inhabit. Finally, we need to
how our generalized models relate to previously articulated models, focusing primarily on
consistency and coherence of connections between them.

In Section 2, we provide the mathematical details, formally defining the spaces, the
paths, and the groupoids of interest. In Section 3, we apply the mathematical formalism
to musical situations. We first describe in detail how to model voice leadings as groupoid
elements. We then explore how different configurations of rests and unisons correspond
to interrelating structures of subspaces of our generalized space. We complete Section 3
by introducing singular braids as a means for visualization. In Section 4, we offer some
remarks on consistency and connections with other recent work on voice leading. In
Section 5, we offer some concluding remarks summarizing the symbiosis of the algebraic
and geometric points of view.

2. Materials and Methods

We assume the reader is familiar with the terms group action, orbit, and isotropy, along
with the language of basic category theory. For clarity and convenience, we distinguish
the terms quotient space, orbit space, orbifold, and orbispace. Let X be a topological space.
A quotient space of X is a topological space Q whose points are the equivalence classes
of some equivalence relation on X, endowed with the quotient topology which makes the
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projection X → Q continuous. An orbit space of X is a quotient space of X for which
the equivalence classes are the orbits of some group action on X. If X is a differentiable
manifold and G is a group acting properly discontinuously on X, then the orbit space
X/G together with the projection X → X/G is a developable orbifold (sometimes called
a good orbifold). The unqualified term orbifold includes spaces in which every point has
a neighborhood that is a developable orbifold, but the spaces X and the groups G may
vary among such neighborhoods, and the orbifold structures are required to be compatible
where the neighborhoods intersect. A developable orbispace is an orbit space X/G together
with its corresponding projection X → X/G (note that X need not be a manifold and G
need not act properly discontinuously), and an orbispace is a space in which every point has
a neighborhood that is a developable orbispace, and the orbispace structures are compatible
where the neighborhoods intersect. All of the orbifolds and orbispaces in this work (and
other voice-leading literature) are developable, so for brevity we will usually dispense with
the adjective. In most cases, X will be the simply connected universal orbispace cover of the
quotient. In all cases, it is extremely important to note that orbifolds and orbispaces carry
more information than their corresponding quotient spaces; the projection maps are part of
the defining data.

2.1. The Spaces

Following a suggestion in [4], we model loudness as a real number r in the interval
[0, 1], with 0 representing silence and 1 representing some practical maximum. We could
also leave the right endpoint open, using [0, 1) or even [0, ∞) for the model, but in all cases
it is important to retain the the included left endpoint to achieve our purpose of modeling
resting voices. We leave aside the matter of assigning physical units to r (decibels, watts,
etc.) or interpreting r in musical terms (p, f, etc.) other than r = 0 means silence, r = 1
means as loud as practically possible, and r1 > r2 means r1 is louder than r2.

As in most mathematical approaches to voice leading, we model pitch as a real number
θ which can be interpreted as some affine linear function of the logarithm of frequency. The
state of a single voice will thus consist of an ordered pair (r, θ) whose entries represent
loudness and pitch, respectively. A pair (r, θ) lies a priori in [0, 1]× R, but since all pitches
sound alike if the voice is silent, we take the important mathematical step of collapsing the
left boundary component {(0, θ)|θ ∈ R} to a single point O, forming the quotient space
CR, recognized by topologists as the cone on R. We note that CR is not a manifold, since no
neighborhood of O is homeomorphic to an open subset of R2. Nor is CR a manifold with
boundary, for similar reasons. Note that deleting the cone point O would yield a manifold,
but doing so would also obviate our main motivation. We also note that CR, like all cones,
is contractible and thus lacking topological structure; a recurring theme in this work is
that structure detailed enough to be useful comes not from topology per se but from the
additional data with which an orbispace, by definition, comes equipped.

Again following standard approaches, we model octave equivalence via a translation
action (music: transposition action) of the infinite cyclic group Z on R: k · θ = θ + 2kπ. We
choose 2π as the unit translation distance to suggest the geometric interpretation of θ as
an angle measured in radians (and the interpretation of (r, θ) as polar coordinates); the
equation for musical interpretation is thus 2π radians = 1 octave. We extend this action to
CR by k · (r, θ) = (r, k · θ). Note that O is a fixed point for the action since all points of form
(0, θ) are identified with O.

We now form the orbit space CR/Z and the natural projection p : CR→ CR/Z. Since,
as noted above, CR is not a manifold (and O has infinite isotropy), CR/Z cannot properly
be called an orbifold. Nevertheless, as we shall see, as an orbispace it retains the path-lifting
properties we need in order to proceed. Topologically, CR/Z is homeomorphic to the
2-dimensional disk D2 and therefore contractible (but keep in mind the additional structure
of the orbispace, in particular the role of O as a singularity). The projection p can be viewed
as the the reinterpretation of rectangular coordinates as polar coordinates, which explains
our use of the generic symbols r and θ.
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The state of a single voice can thus be viewed as a point in the disk D2 endowed
with the orbispace structure described above. What we have done is to replace the pitch-
class space of prior models, which is a circle S1 having orbifold structure given by R →
R/Z = S1, with pitch-class-with-loudness space D2 having orbispace structure given by
p : CR → CR/Z. Note that D2 can be viewed as the cone CS1 on pitch-class space, and
the natural inclusion S1 ↪→ CS1 is compatible with the orbispace structures on both spaces
(i.e., natural inclusion commutes with orbispace projection). Again, CS1 is contractible
and therefore less informative topologically than S1; nevertheless, important information is
preserved via transfer to the orbispace structure.

To model n unordered voices, we form the n-fold symmetric product SPn(D2), which
by definition is the orbit space of the action of the symmetric group Σn on (D2)n given by
permuting coordinates. The composite of natural projections

(CR)n → (D2)n → SPn(D2)

gives an orbispace structure on SPn(D2) with acting group Zn o Σn. Note that n-voice
chord space as defined in [5] is SPn(S1) with orbifold structure given by

Rn → (S1)n → SPn(S1)

with the same acting group as above. However, SPn(S1) has the homotopy type of S1 [13],
while SPn(D2) is contractible.

2.2. The Paths

Recall that an ordinary path in a topological space X is a continuous mapping f : I → X,
where I is the unit interval [0, 1]. Standard mathematical terminology calls f (0) the initial
point and f (1) the terminal point of f ; collectively, they are the endpoints. An ordinary
homotopy from a path f to a path g in X is a continuous mapping H : I × I → X such
that H(t, 0) = f (t), H(t, 1) = g(t), H(0, t) = f (0), and H(1, t) = f (1) for all t ∈ I; if
such an H exists, we say f and g are homotopic (rel endpoints), and we think of H as a
continuous deformation from f to g. Note that homotopic paths must have the same
initial and terminal points, and these endpoints must remain fixed throughout a homotopy.
Homotopy is an equivalence relation on paths, and we denote the equivalence class of a
path f by [ f ]. If f1 and f2 are two paths in X such that f1(1) = f2(0), then the concatenation
(or composition) of f1 and f2 is f1 ∗ f2 given by

( f1 ∗ f2)(t) =

{
f1(2t) 0 ≤ t ≤ 1/2
f2(2t− 1) 1/2 < t ≤ 1

.

Concatenation is well defined for homotopy classes of paths, with [ f1] ∗ [ f2] = [ f1 ∗ f2].
Let X/G be a developable orbispace with projection map p : X → X/G. We will

assume X is simply connected, so that all paths in X from a given initial point to a given
terminal point are homotopic to one another. We will also assume the following conditions,
taken from [14]:

1. The projection p : X → X/G has the path lifting property: if c : I → X/G is a path,
then there is a path c̃ : I → X such that p ◦ c̃ = c.

2. If x ∈ X, then x has an open neighborhood Ux such that

(a) If g ∈ G does not belong to the isotropy group Gx of x, then Ux ∩ (g ·Ux) = φ;
(b) If a and b are paths in Ux beginning at x and such that p ◦ a and p ◦ b are

homotopic rel endpoints in X/G, then there is an element g ∈ Gx such that
g · a and b are homotopic in X rel endpoints.

As noted already in [6], the additional structure of an orbispace invites an enhancement
of the notion of a “path” to reflect that structure.
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Definition 1. For a developable orbispace p : X → X/G, a G path is a pair ([c̃], γ), where c̃ is
an ordinary path in X, and γ ∈ G. The initial point of ([c̃], γ) is c̃(0) and the terminal point of
([c̃], γ) is γ · c̃(1).

We note that a pair (c̃, γ) is called an H path in [15]. Passing to path homotopy
classes at this juncture is more natural and convenient for our purposes. We now define
an equivalence relation on G paths to account for the variability of endpoints in X within
fibers over endpoints in X/G.

Definition 2. Let p : X → X/G be an orbispace, and let x, y ∈ X/G. An orbispace path class is
an equivalence class of G paths ([c̃], γ) with equivalence relation ∼ given by ([c̃], γ) ∼ ([c̃′], γ′) if
and only if p(c̃(0)) = p(c̃′(0)), p(c̃(1)) = p(c̃′(1)), and γ′ = γ. The initial point and terminal
point of the class of ([c̃], γ) are p(c̃(0)) and p(γ · c̃(1)), respectively.

The following theorem gives a useful way to enumerate the orbispace path classes for
p : X → X/G.

