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Abstract: Even among single-criteria discrete problems, there are NP-hard ones. Multicriteria
problems on graphs in many cases become intractable. Currently, priority is given to the study of
applied multicriteria problems with specific criteria; there is no classification of criteria according
to their type and content. There are few studies with fuzzy criteria, both weight and topological.
Little attention is paid to the stability of solutions, and this is necessary when modeling real processes
due to their dynamism. It is also necessary to study the behavior of solution sets for various general
and individual problems. The theory of multicriteria optimization is a rather young branch of
science and requires the development of not only particular methods, but also the construction of a
methodological basis. This is also true in terms of discrete graph-theoretic optimization. In this paper,
we propose to get acquainted with multicriteria problems for a special class of prefractal graphs.
Modeling natural objects or processes using graphs often involves weighting edges with many
numbers. The author proposes a general formulation of a multicriteria problem on a multi-weighted
prefractal graph; defines three sets of alternatives—Pareto, complete and lexicographic; and proposes
a classification of individual problems according to the set of feasible solutions. As an example, we
consider an individual problem of placing a multiple center with two types of weight criteria and
two types of topological ones. An algorithm with estimates of all criteria of the problem is proposed.

Keywords: multicriteria problem; prefractal graph; set of alternatives; algorithm with estimates

1. Introduction
1.1. Single-Criteria Optimization Problems

Classical optimization problems on graphs are represented by one criterion. The
essence of the problem is the selection of the required optimal subgraph according to a
given criterion. This is the selection of spanning subgraphs (trees, chains, cycles, and other
structures) of minimum or maximum weight, the search for optimal paths, maximum
matchings, minimum cost flows, placement of centers and medians, allocation of Hamilto-
nian and Euler subgraphs, and the coloring of vertices and edges [1–3]. In the formulation
of the optimization problem, a set of feasible solutions is determined—all possible sub-
graphs of the required structure, and among them the optimal solution according to a
given criterion is selected. There may be several optimal solutions, but they all lead to
an equal criterion value. Statements of modern single-criterion problems correspond to
classical statements, while they contain particular refinements related to practical appli-
cation in a particular branch of research. There is also a bias towards new methods and
algorithms for solving known problems. In [4], the problem of coloring large graphs is stud-
ied and Memetic Teaching-Learning-Based optimization algorithms are proposed in serial
and parallel implementations. In [5], the Honeybee optimization algorithm for the graph
K-decomposition problem was proposed. To solve the multivariate traveling salesman
problem (MTSP) in [6], a learning-based approach is proposed. This is a new formulation
of the classical combinatorial traveling salesman problem. Optimization problems also
include problems of covering a graph with intersecting or non-intersecting structures. In
the case of non-intersecting structures, we can talk about the selection of non-intersecting
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subgraphs. In [7], the problem of decomposing a graph into stars of minimum size is
studied. It should be noted that the statement of this problem belongs to the class of
NP-hard problems, and many modern statements, due to the complication of criteria and
additional conditions, are also intractable [8].

1.2. Multicriteria Optimization

The field of study of multicriteria problems on graphs is not new [9–13]. The works
of those times are mainly represented by multicriteria problems on graphs weighted by
many weights. For each set of weights, a separate criterion is set and various methods are
proposed for finding the optimal solution for each criterion.

Despite significant publications, there are still no universal methods for solving mul-
ticriteria problems on graphs. In [14], a multicriteria graph problem with criteria of the
MAXMIN type was studied and an algorithm for finding a solution from a complete set of
alternatives was proposed. In [15], two methods for solving the multicriteria problem of
finding the shortest path on a rough graph (a graph with nondeterministic edge weights)
were proposed: a modified Dijkstra algorithm and a rough programming method. It should
be noted that even classical problems on large and complex graphs require new approaches
to finding solutions. Thus, a new algorithm is proposed for computing Pareto-optimal
shortest paths on a network weighted by fuzzy weights [16]. The study also paid attention
to the fuzziness of the criteria themselves, which adds additional complexity to finding
a solution. To study the sets of non-dominated decisions, classical interactive methods
with the participation of the decision-maker are adapted. As a numerical experiment, the
proposed method was applied to solve multicriteria problems of finding the shortest path
and spanning tree [17]. Of course, the theory of multicriteria optimization is becoming
more and more relevant, in particular, with regard to large graphs and networks with many
weights and complex connection structures [18,19], including for solving applied model
problems [20]. To solve problems of multicriteria optimization, a graph-theoretic approach
can be used, for example, in the problem of splitting a social graph in real-time [21] or
transport and logistics problems [22,23].