Theorem 1. Let p : X → X/G be an orbispace, and let x, y ∈ X/G. Let x̃ and ỹ be specified
points (basepoints) in p−1(x) and p−1(y), respectively. Then the set of orbispace path classes for
p : X → X/G with initial point x and terminal point y is in one-to-one correspondence with the
set of G paths for p : X → X/G with initial point x̃ and terminal point ỹ.

Proof. Let p : X → X/G be an orbispace, and let ([c̃], γ) be a representative of an arbitrary
orbispace path class with initial and terminal points x and y, respectively. Let x̃ and ỹ be
specified points in p−1(x) and p−1(y), respectively. Since (according to our assumptions)
X is path connected, there is a path b̃ in X from x̃ to c̃(0) and a path d̃ from c̃(1) to
γ−1 · (ỹ) (see Figure 2). The G path ([b̃ ∗ c̃ ∗ d̃], γ) is equivalent to ([c̃], γ) and has initial
point x̃ and terminal point ỹ, so the orbispace path class represented by ([c̃], γ) has a
representative with initial point x̃ and terminal point ỹ. Now suppose ([c̃′], γ) is another
such representative. Then the paths b̃ ∗ c̃ ∗ d̃ and c̃′ both have initial point x̃ and terminal
point γ−1 · (ỹ), so they must be homotopic (since we are assuming X is simply connected).
Thus, ([c̃′], γ) = ([b̃ ∗ c̃ ∗ d̃], γ), so the representative ([b̃ ∗ c̃ ∗ d̃], γ) is unique.

Figure 2. A visual representation of the paths involved in the proof of Theorem 2.

The preceding theorem may appear at first glance to be a mere technical sideshow,
but in actuality it plays a profound role in connecting orbifold theory with voice leading.
Dragomir, in [15] as well as private communications, has repeatedly stressed the importance
of basepoint selection in making the study of orbifold paths precise and coherent. On the
other hand, fundamental domains for quotient spaces are important tools for depicting
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and describing voice leading [16]. As will be noted later, a choice of basepoint in each fiber
p−1(x) in X is exactly the same as a choice of fundamental domain in X for p : X → X/G.

2.3. The Groupoids

Recall that a groupoid is a small category in which every morphism is an isomorphism.
One can think of a groupoid as a generalization of a group wherein not every pair of
elements can be combined using the operation. Two important examples for our purposes
are tree groupoids and fundamental groupoids of topological spaces. If S is a set (in the
mathematical sense), the tree groupoid T(S) on S is the groupoid whose objects are the
elements of S and for which there is exactly one morphism for each ordered pair of objects.
If X is a topological space, the fundamental groupoid π(X) of X is the groupoid whose objects
are the points of X and whose morphisms from x to y are the (ordinary) path homotopy
classes of paths from x to y.

Definition 3. If Γ is a groupoid and G is a group acting on Γ (on the left), then the semidirect
product Γ o G of Γ and G is the groupoid whose objects are the objects of Γ, whose morphisms
from x to y consist of pairs (γ, g) where γ is a morphism in Γ from x to g−1 · y and g ∈ G,
and for which concatenation of morphisms (γ, g) from x to y and (δ, h) from y to z is given by
(γ, g) ∗ (δ, h) = (γ ∗ g−1 · δ, hg).

Our definition of Γ o G is a slight variation of the one given in [14] (where g acts on
the initial point rather than the terminal point of γ); the variation is for agreement with the
formalism ofH paths given in [15].

Let ([c̃], γ) and ([d̃], δ) be G paths in p : X → X/G with d̃(0) = γ · c̃(1). We define the
concatenation of ([c̃], γ) and ([d̃], δ) to be ([c̃], γ) ∗ ([d̃], δ) = ([c̃ ∗ γ−1 · d̃], δγ). The inverse of
([c̃], γ) is ([γ · c̃−1], γ−1), where c̃−1(t) = c̃(1− t). The concatenation of the orbispace path
classes represented by ([c̃], γ) and ([d̃], δ) is the orbispace path class of ([c̃], γ) ∗ ([d̃], δ), and
the inverse of the orbispace path class represented by ([c̃], γ) is the orbispace path class of
([γ · c̃′], γ−1).

Theorem 2. Concatenation and inverses are well defined for orbispace path classes.

Proof. Let ([c̃], γ) and ([d̃], δ) be G paths in p : X → X/G with d̃(0) = γ · c̃(1). Let
([c̃′], γ) and ([d̃′], δ) be two other G paths in p : X → X/G with p(c̃′(0)) = p(c̃(0)),
p(c̃′(1)) = p(c̃(1)), p(d̃′(1)) = p(d̃(1)), and d̃′(0) = γ · c̃′(1). We have

([c̃], γ) ∗ ([d̃], δ) = ([c̃ ∗ γ−1 · d̃], δγ)

and
([c̃′], γ) ∗ ([d̃′], δ) = ([c̃′ ∗ γ−1 · d̃′], δγ)

and since
p(c̃ ∗ γ−1 · d̃(0)) = p(c̃(0)) = p(c̃′(0)) = p(c̃′ ∗ γ−1 · d̃′(0))

and
p(c̃ ∗ γ−1 · d̃(1)) = p(γ−1 · d̃(1)) = p(γ−1 · (d̃′(1)) = p(c̃′ ∗ γ−1 · d̃′(1))

we obtain ([c̃], γ) ∗ ([d̃], δ) ∼ ([c̃′], γ) ∗ ([d̃′], δ).
For inverses, we have

([c̃], γ)−1 = ([γ · c̃−1], γ−1)

and
([c̃′], γ)−1 = ([γ · (c̃′)−1], γ−1),

and since
p(γ · c̃−1(0)) = p(c̃(1)) = p(c̃′(1)) = p(γ · (c̃′)−1(0))
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and
p(γ · c̃−1(1)) = p(c̃(0)) = p(c̃′(0)) = p(γ · (c̃′)−1(1))

we have ([c̃], γ)−1 ∼ ([c̃′], γ)−1.

Definition 4. The orbispace path groupoid πorb(X/G) of an orbispace p : X → X/G is the
category whose objects are the points of X/G, and the morphisms of which are the orbispace path
classes with concatenation as defined above. The category πorb(X/G) is a groupoid since every
orbispace path class has an inverse.

The orbispace path groupoid can be regarded as a refinement of the fundamental
groupoid of a space, analogous to how the orbifold fundamental group is a refinement of
the ordinary fundamental group of a space. We use the term “orbispace path groupoid”
instead of “orbifold fundamental groupoid” to help prevent inaccurate conflation of terms
of the sort that occurs in [17] with “fundamental group” and “orbifold fundamental group”.

Note that G acts on T(X/G), the tree groupoid on X/G. The orbispace path groupoid
has the following useful characterization.

Theorem 3. The orbispace path groupoid πorb(X/G) is isomorphic to T(X/G)o G.

Proof. First note that πorb(X/G) and T(X/G) o G have the same objects, namely the
points of X/G. Next note that the morphisms of T(X/G)o G from x to y are in bijective
correspondence with pairs ((x, g−1 · y), g) since there is only one morphism from x to
g−1 · y. However, G acts trivially on X/G, so the morphisms from x to y are pairs ((x, y), g),
in bijective correspondence with members of G.

On the other hand, morphisms of πorb(X/G) from x to y are equivalence classes of
G paths ([c̃], g) where c̃ is a path in X whose initial and terminal points are in the fibers
of x and y, respectively. Two such pairs are equivalent if the images of their endpoints in
X/G agree and their group elements agree, so again the equivalence classes are in bijective
correspondence with pairs ((x, y), g) where g ∈ G.

Finally, we note that concatenation in both groupoids is given by

((x, y), g) ∗ ((y, z), h) = ((x, z), hg).

(Note that this shows that concatenation in the orbispace path groupoid is completely
captured by the group operation in the acting group. Moreover, any element ((x, y), g)
of πorb(X/G) can be factored as ((x, y), 1) ∗ ((y, y), g), so morphisms between specified
objects correspond to group elements.)

Remarkably, the mathematically motivated characterization of elements of πorb(X/G)
as products of the form ((x, y), 1) ∗ ((y, y), g) in T(X/G)o G is the mathematical formula-
tion of the musically motivated method described on pages 122, 130, 135, and elsewhere
in [17] (which in turn references earlier work of Roederer) for dealing with voice leadings
between different chords. In that method, one chooses an arbitrary, fixed voice leading
between the two chords, and factors any given voice leading between them as the chosen
voice leading followed by a voice leading from the second chord to itself. This unforced
confluence of the mathematical and musical points of view is an encouraging sign that the
use of geometric topology in music theory is a promising and worthwhile endeavor.

The orbispace path groupoid is an orbispace invariant. Additionally—and importantly
for our purposes—it is functorial in the sense that a morphism of orbispaces induces
a morphism of the associated orbispace path groupoids. Functoriality is particularly
important when considering the inclusion maps of the various musically relevant subspaces
(and subspaces of subspaces) of our generalized chord spaces. A fortiori, functoriality can
be used to mediate between any family of geometrical or topological topological spaces
used to model any collection of musical parameters, and any corresponding families of
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algebraic objects used to model relationships (transformations, gestures, etc.) between sets
of parameters.

3. Results

In this section, we apply the mathematical framework described above to musical
situations.

3.1. Voice Leadings as Groupoid Elements

We now describe and demonstrate a procedure for associating groupoid elements with
voice leadings in music. In light of Theorem 1, a crucial preliminary step in the procedure
is a choice, for each point x in X/G, of a specific basepoint x̃0 in the fiber p−1(x). In the
musical situation of chord space (OP space) with loudness, X = (CR)n, G = Zn o Σn, and
X/G = SPn(D2). We can think of an element x of X/G as a chord, but it is important to
keep in mind the following differences between “chords” in the usual sense and elements
of X/G. First, an element of X/G is an equivalence class of n-tuples of pairs (r, θ) where
r ∈ [0, 1] represents loudness and θ ∈ R represents pitch, so loudness is part of the data
for each entry, and two entries with the same pitch (or pitch class) but different loudness
are considered distinct. Second, it is possible for two entries to be equal (or equivalent),
so we retain multiplicities (doublings) as part of the data (e.g., the 4-tuples (C, C, E, G)
and (C, E, G, G) (with all entries having equal loudness) represent distinct “chords” in our
context). Thus, a chord in the sense of an element of X/G is an unordered multiset of n
pairs, {(r1, θ1), . . . , (rn, θn)}.

A specific choice of basepoint x̃0 ∈ X for a chord x ∈ X/G is a choice of a specific
voicing of the chord x—that is, a specific ordering (part assignment) of the pairs in x and,
for each pair, a choice of octave (register). As noted above, it is an interesting and important
fact that a collection of such choices for every element of X/G is the same as a choice of a
fundamental domain for the action of G on X. Insofar as fundamental domains are used
in [16,17] to study quotient spaces, basepoint selection should appear as a natural and
familiar step. It is also important to note that basepoint selection is to be done once and
remain unchanged throughout a discussion.

There are infinitely many ways to make a selection of basepoints (or fundamental
domain) in X = (CR)n. In the examples that follow, we will choose, for a given chord
{(r1, θ1), . . . , (rn, θn)}, the representative with each θi in the octave ascending from middle
C, with the pairs put in dictionary order (i.e., the relation given by (ri, θi) < (rj, θj) if ri < rj,
or if 0 < ri = rj and θi < θj; recall (0, θi) = (0, θj) for all θi, θj).

Here is the procedure for associating an element of the groupoid πorb(X/G) ∼=
T(X/G)o G to a given voice leading taken from actual music (see Figure 3 for a schematic
illustration). A voice leading in actual music is specified by part assignments (voicings)
x̃, ỹ ∈ X for the initial and terminal chords x, y ∈ X/G; such a pair of voicings represents
an equivalence class of paths under the uniform operation of G on paths in X.

1. Choose an element γ0 of G that moves the given initial voicing x̃ to the basepoint
voicing x̃0 of the initial chord x (i.e., γ0 that moves x̃ into the chosen fundamental
domain).

2. Apply γ0 to the given terminal voicing ỹ of the terminal chord y, effectively completing
the uniform operation of γ0 on the path from x̃ to ỹ. Note that since the path may
end in a fundamental domain other than the one where it originated, γ0 · ỹ will not
necessarily be equal to the basepoint voicing ỹ0 of y (see Figure 3).

3. Since ỹ, γ0 · ỹ, and ỹ0 all lie in the fiber over x and hence in the same orbit under the
action of G (i.e., they are all voicings of the same chord), we can choose γ ∈ G such
that γ · (γ0 · ỹ) = ỹ0 (i.e., γ that moves γ0 · ỹ into the chosen fundamental domain).

4. The associated element of the groupoid πorb(X/G) ∼= T(X/G)o G is then (x, y, γ).
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Figure 3. A schematic illustration of the process by which a groupoid element is associated with
a voice leading. Diamond-shaped regions depict fundamental domains in the universal orbispace
cover X; green shading indicates the preferred fundamental domain. Solid blue curves are paths;
dashed orange lines represent group actions.

Note that the element γ of the acting group takes the terminal point γ0 · ỹ back to the
preferred fundamental domain, so if we want to think in terms of the forward motion
of a voice leading, i.e., taking an initial voicing forward to a terminal voicing, then the
element to associate with the voice leading is γ−1. Use of the forward action is more
intuitive musically, but use of the backward action is consistent with previously established
conventions in [14,15]. Simple awareness of the distinction should be sufficient to avoid
confusion.

For an example, consider the fifth measure of the Hadestown example given above.
The first three chords represent two concatenated voice leadings (see Figure 4). We will
make the simplifying assumption that loudness is equal, constant, and non-zero for all
voices, and thereby omit loudness from the notation. Likewise, since all multiplicities in
this example are 1 (i.e., there is no doubling), we will simply designate the three underlying
chords in X/G by Dm, Am, and C. In X (where order matters), we will specify voicings
using the ordering (Fate 3, Fate 2, Fate 1), so that the three given voicings are (A3, D4, F4),
(A3, C4, E4), and (C4, E4, G4). Recall that that our (arbitrary but fixed) choice for basepoint
voicing of each chord has every pitch in the octave ascending from middle C (C4). For
clarity, we use two-row notation to specify permutations.

1. The basepoint voicing of the first chord is (D4, F4, A4), so the element γ0 ∈ G taking

the first given voicing to the basepoint voicing is the cyclic permutation
(

1 2 3
3 1 2

)
followed by raising the third voice by an octave: γ0 = (0, 0, 1) ◦

(
1 2 3
3 1 2

)
.

2. We apply γ0 to the second voicing to obtain (C4, E4, A4), which we note in this case
happens to be the basepoint voicing.

3. The corresponding element γ ∈ G for this voice leading is thus the identity element

1 = (0, 0, 0) ◦
(

1 2 3
1 2 3

)
.

4. We therefore associate the groupoid element (Dm, Am, 1) to the first voice leading.
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Figure 4. The first three chords of the fifth measure of the Hadestown excerpt; all voices treble clef.

Now consider the second voice leading, represented by the voicing (A3, C4, E4)
followed by the voicing (C4, E4, G4).

1. To move (A3, C4, E4) to the basepoint voicing, we again need to apply γ0 = (0, 0, 1) ◦(
1 2 3
3 1 2

)
.

2. We apply γ0 to (C4, E4, G4) to obtain (E4, G4, C5), which we note is not the basepoint
voicing.

3. To move (E4, G4, C5) to the basepoint voicing (C4, E4, G4), we apply the group

element (−1, 0, 0) ◦
(

1 2 3
2 3 1

)
.

4. Thus, we associate the groupoid element (Am, C, (−1, 0, 0) ◦
(

1 2 3
2 3 1

)
) to the second

voice leading. Note that the “forward” version would take the basepoint voicing
of Am to the basepoint voicing of C and then apply the inverse of the associated

group element, which is
(

1 2 3
3 1 2

)
◦ (1, 0, 0). This illustrates the remark made above

on factoring a given voice leading between two different chords as a fixed, chosen
(i.e., basepoint) voice leading from the first chord to the second, followed by a voice
leading of the second chord to itself.

The concatenation of the two voice leadings is represented by the voicing (A3, D4,
F4) followed by (C4, E4, G4) (just omit the middle voicing!), and the associated groupoid
element is

(Am, C, (−1, 0, 0) ◦
(

1 2 3
2 3 1

)
) ◦ (Dm, Am, 1) = (Dm, C, (−1, 0, 0) ◦

(
1 2 3
2 3 1

)
).

Note that the concatenation of the groupoid elements agrees with what we would get by
running the procedure on the sequence directly.

In the procedure given above, we have noted that the existence of γ0 and γ in G taking
x̃ to x̃0 and γ0 · ỹ to ỹ0, respectively, is assured since the respective points are in the same
respective orbits, but we have said nothing about whether γ0 or γ is unique. In fact, if both
x̃ and ỹ have trivial isotropy groups (as in the examples above), then γ0 and γ are unique.
On the other hand, if either endpoint has non-trivial isotropy, then γ0 and γ are not unique.
The possibility of associating multiple, distinct members of the groupoid πorb(X/G) to
the same pair of voicings in X is one of the main differences between the orbispace path
approach to voice leading and other approaches. As noted in [17], this possibility is
occasionally counterintuitive, but it is a natural, musically relevant consequence of the idea
of “continuous transformations” articulated in [4], and adopted in [5]. We demonstrate this
with an example.