1.3. Related Works

In the formulation of a multicriteria problem, there are several criteria (two or more), and
a set of feasible solutions (a set of alternatives) is specified. Determining the set of alternatives,
its structure, as well as the selection of the entire set of alternatives, that is, the enumeration of
all possible subgraphs, is a separate task, and often intractable [24–26]. Then, from the set of
alternatives, the optimal solution according to the criteria is selected. The question then arises
as to which solution to choose as optimal in the case of many opposite criteria. To select the
optimal solution to a multicriteria problem, various methods have been developed—Pareto
selection (Slater, Nash, etc.), lexicographic order of criteria [27], or various criteria convolution
methods (scalarization, normalization, weighted sums, etc.) [28].

The application of the theory of multicriteria optimization is accepted in various
scientific and applied fields [29]. In this paper, attention is paid to problems on prefractal
graphs in the terminology and notation in [30–32]. An introduction to the class of prefractal
graphs is given in the author’s papers [33–37]. The following are the main definitions and
notations of a prefractal graph used in this paper.

A prefractal graph is denoted as GL = (VL, EL), where VL is the set of vertices, and EL
is the set of edges. In what follows, a simplified notation GL is used for known (canonical)
prefractal graphs GL = (VL, EL). In the process of constructing a prefractal graph, a
trajectory is formed G1, G2, . . . , GL. The graph constructed at step l = 1, 2, . . . ., L is called
a prefractal graph Gl of rank l. The new edges of the graph GL are the edges of rank L,
and the remaining edges are the old edges of the rank l. As l → ∞ , the graph Gl is fractal.
A fractal graph, like a fractal, is an infinite object. For a fixed value of rank l, a prefractal
graph is considered. For example, as shown above for l = L the graph GL is considered.
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Essential characteristics of a prefractal graph GL = (VL, EL) are the number of its
vertices in Equation (1) and edges in Equation (2).

N = N(n, L) = |VL| = nL, (1)

where n = |W| is the number of vertices of seed H.

M = M(n, q, L) = |EL| = q
(

1 + n + n2 + · · ·+ nL−1
)
= q

(
nL − 1

)
/(n− 1), (2)

where q = |Q| is the number of edges of seed H.
Thus, in this paper, we propose a toolkit of prefractal graphs for formulating multicri-

teria problems. A rule for weighing a prefractal graph by many real numbers is proposed,
and classes of individual problems with common sets of feasible solutions are presented as
an example. Two types of criteria are proposed—topological and weight.

2. Multicriteria Problem on Prefractal Graph
2.1. Set of Alternatives

A common problem of discrete multicriteria problems is finding sets of alternatives.
The questions of estimating the complexity of finding sets of alternatives, the effectiveness
of algorithms—exact and approximate—are considered. In this paper, attention is paid
to finding at least one optimal solution from a set of alternatives. Let us present the
definitions and notation used in the description of multicriteria problems [34] as applied to
prefractal graphs.

The set of alternatives (SA) is a set of all possible alternative solutions to the problem,
including optimal and near-optimal solutions. The concept of SA is primary and is intro-
duced for the needs of the theory of choice and decision making. In practice, SA is subject
to conflicting requirements: it must be the most representative, including all the «best» and
close to the solutions, and at the same time must be visible to the decision-maker (DM).
The concept of SA appeared as a result of the need to make a decision under the conditions
of several simultaneous criteria. In this case, a situation arises of the existence of alternative
solutions, each of which is better than the other in at least one criterion. Similarly to single-
criteria optima, one speaks of «multicriteria optima», which are found in the literature [38]
under the names of Pareto-optimal, efficient, non-dominated, etc. solutions. However, in
contrast to single-criteria optimization, finding one specific multicriteria optimum is not
easy even for a particular problem.

The process of finding the SA should be completed by the representation of the
elements in one form or another. In the theory of choice and decision making, the most
common are three ways:

(1) explicit listing of all competing alternatives;
(2) representation of SA elements in an implicit form with the help of additional systems

of restrictions;
(3) construction of a deterministic formal mechanism that allows for the generating of

alternatives.