Consider the voice leading from the sixth to the seventh measure of the Hadestown
example above, represented by the sequence of voicings (B[3, D4, F4), (D4, D4, D4) (ignor-
ing, for now, the rests between the two voicings, and assuming again that the loudness
is equal and constant for all entries). The second chord consists of a single pitch class
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with multiplicity 3. The corresponding isotropy group is isomorphic to Σ3, which has six

elements. The element γ0 = (0, 0, 1) ◦
(

1 2 3
3 1 2

)
takes the initial point to the basepoint

(D4,F4,B[4), and takes the terminal point (D4, D4, D4) to (D4, D4, D5). Thus, we could
choose (0, 0,−1) ◦ 1 as the element γ to take (D4, D4, D5) to (D4, D4, D4), but there are

five other choices: (0, 0,−1) ◦
(

1 2 3
2 1 3

)
, (0,−1, 0) ◦

(
1 2 3
1 3 2

)
, (0, 0,−1) ◦

(
1 2 3
3 1 2

)
,

(−1, 0, 0) ◦
(

1 2 3
3 2 1

)
, and (−1, 0, 0) ◦

(
1 2 3
2 3 1

)
. The six possibilities for γ, correspond-

ing to the six elements of Σ3, account for the existence of paths in the homotopy class of
paths from (B[3, D4, F4) to (D4, D4, D4) during which each of the corresponding voice
permutations can occur. For example, a path from (B[3, D4, F4) to (D4, D4, D4) could visit
the point (F4,D4,B[3) en route. Parsing the path into a concatenation with (F4, D4, B[3) as
intermediate point allows factorization of the corresponding element of πorb(X/G) as

(B[, B[, (0,−1, 1) ◦
(

1 2 3
1 3 2

)
) ◦ (B[, {D4, D4, D4}, (0, 0,−1) ◦ 1)

which reduces to (B[, {D4, D4, D4}, (0,−1, 0) ◦
(

1 2 3
1 3 2

)
), one of the possibilities listed

above.
Recognizing that the intermediate point could have been literally any point in X

(and indeed, the path presented has (O, O, O) (all voices resting) as an intermediate point,
with isotropy group all of G), the factorization could have had as its first factor any
morphism of πorb(X/G) emanating from a B[ chord. The product morphism, however,
must be one of the groupoid elements listed above. The salient fact here is that each of
those elements is “musically observable” in the parlance of [17] via the presence of an
appropriate intermediate point. The plethora of possible intermediate points is a defining
feature of, and the main motivation for, “continuous transformations” as presented in [4],
and a feature of homotopy classes of paths. It is possible to restrict the set of possible
intermediate points for paths and homotopy classes, a topic we will address in subsequent
sections, but to suppress completely the freedom homotopy affords between endpoints is
to abandon the continuous model.

3.2. Chords with Rests or Doublings, and Their Associated Subspaces

There are several subspaces of our generalized chord space X/G = SPn(D2) that are
of musical interest. The first distinction we make is between regular points and singular
points.

Definition 5. A point x in the orbispace X/G with projection map p : X → X/G is a singular
point if there exists x̃ ∈ p−1(x) and g 6= 1 in G such that g · x̃ = x̃. A point in X/G is a regular
point if it is not a singular point.

In the language of group actions, the singular points are the images of points in X
with non-trivial isotropy groups. For our generalized chord space SPn(D2) with projection
map p : (CR)n → SPn(D2), there are two kinds of singular points: chords with rests and
chords with multiplicities (music: doublings). If we denote a generic point in SPn(D2) by
{x1, x2, . . . , xn} (an unordered collection of n points in D2), then a chord with rests is a point
with at least one xi = O, and a chord with multiplicities is a point with xi = xj for at least
one pair of distinct indices i and j. Note that it is possible for a point in SPn(D2) to be both
a chord with rests and a chord with multiplicities (as in, for example, the first measure
of the Hadestown excerpt above). Additionally note that unison chords with n > 1, such
as those in the last two measures of the Hadestown example, are a special case of chords
with multiplicities. Finally, we note that although chords with multiplicities have been
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recognized and studied previously using the orbifold models SPn(S1), the ability to model
chords with rests in the continuous context is new with the SPn(D2) models.

We now introduce some notation that will facilitate discussion of subspace structures.
First, we will denote by Cn our model for n-voice chord space with loudness (= X/G =
SPn(D2)). Next, we will denote by Cn

k the subspace of Cn consisting of all n-voice chords
with at most k ≤ n distinct parts (i.e., elements of D2, loudness together with pitch class).
We will denote by Cn

k,l the subspace of Cn
k consisting of all n-voice chords with exactly l

distinct parts, where l ≤ k. Finally, we will denote by Cn=m1+...+ml
k,l the subspace of Cn

k,l
consisting of all n-voice chords with exactly l distinct parts and specific multiplicities
m1 ≤ . . . ≤ ml for those parts (i.e., a specific l partition of n).

As an example, consider the passage shown in Figure 5, in which we assume all voices
have equal loudness at all times. The first chord lies in C4

1 (all voices in unison). In the
second half of the first measure, the passage moves into C4=2+2

2,2 (two distinct parts, with
two voices on each). At the end of the second measure, it moves into C4=1+1+2

3,3 (three
distinct parts, with one doubled), and in the fourth measure, into C4=1+1+1+1

4,4 (all voices on
distinct parts and none resting: a regular point). In the last measure, it moves back into
C4=1+1+2

3,3 .

Figure 5. An excerpt from an unpublished work by R. Joseph Lubben.

The notation reflects the ability of the model to make subtle distinctions in voice
leading. For example, if the tenor were instead to remain in unison with the alto except in
the fourth measure, then second subspace visited would be C4=1+3

2,2 rather than C4=2+2
2,2 .

Rather than introduce even more notation for subspaces of chords with rests, we will
identify the subspace {{x1, . . . , xn} ∈ Cn|at most r entries 6= O} with Cr, where r < n.
Thus, for example, the first measure of the Hadestown example can be regarded as lying in
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C1 ⊂ C3. With these identifications and the notation given above, we obtain the following
double filtration of Cn by singular subspaces:

C1 ⊂ C2 ⊂ C3 ⊂ · · · ⊂ Cn

∪ ∪ · · · ∪
C2

1 ⊂ C3
2 ⊂ · · · ⊂ Cn

n−1
∪ ∪
C3

1 ⊂ · · · ⊂ Cn
n−2
∪
...
∪
Cn

1

It is interesting and important to note that while Cr and Cs
r (where s > r; focus on

descending diagonals in the double filtration) are similar in the sense that they both have
the same maximal number of parts, they are different subspaces of Cn. In particular, Cs

r has
a richer substructure due to a greater variety of multiplicities (or cardinalities, as in the
OPTIC acronym of [5]) assignable to the parts.

To discuss the multiplicity-based substructure of Cn
r , we first give a clarifying reminder

about use of term “partition” in two distinct, mathematically standard ways. A partition of
n means an expression of n as a sum of positive integers, e.g., n = m1 + · · ·+ mr (in our
context the mi are multiplicities; mathematically, the mi are called parts which fits unusually
well with the musical meaning of parts). A partition of Cn

r means a decomposition of Cn
r into

a union of disjoint subsets, e.g., Cn
r = Cn

r,1 ∪ · · · ∪ Cn
r,r. The partitions of n serve to index the

subsets comprising a musically relevant partition of Cn. Specifically, we refine the partition
Cn

r = Cn
r,1 ∪ · · · ∪ Cn

r,r by noting that each Cn
r,i is itself partitioned into subsets Cn=m1+···+mi

r,i ,
where n = m1 + · · ·+ mi runs through all i partitions of n.

As an example, consider C4
3 , chords with four voices and three or fewer distinct entries.

We have the partition

C4
3 = C4=1+1+2

3,3 ∪ C4=1+3
3,2 ∪ C4=2+2

3,2 ∪ C4=4
3,1 .

We note that the two subsets with the 3, 2 subscript are not only disjoint, but separated
in the topological sense, meaning that there is no path in C4

3 from C4=1+3
3,2 to C4=2+2

3,2 that
does not pass through either C4

3 = C4=1+1+2
3,3 or C4=4

3,1 . Musically, this means that to get (via
a continuous path in 4-voice space with no more than 3 parts) from a chord with three
voices on one part and one voice on another part to a chord with 2 voices on each of two
parts, there must either be a time when there is exactly 1 part or a time when there are
exactly 3 parts. The situation can be visualized if we restrict to the subspace in which all
voices have constant loudness of 1. The intersection of C4

3 with this subspace is then the
product of the surface of a tetrahedron with an interval, with ends identified after a cyclic
permutation of the faces as pictured in [16]. The subspace C4

3,2 is the product of an interval
with the union of the interiors of the edges of the tetrahedron, with identifications of the
ends forming a pair of open Möbius strips separated by a common boundary, which is
C4

3,1. A path from one of the strips to the other must either pass through the boundary, or
through the product of an interval with the interiors of the faces of the tetrahedron (with
end faces permuted and identified), which is C4

3,3. Visualization without restricting to a
constant-loudness subspace is problematic, since all of the dimensions are doubled. We
address this problem in the next subsection.

The preceding example illustrates a more general fact.

Theorem 4. Let n, k, and l be positive integers with n ≥ k ≥ l and the number of l partitions of n
at least 2. Then Cn

k,l is not path connected.
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Proof. Let n, k, and l be as described in the theorem statement. Let n = m1 + · · ·+ ml
and n = m′1 + · · ·+ m′l be two distinct l partitions of n. Let (x0

1, · · · , x0
n) and (x1

1, · · · , x1
n)

be representatives in (D2)n of points in Cn=m1+···+ml
k,l and C

n=m′1+···+m′l
k,l , respectively. Let

x : [0, 1] → (D2)n be a path from (x0
1, · · · , x0

n) to (x1
1, · · · , x1

n); with coordinate paths
x1(t), . . . , xn(t) for 0 ≤ t ≤ 1.

For the distribution of multiplicities to change, at least one coordinate path xi must
depart from its starting part shared with some xj, j 6= i, and join a different part shared with
some xk, k 6= i, k 6= j (see Figure 6). Thus, there exist times r and s such that xi(t) = xj(t)
for 0 ≤ t ≤ r and xi(t) 6= xj(t) for t > r, and xi(t) 6= xk(t) for 0 ≤ t ≤ s and xi(t) = xk(t)
for t > s. If r < s, then for r < t < s x(t) has l + 1 parts. If r ≥ s, then for s ≤ t ≤ r x(t) has
l − 1 parts. Thus, the path x must pass through Cn

k,l+1 or Cn
k,l−1. If other departures and/or

joinings occur simultaneously, the number of parts may be increased or decreased further,
but in such cases it cannot remain at l for all t in [0, 1].

Figure 6. Illustration of proof of Theorem 4.

The significance of the preceding discussion and theorem has less to do with particular
musical passages—after all, the path constructed in the proof of the theorem above may
have only momentary, “unobservable” contact with Cn

k,l+1 or Cn
k,l−1—and more to do with

its suggestion that Cn
k can be endowed with a structure similar to that of a cell complex,

with Cn
k as its 2k-skeleton (k-skeleton if restricted to a constant-loudness subspace), and

l partitions of n corresponding to the interiors of 2l-dimensional cells (l-dimensional for
constant loudness). These cell interiors are the subspaces Cn=m1+···+ml

k,l , which correspond
musically to n voices assigned to l parts with mi voices on the i-th part.

One might expect that restricting a path (and its homotopy class) to Cn
k , for k < n,

would also restrict the ability to make“musically observable” distinctions between different
choices of group elements taking the terminal point of the path to the basepoint. However,
if k > 1, the availability of points in Cn

k,1 (musically, all voices in unison) makes the
distinctions possible. Consider, for example, the chord in C3

2 represented by (G4, G4, B4),
and a path in (CR)3 that starts and ends on this representative. Assuming all loudness
levels equal, non-zero, and constant, there are two group elements corresponding to the
path, the identity and the permutation that interchanges the first two entries. If the path
(and its homotopy class) is constrained such that its image in C3 must remain in C3

2 , no
regular point is available as an intermediate point, but visiting the sequence of points (G4,
G4, G4), (G4, B4, G4), (G4, G4, G4) can be accomplished within C3

2 and is sufficient to
distinguish between the two choices.

On the other hand, if k = 1, the strategy of having the path visit Cn
1 and then return

to Cn
k,l (where l > 1) to swap voices does not work. Hence, for voice leadings constrained

to remain in Cn
1 (such as the one represented by a path beginning and ending at (A4, A4)),

distinctions between group elements in the isotropy subgroup are indeed unobservable.
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More generally, restricting to a subspace Cn
k,k with exactly k distinct parts can also prevent

voice swapping and render some distinctions unobservable.
We have already mentioned “constant-loudness” subspaces. At this point, we observe

more explicitly that the subspace of SPn(D2) consisting of chords for which the loudness
for all voices is fixed at any constant λ such that 0 < λ ≤ 1 can be identified with the chord
space without loudness SPn(S1) that has been studied extensively in [5,16,17]. We will
revisit these subspaces in each of the next two subsections.

3.3. Visualization and Braids

Since the dimension of SPn(D2) is 2n, visualization of the full extent of the space is
only feasible when n = 1. There are various strategies for reducing the dimension to enable
visualization, each one making trade-offs to favor particular analytical motivations. One
such strategy is restriction to a constant-loudness subspace, enabling visualization for n = 2
and n = 3, at the cost of visualization (and modeling) of resting voices. Another strategy is
to project high-dimensional subspaces to readily visualized 1- or 2-dimensional spaces, as
with the annular and polygonal diagrams in [17]. These models usefully focus attention
on the distinction between regular interior regions and singular boundary regions, while
suppressing the structural details of those regions.

Here, we offer another strategy for visualization—not to replace other visualization
strategies, but to complement them. The idea is to recognize that SPn(D2) is a configuration
space, and that paths in such a space can be visualized as (singular) braids. Braids have
been studied extensively for decades in many areas of mathematics, notably knot theory,
homotopy theory, and gauge theory, and in mathematical music theory, in [9] and elsewhere.
In the present context, visualization through braids allows for focus on individual voices,
including resting and unison passages, but hides or obscures some symmetrical aspects
of chord spaces. As with Tymoczko’s annular and polygonal diagrams, the number of
dimensions in the visual model for braids does not increase with the number of voices.

3.3.1. Basic Definitions and Terms; the Classical Case

Kallel defines in [18] the n-th braid space B(M, n) of a space M to be the space of
finite subsets of M of cardinality n. Although Kallel uses the terms “braid space” and
“configuration space” interchangeably, other sources such as [17] use “configuration space”
for the symmetric product SPn(M). Since symmetric products allow multisets but braid
spaces (in Kallel’s sense) do not, we will identify the braid space B(M, n) with the subspace
of regular points in SPn(M).

The (ordinary) fundamental group of B(M, n) is the n-strand braid group of M. For the
special (and much-studied Artin, or “classical“) case of M = D2, we visualize elements of
the n-strand braid group as collections of n monotonically descending, non-intersecting
paths in D2 × I whose initial points and terminal points form the sets {(x1, 0), . . . , (xn, 0)}
and {(x1, 1), . . . , (xn, n)}, respectively, where {x1, . . . , xn} is the basepoint for B(D2, n) (see
Figure 7). Each path is a “strand”, which in our musical situation we may think of as a voice.
It is important to keep in mind that although braid group elements are homotopy classes
of paths in B(M, n), due to the non-intersecting requirement, the appropriate equivalence
relation for collections of paths in D2 × I representing classical braids is ambient isotopy,
which closely models our physical experience with real-life braids.

It is also important to keep in mind that the space shown in pictures of braids is D2× I,
not the configuration space SPn(D2) itself (this is why the dimension of the visual model
is the same regardless of the number of voices). A (classical) braid depicts the trace of a
path of a set of n distinct points in D2, with t ∈ I corresponding to progress along the path.
The group operation (concatenation) is accomplished by stacking, inverses are reflections
through a horizontal plane, and the strands of identity braids are vertical line segments.
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Figure 7. A classical 3-strand braid.

3.3.2. Singular Braids, Symmetric Products, and Orbispace Path Classes

More generally, we visualize elements of the orbispace path groupoid of SPn(D2) as
singular braids—collections of n monotonically descending paths in D2× I that can intersect,
and whose initial and terminal point sets need not be the same subset of D2 (see Figure 8).

Figure 8. A singular 3-strand braid.

There are two senses in which our braids are “singular”, corresponding to the two
types of singularities in SPn(D2). First, the paths comprising our braids can intersect with
one another, and such intersections correspond to encounters of a path in SPn(D2) with
the singular subspace of chords with multiplicities. Second, the center point O of D2 is a
singularity in our context, and one or more paths in a braid passing through (or remaining
on) O corresponds to an encounter of a path in SPn(D2) with the singular subspace of
chords with rests.

The possibility of path intersections creates a subtle but crucial way in which singular
braids representing orbispace path classes differ from classical braids representing ordinary
path homotopy classes. In the classical case, where strands do not intersect, a set of n
non-intersecting paths is the same as a path of n-element sets. In the singular case, however,
where strands can intersect, a multiset of paths is not the same as a path of multisets,
because the latter does not differentiate between strands. Thus, for example, the two
singular braids in Figure 9, in which the paths are distinguished by colour, represent two
distinct orbispace path classes, but only one ordinary path homotopy class in SP2(D2).
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Figure 9. Two different orbispace paths corresponding to the same singular braid.

The singular role of O creates another important difference between our singular
braids and classical braids. Specifically, in our orbispaces, paths that are homotopic through
a homotopy that passes through O may represent distinct orbispace path classes. For
example, the red and blue strands in Figure 10 are homotopic, but they represent distinct
orbispace path classes. Musically, the blue strand represents a voice that remains on the
same pitch (because its angular coordinate is constant), while the red strand represents a
voice that ascends by an octave (because, in wrapping around the central axis of O× I, its
angular coordinate ascends by 2π radians). Any homotopy between the two paths must
pass through O× I at least once, corresponding musically to loudness of the voice going to
0 (resting)—perhaps momentarily, but resting nonetheless.

We can think of O× I (resting) as a magic portal through which octave leaps can be
accomplished without explicit annular wrapping (continuous change of pitch). Octave
leaps that occur through O in this way are recorded by the element of the acting group
associated with the orbispace path class. Insofar as every orbispace path class comes
equipped with such an element, astute readers will note that either path in Figure 10 could
“represent” either orbispace path class in the discussion; in fact, via homotopy and contact
with O× I, either path could represent ascent or descent by any number of octaves. As a
practical matter, pictures of singular braids will be assumed not to involve such “magical”
annular wrapping, but it is important to keep in mind that the possibility exists. Indeed,
the definition of an orbispace path class as a path homotopy class together with a group
element is what allows for the recovery of topological information lost when the circle S1 is
replaced by the cone on the circle D2.

Figure 10. The paths are homotopic, but only through a homotopy that encounters O× I.
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3.3.3. Musical Interpretations and Examples

We have already noted that each strand of a braid is musically interpretable as a
voice, and that path intersections are musically interpretable as doublings. Hence, classical
braids correspond to strongly crossing-free voice leadings. A strand encountering O is
musically interpretable as a resting voice. We note further that voice leadings restricted to
the constant-loudness subspace r = 1 can be visualized as braids confined to the curved
surface S1 × I of the cylinder D2 × I. The n-strand braid group of S1 is infinite cyclic (i.e.,
isomorphic to the additive group of integers), corresponding to the fact noted in [17] that
the strongly crossing-free voice leadings of an n-note (non-singular, constant loudness)
chord to itself form an infinite cyclic group. The classical (Artin) braid groups of D2,
corresponding to crossing-free voice leadings of chords with loudness, are considerably
more complicated.