The mathematical formulation of a discrete multicriteria problem consists of a descrip-
tion of the conditions that determine a finite or countable set of feasible solutions X = {x}
and a vector-objective function (VOF) defined on this set:

F(x) = (F1(x), F2(x), . . . , Fi(x), . . . , FM(x)),
Fi(x)→ extr.

(3)

It is customary to speak of an individual problem (or model problem) if all parameters
of the vector-objective function and a system of constraints describing the set of feasible
solutions (SFS) are given. If some of these parameters are not fixed but are represented
by generally accepted notations, it is customary to talk about a mass problem (from the
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word massive), or briefly, about a problem. Examples of mass problems are the traveling
salesman problem, the Euler graph problem, the transportation problem, etc.

The numerical solution of an individual problem is to find the SA X∗ ∈ X from the
SFS. In a broad sense, the solution of a problem is understood as the construction of a
certain algorithm that guarantees the finding of an SA for any individual problem of a
mass problem.

How to evaluate the complexity of finding SA? In this paper, an algebraic approach
is used to estimate the computational complexity, measured by the number of required
arithmetic operations. This does not take into account the representation of a discrete data
structure in a computer, so there is no need to investigate the performance of operations in
a particular machine and the cost of the digital length of numbers. However, due to the
variety of computing platforms, additional clarifications are introduced if necessary. At the
same time, for parallel machines, the concept of time complexity means the greatest total
time (measured by arithmetic operations) spent by one of the parallel processes.

The paper uses the concept of asymptotic time complexity—the behavior of computa-
tional complexity as a function of the size of the input in the limit as the size of the problem
increases. Estimating the complexity in the worst case, we use the existing hierarchy of
the form: «polynomial problems»-«NP-complete problems»-«intractable problems». The
complexity for almost all individual problems is an upper bound on the complexity of the
mass problem.

Returning to the sets of alternatives, three types of SA are considered, each of which is
a proper or improper subset of the Pareto set X̃.

The Pareto set (of alternatives) (PSA) X̃ consists of all Pareto-optimal solutions. For
a given individual problem with a vector-objective function (3), an element x0 ∈ X is
called Pareto-optimal (non-dominated) if there is no such element x∗ ∈ X that satisfies
the inequalities Fi(x∗) ≤ Fi

(
x0), i = 1, M, among which at least one is strict. The Pareto

principle says that only the element that belongs to the PSA should be chosen as a solution
to the problem. It follows from the Pareto principle that PSA is the most representative
type of SA of maximum power. In the single-criteria case, the PSA is the set of all optima of
the problem under consideration.

The complete set of alternatives (CSA) is a subset X0 ⊆ X̃ of minimal cardinality such
that F

(
X0) ⊆ F

(
X̃
)

. If for an individual problem the PSA and the SCA do not coincide,
then the SCA is not uniquely determined and there are at least several different choices for
the SCA for this problem.

The lexicographic set of alternatives (LSA) X0
Λ is defined as follows. Finding any one

lexicographic optimum is adequate to such a formulation of a multicriteria problem in
which the criteria are ordered by importance and numbered so that each previous one
is incomparably more important than all subsequent ones. Then one speaks of a lexico-
graphic problem, the essence of which is to achieve an arbitrarily small improvement in
an important criterion at the expense of arbitrarily large losses in all other less important
criteria. Finding the LSA in some cases is an easier problem than finding the CSA. In the
case of using common methods—linear convolution algorithms, then in the class of these
algorithms the problem of finding the CSA is not solvable, while the problem of finding
the LSA is solvable. In the context of algorithmic problems of discrete optimization, the
LSA is one of the possible approximations of the desired CSA. Formally, LSA is described
as follows. Let Λ = {λ} be the set of all n! permutations of numbers 1, 2, . . . , n. An element
x′ ∈ X̃ is called a lexicographic optimum if there is such a permutation λ = i1, i2, . . . , in in
Λ, that for each x ∈ X̃ one of the following two conditions is satisfied:

(a) Fi(x′) = Fi(x), i = 1, 2, . . . , n;
(b) there exists k ∈ {1, 2, . . . , n} such that Fik (x′) < Fik (x) and Fir (x′) = Fir (x),

r = 1, 2, . . . , k− 1.

Let X̃Λ be the set of all lexicographic optima defined on Λ, X̃Λ ⊆ X̃. Then the LSA is
a subset X0

Λ ⊆ X̃Λ of minimal cardinality such that F
(
X0

Λ
)
= F

(
X̃Λ

)
. Any LMA X0

Λ can
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be defined as the intersection of a certain CSA X0 with X̃Λ: X0
Λ = X0 ∩ X̃Λ. At the same

time, if for an individual problem the PSA and the LSA do not coincide, then the LSA is
not uniquely determined and there are at least several different choices for the LSA.

2.2. Classification of Multicriteria Problems on Prefractal Graphs

An analysis of the descriptions of discrete graph problems suggests that the compo-
sition of the criteria for a vector-objective function usually changes from one individual
problem to another. For example, a spanning tree in an optimization problem can be
evaluated by the criteria of weight, degree, and diameter, the «capacity» of edges, etc. Thus,
there are various variants of individual spanning tree problems. What these problems have
in common is the definition of a set of feasible solutions. For this reason, the mathematical
formulation of a multicriteria problem of any kind seems to be similar to the description of
the set of feasible solutions. After that, the criteria for individual tasks are concretized and
algorithms for finding their solutions are given.

Speaking about an individual problem on a prefractal graph (digraph) GL = (VL, EL),
we assume that its feasible solution is a subgraph x = (Vx, Ex) with a set of vertices Vx ⊆ VL
and a set of edges (arcs) Ex ⊆ EL. In some cases, an admissible solution to a digraph can
be supplemented with clarifying conditions. Here are some definitions and notations: GN

L
is the set of all N-vertex prefractal graphs GL; GN,M

L is the set of all N-vertex M weighted
prefractal graphs GL.

Individual multicriteria problems on multi-weighted (with real numbers) prefractal
graphs will be denoted by:

Z1—the problem of multiple centers, x = (Vx, Ex)—p-center of GL;
Z2—the problem of multiple medians, x = (Vx, Ex)—p-median of GL;
Z3—the problem of spanning forests, x = (VL, Ex)—spanning forest of GL;
Z4—the problem of perfect matchings, x = (VL, Ex)—perfect matching of GL, x = (VL, Ex)—
perfect matching of GL, and |VL| is an odd number, x is the maximum matching and
|Ex| = (N − 1)/2;
Z5—the problem of perfect matchings on a bipartite graph, x = (VL, Ex)—perfect match-

ing of GL =
(

V(1)
L , V(2)

L , EL

)
, and

∣∣∣V(1)
L

∣∣∣ 6= ∣∣∣V(2)
L

∣∣∣ is an odd number, x is the maximum

matching and |Ex| = min
{∣∣∣V(1)

L

∣∣∣, ∣∣∣V(2)
L

∣∣∣};

Z6—the problem of the shortest chains (paths) between a pair of vertices, x = (Vx, Ex)—
shortest simple chain (path) between two given vertices v1, v2 ∈ VL of a prefractal graph
(digraph) GL;
Z7—the traveling salesman problem, x = (VL, Ex)—Hamiltonian cycle (contour) of a
prefractal graph (digraph) GL;
Z8—the Euler cycle covering problem, x = (VL, Ex) = {Cm} is a spanning subgraph of GL,
each component Cm of which are an Euler graph and the components in the covering do
not intersect;
Z9—the problem of covering a graph with chains, x = (VL, Ex) is a spanning subgraph of
GL, each connected component of which is a h-chain, 2 ≤ h ≤ hmax;
Z10—the problem of covering a graph with stars, x = (VL, Ex) is a spanning subgraph of
GL, each connected component of which is h-stars, 2 ≤ h ≤ hmax;
Z11—the vertex coloring problem, x = (Vx, Ex) is the correct coloring (partitioning) of the

set of vertices VL of GL, Vx =
{

V1
x , V2

x , . . . , Vi
x, . . . , Vk

x

}
, k is the number of colors in the

coloring x.

Classification of problems Zt, t = 1, 2, . . . , 11 is called classification according to
the type [39]. Such a classification is generally recognized and defines problems by
the set of feasible solutions for each type. The classification can be extended by known
individual problems.

For problems on prefractal graphs, another type of classification is applicable, based
on the method of constructing a prefractal graph. On a prefractal graph, you can process
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individual subgraphs, and then combine the results in a different configuration depending
on the criteria of the problem. Subgraph-seeds and blocks of different ranks are considered
subgraphs. Blocks of the r rank are connected subgraphs of the prefractal graph obtained
by removing all edges of rank l = 1, 2, . . . L− r. Blocks of the first rank are called seeds of
the prefractal graph. The classification of problems according to their structural affiliation
is carried out as follows.