Figure 11 shows a braid rendering of the Hadestown example.

Figure 11. The Hadestown example as a singular braid. The blue strand is Fate 1, the red strand is
Fate 2, and the green strand is Fate 3. Resting voices are on the central axis; sounding voices are on
the curved outer surface.

4. Discussion

There is remarkable consistency between the general model presented in this paper
and modeling approaches articulated in previous work, most notably that of [5,6,16,17,19].
We have already noted how the use of orbifold paths in [6] can be extended to our model
for chord space with loudness, SPn(D2), which includes as a constant-loudness subspace
the model for chord space SPn(S1) described in [5]. In this section, we elaborate on how
our model for voice leading relates to the richly detailed approach in [17].
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4.1. The Paths: Basic Definitions

In [17], a path in S1 (= pitch-class space) is defined to be an ordered pair (p, r), where
p is a point in S1 (the initial point of the path) and r is a real number (the signed path
length). Although the terminal point p + r of the path in S1 is determined by the pair
(p, r), Tymoczko rightly points out that the terminal point does not determine r, even if p is
specified. The multitude of possible values of r for a given initial point and a given terminal
point in S1 corresponds to the fact that the fundamental groupoid π(S1) of the circle is
not a tree groupoid; that is, there are multiple distinct homotopy classes of paths between
any two endpoints. More specifically, what Tymoczko calls a “path in pitch-class space"
actually corresponds to a homotopy class of paths in S1; i.e an element of the fundamental
groupoid π(S1).

Tymoczko goes on to define a voice leading to be a multiset (i.e., unordered collection
with multiplicities) of paths in pitch-class space, i.e., a multiset of homotopy classes of paths
in S1. Although he characterizes voice leadings so defined as “isomorphic to homotopy
classes of paths” in the spaces SPn(S1), they are actually more refined than homotopy
classes of paths in SPn(S1) defined in the standard way for topological spaces (since a
multiset of paths conveys more information than a path of multisets). In fact, for the
cases where both the initial and terminal points in SPn(S1) are regular points, multisets of
homotopy classes of paths in S1 are in bijective correspondence with orbifold path classes in
SPn(S1), as we now demonstrate.

Let {(c1, r1), . . . , (cn, rn)} be a multiset of homotopy classes of paths in S1. The mul-
tisets of initial points {c1, . . . , cn} and terminal points {c1 + r1, . . . , cn + rn} are points in
SPn(S1). If we choose a particular lifting (x̃1, . . . x̃n) of {c1, . . . , cn} in the universal orbifold
cover Rn (i.e., a particular basepoint in the fiber of {c1, . . . , cn} in Rn; musically this is a
choice of a particular assignment of the elements of {c1, . . . , cn} to voices and registers),
then by the homotopy lifting properties assumed in Brown’s conditions (Section 2.2) there
exists a corresponding lifting of the set of paths, and hence a lifting (ỹ1, . . . , ỹn) in the fiber
(in Rn) of the terminal point {c1 + r1, . . . , cn + rn}. (We can think of each ỹi as x̃i + ri, but
keep mind some reordering of the ri may be needed.) If the initial and terminal points
in SPn(S1) are regular points, then the lifting (ỹ1, . . . , ỹn) is unique, so the mapping from
voice leading to lifting of the terminal point is one to one. Conversely, given any point
(ỹ′1, . . . , ỹ′n) in the fiber of {c1 + r1, . . . , cn + rn}, there exists an ordered set of homotopy
classes of paths in R with initial points x̃1, . . . x̃n and respective terminal points ỹ′1, . . . , ỹ′n.
Projecting these path classes to S1 yields a multiset of path homotopy classes in S1—i.e.,
a voice leading—whose terminal point lifts to ỹ′1, . . . , ỹ′n when the initial point is lifted to
(x̃1, . . . x̃n). Thus, the set of voice leadings between two regular points (chords) in SPn(S1)
is in bijective correspondence with the set of points in the fiber of the terminal point (chord)
in Rn. Finally, we have already observed that for given regular initial and terminal points
in SPn(S1), points of the fiber of the terminal point are in bijective correspondence with
orbispace path classes with the given initial and terminal points, since points in the fiber of
a regular point are in one-to-one correspondence with elements of the acting group.

As an example of how orbispace path classes are more refined than ordinary path
homotopy classes, we note that the voice leadings {(C, 7), (G,−7)} and {(C, 0), (G, 0)} are
distinct according to Tymoczko’s definition (i.e., as multisets of path homotopy classes in
S1, and therefore as orbispace path classes), but the corresponding ordinary paths in in the
topological space SP2(S1) are homotopic and therefore not distinct. The topological space
does not know about, and does not care about, the orbifold projection S1 × S1 → SP2(S1),
and therefore has no difficulty “homotoping the path off the boundary”. The ability of
orbispace path classes to make distinctions not made by ordinary path homotopy classes is
one of the main lessons of [6].

The preceding example made use of the voice leading {(C, 7), (G,−7)} which is
not “strongly crossing free” in Tymoczko’s terminology. This means that there is no
representative in S1 × S1 of the corresponding orbispace path class that does not have
at least one point where the two voices occupy the same pitch class (a consequence of
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continuity and the Intermediate Value Theorem). Thus, in the chord space SP2(S1), any
representative of that class must encounter the boundary of the space. If we restrict paths
(and homotopies thereof) to the interior of chord space (i.e., regular points), paths that
encounter the boundary are disallowed, and only paths representing strongly crossing
free voice leadings remain. Path classes that begin and end at the same point and do
not encounter the boundary lie in a subgroup of the orbifold fundamental group that is
isomorphic to the ordinary fundamental group of the space, according to a theorem of
Armstrong [6]. Hence, if we restrict to the interior of SPn(S1) (a manifold, and thus a space
for which the ordinary fundamental group and orbifold fundamental group coincide),
Tymoczko’s statement that voice leadings are isomorphic to (ordinary) homotopy classes of
paths is accurate. This illustrates how musically relevant distinctions between types of voice
leadings relate to distinctions between subspaces of SPn(D2), and thus the importance
of paying careful attention to the subspace in which we are working, since the relevant
groups and groupoids can change depending on the subspace. In particular, in the case
of the interior of SPn(S1), the inclusion mapping into SPn(S1) (or SPn(D2)) induces a
homomorphism of the fundamental group of the interior of SPn(S1) (which is isomorphic
to the the additive group of integers) into the orbispace fundamental group of SPn(D2), by
functoriality.

If one or both of the endpoints of a voice leading (defined as a multiset of homotopy
classes of paths in S1) are singular points, then there will be multiple corresponding
orbispace path classes, depending on the isotropy groups of the endpoints. Specifically, we
have the following explanation in terms of the groupoid element assignment algorithm
given in Section 2. If {(c1, r1), . . . , (cn, rn)} is a multiset of homotopy classes of paths
in S1, and the initial point {c1, . . . , cn} is singular, then it will have non-trivial isotropy
group; hence there will be multiple choices for a group element γ0 taking a given lifting
(x̃1, . . . , x̃n) of {c1, . . . , cn} into a preferred fundamental domain, and therefore multiple
choices for γ taking the lifting γ0 · (x̃1 + r1, . . . , x̃n + rn) of the terminal point into a preferred
fundamental domain. Likewise, if the terminal point {c1 + r1, . . . , cn + rn} is singular, then
it will have non-trivial isotropy group, so there will be multiple choices for γ in that case as
well.

Tymoczko notes in the appendix of [17] that the distinctions among multiple orbispace
path classes corresponding to a single multiset of homotopy classes of paths in S1 are
potentially “unobservable” if one looks only at the endpoints. As noted in Section 2, the
distinctions become observable in the presence of intervening points; i.e., by parsing a
voice leading into a concatenation of voice leadings. For example, the distinction between

the two orbispace path classes ({A, A}, {A, A},
(

1 2
1 2

)
) and ({A, A}, {A, A},

(
1 2
2 1

)
)

corresponding to the voice leading {(A, 0), (A, 0)} becomes observable if the voice leading
is parsed as {(A, 2), (A,−2)} followed by {(B,−2), (G, 2)}. Again, it is important to note
that paths corresponding to such a parsing exist even in the homotopy class of the constant
path from (A, A) to itself, unless the ambient space is restricted to the subspace C2

1 of
two-voice unisons. (Tymoczko implicitly imposes such a restriction in his discussion; this
again illustrates the importance of specifying the ambient subspace.)

The preceding discussion presupposes a concatenation operation on voice leadings.
Tymoczko does not give a formal definition of voice leading concatenation in the main
body of [17], but the following definition appears in the appendix: “A concatenation of
two voice leadings v1 and v2 is a bijection between their paths such that each path in
v1 is connected to its partner in v2”. We render this definition in mathematical terms as
follows. Two voice leadings v1 = {(c1, r1), . . . , (cn, rn)} and v2 = {(d1, s1), . . . , (dn, sn)}
can be concatenated (in the given order) if and only if {d1, . . . , dn} = {c1 + r1, . . . , cn + rn},
and if that is the case and we reorder the elements so that ci + ri = di for i = 1, . . . , n,
then the concatenation of the two voice leadings is {(c1, r1 + s1), . . . , (cn, rn + sn)}. We
note that the required reordering of elements is the “bijection” to which Tymoczko refers,
and the equations ci + ri = di refer to the phrase “connected to its partner”. Tymoczko
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also makes use of inverse (“retrograde”) voice leadings, implicitly defining the inverse of
{(c1, r1), . . . , (cn, rn)} to be {(c1 + r1,−r1), . . . , (cn + rn,−rn)}.