Zl2
l1

—the problem of covering seeds of rank l1, l1 + 1, . . . , l2 of a prefractal graph GL. In
particular, ZL

1 is the problem of covering seeds from the first to the L rank inclusive, which
corresponds to covering the entire prefractal graph GL.

Bl2
l1

—the problem of covering blocks of rank l1, l1 + 1, . . . , l2 of a prefractal graph GL.
In particular, BL

L is the problem of block coverage of rank L, which corresponds to the
coverage of the entire prefractal graph GL.

2.3. Complete Problems and Their Sets of Alternative Solutions

Problem Zt implies the set of all of its individual problems. The set Xt = {X}
denotes the set of feasible solutions to a problem Zt, obtained by combining the sets of
feasible solutions of all its individual problems. Individual problems of one family Zt,
t = 1, 2, . . . , 11 have the same definitions of a feasible solution but differ in the dimension
of the vector-objective function, the composition of the criteria, the number of sets of
weights, etc.

A multicriteria problem Zt is called a complete problem if for each set of feasible solu-
tions X ∈ Xt there are such parameters of its vector-objective function that the equality
X0 = X̃ = X is true. For prefractal graphs, the following lemmas of the theory of multiob-
jective optimization are true.

Lemma 1. For any problem with a vector-objective function of the form F : X → RN , the cardinal-
ities are equal

∣∣X0
∣∣ = ∣∣∣F(X̃

)∣∣∣, where RN is the Euclidean space of finite dimension N.

Lemma 2. Adding new criteria to the vector-objective function of any individual problem either
leaves its PSA and CSA unchanged or replenishes them with new alternatives.

Lemma 3. For fixed t, some individual problems from Zt can be complete, while other problems of
the same family do not have the completeness property.

The Lemmas 1–3 proposed above and the following Theorems 1–6 are true for multi-
criteria problems on graphs, including the class of prefractal graphs. All required proofs
are given in [34].

Theorem 1. Any spanning forest problem Z3 is complete if its vector-objective function contains at
least two weight criteria.

Theorem 2. Any perfect matching problem Z4 is complete if its VOF contains at least two weight
criteria.

Theorem 3. Any perfect matching problem Z5 on a bipartite prefractal graph is complete if its VOF
contains at least two weight criteria.

Theorem 4. Any traveling salesman problem Z7 is complete if its VOF contains at least two weight
criteria.

The completeness of the problem means that any found solution from the set of feasible
solutions will be Pareto and at the same time be included in the complete set of alternatives.
Moreover, singling out the entire set of alternatives means singling out the entire Pareto set.



Mathematics 2022, 10, 930 7 of 17

Theorems 1–4 give completeness conditions for problems under which any solution from
the set of alternatives can be found, and it will be Pareto.

The remaining problems Zt require a separate analysis to identify the completeness
property.

Theorem 5. The problem of finding the PSA X̃(CSA X0) of a typical problem Zt on a multi-
weighted prefractal graph (M ≥ 2 ) is unsolvable using linear convolution algorithms.

Theorem 5 postulates the fact that in the case of 2 or more weights, the problem is
unsolvable using linear convolution algorithms. In this sense, it is necessary to consider
weights of a different nature, incomparable among themselves.

Nevertheless, linear convolution algorithms can be used to find nontrivial SA, in
particular LSA.

Theorem 6. The problem of finding the LSA of a typical integer problem Zt under the condition
of only weight criteria on a multi-weighted prefractal graph (M ≥ 2) is solvable using linear
convolution algorithms.

2.4. Formulation of a Multicriteria Problem on a Multi-Weighted Prefractal Graph

We consider a prefractal graph GL = (VL, EL) generated by a set of seeds H = {H}.
Each edge of l rank e(l) ∈ EL is weighted by M, M ≥ 1 real numbers wi

(
e(l)
)
∈(

θl−1a, θl−1b
)

, i = 1, M, where l = 1, L, a, b > 0, a < b and 0 < θ < a/b—similarity
coefficient θ ∈ (0, 1).

On the set of feasible solutions X = X(GL) = {x}: x = (Vx, Ex), Vx ⊆ VL, Ex ⊆ EL,
the vector-objective function is given:

F(x) = (F1(x), F2(x), . . . , Fi(x), . . . , FM(x), . . . , FM+T(x)), (4)

in which the criteria:

Fi(x) = op[ωi(e)]→ extr, i = 1, 2 . . . M, (5)

Fi(x) = op[ψi(v, e)]→ extr, i = M + 1, M + 2, . . . , M + T, (6)

where op is an operation on a function of the form max, min, sum.
Criteria Fi(x), i = 1, M from Equation (5) are called numerical (weight) criteria and are

functions of weight characteristics, and criteria Fi(x), i = M + 1, M + T from Equation (6)—
topological, constructed based on topological (structural) characteristics of the prefractal graph.

Weight criteria can take the form:

Fi(x) = max
e∈Ex

ωi(e)
x→ min,

Fi(x) = min
e∈Ex

ωi(e)
x→ max,

Fi(x) = ∑e∈Ex ωi(e)
x→ min,

Fi(x) = ∑e∈Ex ωi(e)
x→ max.

(7)

Topological criteria can take the form:

Fi(x) = max
e∈Ex ,v∈Vx

ψi(v, e) x→ min,

Fi(x) = min
e∈Ex ,v∈Vx

ψi(v, e) x→ max,

Fi(x) = ∑e∈Ex ,v∈Vx ψi(v, e) x→ min,
Fi(x) = ∑e∈Ex , v∈Vx ψi(v, e) x→ max.

(8)
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On set X, it is necessary to select x0, in which the VOF F takes preferred values
according to the criteria Fi(x), i = 1, M + T. The solution of an individual multicriteria
problem is the selection of a set of incomparable alternatives.

In Equations (7) and (8), the entries ωi(e) and ψi(v, e) denote functions of the weight
and topological characteristics, respectively. In individual problems, the number of criteria
is specified. In this case, M sets of weights are considered to be incomparable and of a
different nature. If we assume that M sets are of the same type and it is possible to perform
arithmetic operations on them, then sets of weights can be replaced by a single weight. For
example, you can use the mean or well-known linear convolution methods and solve the
problem with one set of weights.

2.5. Individual Formulation of the Multicriteria Problem of Placing a Multiple Center

Furthermore, an individual statement of the multicriteria problem Z1 of placing a
multiple center on a multi-weighted prefractal graph, an algorithm for finding solutions to
particular problems are proposed, the computational complexities of the algorithms are
determined, and estimates of the task criteria are calculated.

Let x be a subset consisting of p vertices of the set VL of the prefractal graph GL = (VL, EL).
d(x, vk) denotes the shortest distance between vertices x and vk ∈ VL, that is,
d(x, vk) = min

vj∈x
d
(
vj, vk

)
by a fixed set of weights from M. The number s(x) = max

vk∈VL
d(x, vk)

is called the separation number of the set x. The set x∗ for which s(x∗) = min
x⊆VL

s(x) is a multiple

center (or p-center) of GL.
Multiple centers {x} on GL form the set of feasible solutions X = X(GL) = {x}.
On the SFS x, the VOF is determined:

F(x) = (F1(x), . . . , FM(x), . . . , F2M(x), F2M+1(x), F2M+2(x)),
Fi(x) = si(x)→ min, i = 1, 2, . . . , M,

FM+i(x) = ∑
p
t=1 ρi,t → min, i = 1, 2, . . . , M,

F2M+1(x) = h→ min,
F2M+2(x) = p→ min,

(9)

where si(x) is the separation number over the i set of weights; ρi,t is the radius of the t-vertex
of the p-center; h is the number of types of centers (of different ranks); p is the number of
vertices of the multiple center.

All criteria in Equation (9) have a specific meaningful interpretation. The weights
assigned to the edges of the prefractal graph can reflect both specific restrictions (time,
distance) imposed on the system of services (emergency, fire stations, police stations,
hospitals) and total costs expressed in conventional units. In practice, the separation number
can mean, for example, the distance from the farthest consumer (home, organization) to the
service system. The resulting value of the number p of criterion F2M+2 will be the smallest
number of emergency services, and the p-center will be their optimal placement that meets
the requirements.

Since the M weights of one edge are incomparable, the SFS includes p-centers, not of
one set of weights, but each of M. The criterion Fi(x) minimizes the separation number,
and the criterion FM+i(x) minimizes the sum of the radius p-center for each set of weights
i = 1, 2, . . . , M.