We now show that for voice leadings between regular points, Tymoczko’s definitions
of concatenation and inverses agree with the corresponding definitions given above for
orbispace path classes. Let {(c1, r1), . . . , (cn, rn)} and {(d1, s1), . . . , (dn, sn)} be two voice
leadings for which concatenation in the given order is possible. Let a preferred funda-
mental domain in Rn be specified, and let (c̃1, . . . , c̃n) be the unique representative of
{c1, . . . , cn} in that fundamental domain. Note that this representative is an ordered set,
and c̃i may not correspond to ci (i.e., some reordering may be needed). Nevertheless,
since {c1, . . . , cn} is a regular point, we can apply the same reordering to the ri without
ambiguity, so without loss of generality we can assume (c̃1 + r1, . . . , c̃n + rn) is the ter-
minal point of a path in Rn corresponding to the first voice leading. Since {d1, . . . , dn}
is a regular point, there is a unique element γ of Zn o Σn that takes (c̃1 + r1, . . . , c̃n + rn)
into the preferred fundamental domain. Thus, the first voice leading corresponds to the
element ({c1, . . . , cn}, {c1 + r1, . . . , cn + rn}, γ) of the orbifold path groupoid. Similarly, the
second voice leading corresponds to the element ({d1, . . . , dn}, {d1 + s1, . . . , dn + sn}, δ),
where δ is the unique element of of Zn o Σn that takes (d̃1 + s1, . . . , d̃n + sn) into the pre-
ferred fundamental domain, and (d̃1, . . . , d̃n) is the unique representative of {d1, . . . , dn} in
the preferred fundamental domain. Note that since {c1 + r1, . . . , cn + rn} = {d1, . . . , dn},
γ · (c̃1 + r1, . . . , c̃n + rn) must coincide with (d̃1, . . . , d̃n). Now, the concatenation of the two
voice leadings is given above as {(c1, r1 + s1), . . . , (cn, rn + sn), but the notation includes an
assumption that the si have been reordered according to the stipulation that each ci + ri = di.
Hence, a path in Rn from (c̃1, . . . , c̃n) to (c̃1 + r1 + s1, . . . , c̃n + rn + sn) is homotopic to the
concatenation of paths from (c̃1, . . . , c̃n) to (c̃1 + r1, . . . , c̃n + rn) and from γ−1 · (d̃1, . . . , d̃n)
to γ−1 · (d̃1 + s1, . . . , d̃n + sn). The terminal points must coincide, so the unique member
of Zn o Σn taking (c̃1 + r1 + s1, . . . , c̃n + rn + sn) into the preferred fundamental domain
must be δγ, which means the voice leading {(c1, r1 + s1), . . . , (cn, rn + sn)} corresponds
to the element ({c1, . . . , cn}, {d1 + s1, . . . , dn + sn}, δγ) of the orbispace path groupoid,
i.e., the concatenation of the groupoid elements ({c1, . . . , cn}, {c1 + r1, . . . , cn + rn}, γ) and
({d1, . . . , dn}, {d1 + s1, . . . , dn + sn}, δ). The argument for inverses is similar, and we omit
it for brevity.

If any of the endpoints of voice leadings to be concatenated (specified as multisets of
homotopy classes of paths in S1) are singular, then there is ambiguity in the orbispace path
classes involved, as explained above. Hence, we expect ambiguity in both the process and
the result of concatenation. However, Tymoczko’s definition astutely provides a way to
resolve ambiguity at the intermediate point of concatenation by requiring specification of a
particular bijection between the multisets of paths, so that the ambiguity of the result is
no different than the ambiguity that would arise from singularity of the endpoints of the
concatenation. We illustrate with two examples.

First, consider the two voice leadings {(G, 2), (B,−2)} and {(A,−2), (A, 2)}. Concate-
nation in the given order is possible, and the endpoints of the concatenation once performed
will both be regular. On the other hand, the intermediate point {A, A} is singular. Hence,
there are two elements of the orbispace path groupoid corresponding to the first voice

leading, namely ({G, B}, {A, A},
(

1 2
1 2

)
) and ({G, B}, {A, A},

(
1 2
2 1

)
). Likewise there

are two elements corresponding to the second voice leading, ({A, A}, {G, B},
(

1 2
1 2

)
) and

({A, A}, {G, B},
(

1 2
2 1

)
). Thus, the concatenation of the two voice leadings can be either

({G, B}, {G, B},
(

1 2
1 2

)
) or ({G, B}, {G, B},

(
1 2
2 1

)
). If the voice leadings are specified

as groupoid elements at the outset, then their concatenation is determined unambiguously
by the concatenation operation in the groupoid. If, on the other hand, the voice leadings
are specified as multisets of paths, then to concatenate them requires specification of a
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bijection from {(G, 2), (B,−2)} to {(A, 2), (A,−2)}; once it is specified the concatenation
is determined to be either {(G, 0), (B, 0)} or {(G, 4), (B,−4)}. Thus, in either setting, we
obtain an unambiguous result; the difference lies in whether the ambiguity is resolved at
the level of individual voice leadings, or at the level of concatenations of voice leadings.

For our second example, consider the voice leadings {(A, 2), (A,−2)} and {(G, 2),
(B,−2)}. In this case, the intermediate point is regular, but the endpoints are singular. For
each voice leading, there are two possible corresponding groupoid elements, but there is
only one choice for a bijection between the paths fulfills the “connected” condition. Hence,
some ambiguity of groupoid element remains after concatenation according to Tymoczko’s
definition, but it is the same ambiguity that would be present for the concatenated voice
leading {(A, 0), (A, 0)} in any case.

Tymoczko uses the term “contrapuntal design” for a sequence of concatenations.
Specifically, for an n-voice, m-chord passage, he defines a contrapuntal design to be “a
multiset of m-tuples whose elements form a sequence of paths in pitch-class space, each
connected to its successor, with each m-tuple representing a distinct melodic line”. Let

{((c1,1, r1,1), . . . , (c1,m, r1,m)), . . . , ((cn,1, rn,1), . . . , (cn,m, rn,m))}

be such a multiset of n sequences of m paths. Then

({(c1,1, r1,1), . . . , (cn,1, rn,1)}, . . . , {(c1,m, r1,m), . . . , (cn,m, rn,m)})

is a sequence of voice leadings, with specific bijections for concatenating adjacent voice
leadings encoded in the first subscript (i.e., for 1 ≤ i ≤ n and 1 ≤ j ≤ m− 1, the path
(ci,j is to be “partnered with” ci,j+1). Thus, a contrapuntal design uniquely determines
a sequence of concatenations of voices leadings. Likewise a sequence of concatenations
uniquely determines a contrapuntal design, so the two terms are essentially synonymous.
If all the chords involved are regular points, a contrapuntal design is the same as a sequence
of concatenated elements of the orbispace path groupoid (i.e., a factorization or word in the
elements of the groupoid). If singular points are involved, then multiple factorizations in
the groupoid will correspond to a single contrapuntal design, for reasons discussed above.

4.2. The Subspaces: Relevant Restrictions

We have already noted that the chord spaces considered in [17] are constant-loudness
subspaces of our generalized chord spaces Cn = SPn(D2), and within these subspaces,
chords without doublings are subspaces consisting of regular points. Here, we discuss
some other musically relevant restrictions and inclusions.

A common phenomenon in music is persistent, specified voice doublings throughout a
passage. Such passages can be regarded as restrictions to a subspace Cn

k,k of Cn consisting of
n voices on exactly k parts. The orbispace path groupoid of such a subspace is isomorphic
to that of k-voice space. In particular, for the special case k = 1 (all voices in unison),
as long as the restriction persists (i.e., no voice is allowed to stray from the unison), the
orbispace path groupoid is isomorphic to T(S1)o Z. The absence of a symmetric group
factor in this situation removes the redundancy of multiple groupoid elements associated
with “unobservable” voice exchanges discussed in the appendix of [17].

A generalization of persistent, specified voice doublings is a persistent, specified
interval between specified voices. This phenomenon is discussed at length in [19]. Chords
and voice leadings subject to such constraints are restricted to appropriately defined
subspaces of Cn, analogous to Cn

k,k.
Another common phenomenon is specified resting voices throughout a passage. An

n-voice passage with n− k resting voices resides in the subspace of Cn identified with Ck

as described in Section 3. If we further specify that the k non-resting voices have equal
and constant loudness, then we can regard the subspace as SPk(S1); its inclusion into Cn

induces a morphism of orbispace path groupoids, by functoriality. Such inclusions of
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subspaces with resting voices provide a way to combine chords of different cardinalities,
an endeavor deemed problematic in Section 2 of [17] and in [7].

4.3. Moves of Musical Interest

Tymoczko identifies several types of voice leading moves that are of musical interest,
not only because they occur frequently in actual music, but also because they comprise
a relatively small collection of moves (math: generators) in terms of which much larger
collections can be described. These types of moves are stepwise transpositions along the chord
(denoted by ti in [17]), transpositions along the scale (denoted by Tj), basic voice leadings, and
diagonal actions. In this subsection, we provide interpretations of these moves in terms of
the orbispace path groupoid.