Figure 1 shows a prefractal graph G3 with old edge adjacencies preserved. Edge
weights are equal to one. The shortest path between the set x and the vertex v′ is marked
with a dotted line. The shortest distance is d(x, v′) = 4. The separation number of p-center
is s(x∗) = 2.
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Figure 1. Prefractal graph G3 generated by a complete 3-vertex seed, the old edges of which are
adjacent.

To solve an individual problem in Equation (9), an Algorithm 1 for placing the center
of a prefractal graph is proposed. Let us consider a prefractal graph GL generated by a set
of seeds H = {H} while preserving the adjacency of old edges. The edges are weighted by
one set of weights, that is M = 1. The search for the shortest distances between vertices is
carried out using Dijkstra’s procedure. The shortest distance between the vertex itself is
zero: d(v, v) = 0.

Algorithm 1. Algorithm for placing the center (α0)

Input: prefractal graph GL = (VL, EL).
Output: center x0 of GL.

for s = 1 to nL−1 do:

1.s. For each common vertex x(L)
s of the seed z(L)

s find the separation number

s
(

x(L)
s

)
= max

j=1,2,...,n−1
d
(

x(L)
s , v(L)

j

)
.

for l = L− 1 to 1 do:
for s = 1 to nl−1 do:

L− l + 1.s. For each common vertex x(l)s of the seed z(l)s find the separation number

s
(

x(l)s

)
= max

j=1,2,...,n−1

(
d
(

x(l)s , v(l)j

)
+ s
(

x(l+1)
j

))
.

L + 1. From all vertices x(1)s , s = 1, 2, . . . , n choose the vertex x0 with the
smallest separation number: s(x0) = min

s=1,2,...,n
s
(

x(1)s

)
.

Dijkstra’s procedure. Procedure for finding shortest distances
Input: graph G = (V, E).

Output: shortest distances d
(

x, vj

)
, j = 1, 2, . . . , n− 1.

As a procedure, instead of Dijkstra’s algorithm, it is possible to use any other known
algorithms for placing the center on a graph.
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Theorem 7. Algorithm α0 finds the center x∗ of the prefractal graph.

Proof of Theorem 7. The algorithm α0 finds the center of the prefractal graph at one of the
vertices of the seed z(1)1 of the first rank. This is facilitated by two important conditions: the
first is that the adjacency of old edges is preserved, the second is that the weighting of the
edges is carried out using the similarity coefficient θ ∈ (0, 1).

Let us assume that the center of the prefractal graph is one of the vertices v(L)
1 of

the seed z(L)
1 of rank L, which is incident only with new edges of rank L and no old

edges. The edges of z(L)
1 are adjacent only to the edges of rank L. Consider the shortest

path to another vertex v(L)
2 of rank L, which is not in any block with vertex v(L)

1 , except
for the block B(L) = GL. Since the adjacency of old edges is preserved, the shortest path
from v(L)

1 to v(L)
2 will pass sequentially through the vertices of ranks L, L− 1, . . . , 1, 2, . . . ,

L− 1, L. The shortest distance d
(

v(L)
1 , v(L)

2

)
will be the sum of the shortest distances between

vertices of different ranks, that is: d
(

v(L)
1 , v(L)

2

)
= d

(
v(L)

1 , v(L−1)
)
+ d

(
v(L−1), v(L−2)

)
+

· · ·+ d
(

v(1), v(2)
)
+ · · ·+ d

(
v(L−2), v(L−1)

)
+ d
(

v(L−1), v(L)
2

)
. In the case where v(L)

1 is the
center, no other vertex with a smaller separation number can be found. Since the adjacency of
old edges is preserved, all shortest distances from v(L)

1 to other vertices of GL, except for the

vertices of rank L of z(L)
1 , pass through the vertex v(L−1)

1 ∈ z(L)
1 of the rank (L− 1).