Given an n-note (non-singular) chord, the stepwise transposition along the chord ti
applies a cyclic permutation to the pitch classes of the chord. Defining and interpreting ti as
a voice leading, however, require more precision, since a path representing the permutation
may incur changes in register. Specifically, t1 moves each note upward to the next note of
the chord, so the highest note will be moved to a different fundamental domain. Assuming
constant loudness and taking as preferred fundamental domain the set of representatives
that satisfy C4 ≤ x1 < x2 < · · · < xn < C5 for each chord {x1, . . . , xn}, t1 takes (x1, . . . , xn)
to (x2, x3, . . . , xn, x1 + o) (where o denotes the size of the octave). The element of the
acting group that moves (x2, x3, . . . , xn, x1 + o) to its unique representative in the preferred
fundamental domain is

(−1, 0, . . . , 0) ◦
(

1 2 . . . n− 1 n
2 3 . . . n 1

)
and the corresponding forward-moving element is its inverse

(0, . . . , 0, 1) ◦
(

1 2 . . . n− 1 n
n 1 . . . n− 2 n− 1

)
.

(The initial and terminal chords are the same, so we do not notate them explicitly here.) We
obtain group elements corresponding to the other ti by taking appropriate powers of these
elements. In particular, we note that the forward-moving element corresponding to tn is
(1, 1, . . . , 1) ◦ 1, which raises each note by an octave.

Transposition along the scale requires specification of a scale, defined as follows in the
appendix of [17]:

“A scale is a collection of o distinct pitch classes defining a piecewise linear metric
with the distance between adjacent notes equal to one (‘the scale step’); we use this metric
to label pitch classes with integers, choosing an arbitrary element as pitch class 0 and
proceeding in the ascending direction”.

From the context of this definition, we infer that o is to be a positive integer, and a
scale is an ordered set (d1, . . . , do) of elements of S1, with the ordering compatible with
angles assigned to elements of S1. As an operation on the entire scale, transposition along
the scale is no different from transposition along a chord, so the element of the acting group
corresponding to T1 is

(0, . . . , 0, 1) ◦
(

1 2 . . . o− 1 o
o 1 . . . o− 2 o− 1

)
with powers of this element corresponding to the other Tj.

Typically, though, transposition Tj along a specified scale (d1, . . . , do) will be applied
to a chord {dk1 , . . . , dkn} consisting of n < o distinct pitch classes drawn from the scale,
and the corresponding group element will be the restriction of the above transformation
to this subset. Such a restriction will typically change the chord, so we include the initial
and terminal chords in the notation of the corresponding groupoid element. We specify a
preferred fundamental domain by requiring the representative therein, (x̃1, . . . , x̃n), of a
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(non-singular, constant loudness) n-note chord {x1, . . . , xn} to satisfy d̃1 ≤ x̃1 < x̃2 < . . . <
x̃n < d̃1 + o, where d̃1 is any fixed pitch in the pitch class d1. We then assume (d̃k1 , . . . , d̃kn)
is such a representative of our starting chord (i.e., the initial point of a representative path
for the voice leading). The terminal point of the corresponding path representing T1 will
then be (d̃k1+1, . . . , d̃kn+1) if kn < o, and (d̃k1+1, . . . , d̃1 + o) if kn = o. Thus, the groupoid
element corresponding to T1 is ({dk1 , . . . , dkn}, {dk1+1, . . . , dkn+1 (mod o)}, σ), where the

permutation σ is the identity if kn < o, and (−1, 0, . . . , 0) ◦
(

1 2 . . . n
2 3 . . . 1

)
if kn = 0. The

contingencies become more complicated for the other Tj; in such cases, ad hoc computation
is preferable to general formulas.

Tymoczko defines a basic voice leading in [17] as combining t−1 with T2, in the case of
3-note chords in a 7-note scale (basic voice leadings in other contexts would presumably
involve different subscripts). For example, a basic voice leading applied to a C major chord
in a C major scale would take (C4, E4, G4) first to (G3, C4, E4) and then to (B3, E4, G4).
The groupoid element corresponding to this voice leading is ({C, E, G}, {B, E, G}, (0, 0, 1) ◦(

1 2 3
3 1 2

)
). On the other hand, a basic voice leading applied to (E4, G4, B4) has corre-

sponding groupoid element ({E, G, B}, {D, G, B}, 1). The associated group element is the
identity in this case because of register and fundamental domain considerations, but in
all cases a basic voice leading changes exactly one pitch class of the chord, and applies a
(possibly trivial) cyclic permutation, possibly with a single register change.

In [17], a diagonal action is similar to a basic voice leading, except that it applies to
3-note chords in a 12-note scale, and t−1 is combined with T4 instead of T2. One example
Tymoczko gives is (C4, E4, G4) to (B3, E4, G]4), which has corresponding groupoid element

({C, E, G}, {B, E, G]}, (0, 0, 1) ◦
(

1 2 3
3 1 2

)
). Another example takes (C4, F4, G4) to (B3, E4,

A4) with corresponding groupoid element ({C, F, G}, {B, E, A}, (0, 0, 1) ◦
(

1 2 3
3 1 2

)
). It

is interesting to note that the associated element of the acting group is the same for the two
examples, and for first basic voice leading example given above.

4.4. Transpositional and Inversional Set-Class Spaces

Transpositional and inversional set-class spaces are quotient spaces resulting from the
imposition of additional musically relevant equivalences on chord spaces. Sections 3 and 4
of [17] provide a wealth of detail pertaining to voice leading in these spaces. Insofar as the
formalism of orbispace path classes and orbispace path groupoids can be applied equally
well to any of the quotient spaces, we will confine ourselves here to a brief discussion of
fundamental domains and acting groups for the transpositional case, and finding orbispace
path groupoid elements for one example.

Transpositional set-class space is chord space modulo uniform transposition of chords.
The geometrical normal form conditions NF1–NF3 given in [17] and repeated below define
a preferred fundamental domain. An n-tuple of pitches (x0, x1, . . . , xn−1) is in geometrical
normal form if

NF1. Its first element is 0;
NF2. It is in ascending order, with the final element less than or equal to the octave o;
NF3. Its smallest interval lies between its first two notes (including the “wraparound”

interval o− xn−1 among the chord’s intervals).

The acting group is Zn o (Zn−1 o Σn). Uniform transposition is used to obtain NF1.
For NF2, the action of Σn is used to arrange pitches in ascending order, and the action of
Zn−1 is used to bring all pitches within a single octave (only n− 1 factors are needed because
of NF1). Finally, the action of the cyclic group Zn is used (along with additional octave
adjustments) to obtain NF3 (and preserve NF2). The procedure for associating a groupoid
element with a voice leading is the same as given earlier for chord spaces: uniformly
transform the voice leading so that the initial point is in the preferred fundamental domain,
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then find an element of the acting group that moves the transformed terminal point into
the preferred fundamental domain.

Applying the procedure to the sequence of voice leadings in Figure 27 of [17] (Figure 12),
we obtain the groupoid element

((0258), (0258), 24 ◦ (0,−1,−1) ◦ 1)

for both voice leadings labeled t2 in the figure (where 24 denotes the congruence class of 2
in Z4, and (0258) denotes the set class which is unchanged in these voice leadings), and

(0258), (0258), 14 ◦ (0, 0, 0) ◦
(

1 2 3 4
2 1 3 4

)
for the the voice leading labeled c. The last voice leading connects different set classes;
its associated groupoid element is ((0258), (0269), 1), the group element of which is the
identity since the terminal point is already in the preferred fundamental domain.

Figure 12. Figure 27 from [17].

Obtaining groupoid interpretations of voice leadings in the case of inversional set-class
spaces works similarly, with appropriate changes to the fundamental domains and acting
groups. For brevity, we defer this intriguing task to later work.

5. Conclusions

On page 134 of [17], the following statement appears: “... we can interpret the geomet-
rical pattern of boundary interactions as a sequence of abstract transformations combining
to produce the total voice leading”. In many ways, this statement summarizes and encap-
sulates the relationships between orbispaces, orbispace path classes, and voice leading. To
begin, a “boundary interaction” refers to a path in a fundamental domain for an orbispace
p : X → X/G that intersects the boundary of that fundamental domain. Such a fundamen-
tal domain lies in X, which we take to be the universal orbispace cover. Importantly, the
space X is partitioned into (“tiled by”) copies of the fundamental domain, and boundary
encounters are necessary for passage from one fundamental domain into another. Insofar
as the copies of the fundamental domain correspond by definition to elements of the acting
group G, the correspondence between boundary interactions and “abstract transforma-
tions” (i.e., elements of G) is mathematically precise (see Figure 2 for illustration). The
definition of orbispace path class captures the precise mathematical correspondence between
boundary encounters that occur when traveling from one fundamental domain to another.
(Interestingly, these ideas are broadly reminiscent of Vassiliev’s approach to knot theory 30
years ago.)

Since the universal orbispace cover X is simply connected, any two paths in X from a
given initial point to a given terminal point are homotopic. The variability in paths within
a homotopy class corresponds to variability in factorizations of a given orbispace path
class. In Section 5 of [17], Tymoczko characterizes such factorizations as “words” in the
“alphabet” of transformations, and in so doing invokes the broad topic of word theory,
used extensively in [20] and elsewhere in mathematical music theory. One of the main
goals of this paper is to clarify the isomorphism—deemed “challenging” in [17]—between
the “alphabet” of transformations and the acting group G of symmetries. Their essential
identity lies at the heart of geometric and topological modeling of voice leading.
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