Consider the worst case where the seed is a simple cycle. Then the shortest dis-
tance from v(L)

1 to the most distant in terms of the number of edges the vertex v(L)
2 of the

rank L, is equal: d
(

v(L)
1 , v(L)

2

)
= θL−1a + (n− 1)θL−2a + · · ·+ (n− 1)θ1a + (n− 1)θ0a +

(n− 1)θ1a + · · ·+ (n− 1)θL−2a + (n− 1)θL−1a. The shortest distance from v(L−1)
1 to v(L)

2

is equal: d
(

v(L−1)
1 , v(L)

2

)
= (n− 1)θL−2a + (n− 1)θL−3a + · · ·+ (n− 1)θ1a + (n− 1)θ0a +

(n− 1)θ1a+ · · ·+(n− 1)θL−2a+(n− 1)θL−1a. We see that d
(

v(L−1)
1 , v(L)

2

)
< d

(
v(L)

1 , v(L)
2

)
differs by exactly the weight of one edge θL−1a of the rank L (see Figure 2). The shortest
distance (at maximum) from v(L−1)

1 to v(L)
1 is equal: d

(
v(L−1)

1 , v(L)
1

)
= (n− 1)θL−1b. We

get d
(

v(L−1)
1 , v(L)

1

)
< d

(
v(L)

1 , v(L)
2

)
since even (n− 1)θL−1b < (n− 1)θL−2a is due to the

prefractal graph weighting rule.

Figure 2. The shortest distance between two distant vertices on a prefractal graph.
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Then d
(

v(L−1)
1 , v(L)

1

)
< d

(
v(L)

1 , v(L)
2

)
and d

(
v(L−1)

1 , v(L)
2

)
< d

(
v(L)

1 , v(L)
2

)
, that is, the

separation number of the vertex of (L− 1) rank is less than the separation number of the
vertex of L rank: s

(
v(L−1)

)
< s
(

v(L)
)

. Thus, no vertex of L rank that is incident with new
edges of L rank can be the center of the prefractal graph.

In the same way, it is proved that no vertex of ranks L− 1, L− 2 . . . , 2 can be the center
of a prefractal graph. Then the vertices of the first rank remain, among which the search for
the center is carried out. To find the center of the prefractal graph, it is enough to find the
separation numbers for each vertex of the first rank and choose the smallest among them. �

Consequence 1. Algorithm α0 takes O(c·N) time, where N = nL and c = 4n2.

The search for the shortest distances between all vertices in z(L)
s using the Dijkstra

algorithm take n2 operations, the choice of the maximum value take also n2. The search for
the separation numbers of each z(L)

s , s = 1, 2, . . . , nL−1 add up to
(
n2 + n2)·nL−1 = 2nL+1

operations. The search for the separation numbers at all steps l = L, L− 1, . . . , 1 take 4n2·N
operations: 2nL+1 + 2nL + 2nL−1 + · · ·+ 2n3 + n3 + n2 = 2 nL+1·n−n2

n−1 + n3 ≤ 2nL+2 − n2 +

n3 ≤ 2nL+2 + n3 ≤ 2nL+2 + 2nL+2 = 4n2·nL = 4n2·N. At the last step are found pairwise
shortest paths between all vertices z(1)s , s = 1, 2, . . . , n which requires n2·n = n3 operations
plus time n2 to find the maximum element.

Consequence 2. Sequential execution of the algorithm α0 allows finding x∗i , i = 1, 2, . . . , M
center for each of M set weights. Then the computational complexity of the algorithm will be
O(c·N·M).

Determining the computational complexity of an algorithm in the worst case for
intractable and complex problems is not very informative. In this case, the approach
«algorithms with estimates» is used, when the quality of algorithms is evaluated using
computational complexity, solution accuracy, etc.

Theorem 8. Algorithm α0 finds the center x∗ on the prefractal graph, which is optimal by criteria
F3(x∗) and F4(x∗), and estimated by criteria a θL−1

θ−1 ≤ Fi(x∗) ≤ b(n− 1) θL−1
θ−1 i = 1, 2.

Proof of Theorem 8. The F1(x) criterion minimizes the separation number s1(x) of the
center x∗. In the worst case, you need to go through (n− 1) edges of each seed: s1(x∗) ≤
(n− 1)b + (n− 1)θb + · · ·+ (n− 1)θL−1b = b(n− 1) θL−1

θ−1 . In the minimum case: s1(x∗) ≥
a + θa + · · · + θL−1a = a θL−1

θ−1 . Then the first criterion is estimated: a θL−1
θ−1 ≤ F1(x∗) ≤

b(n− 1) θL−1
θ−1 . The second criterion minimizes the sum of radiuses of the multiple center.

Since the multiple center consists of a single vertex, the radius is equal to the split number
and is estimated: a θL−1

θ−1 ≤ F2(x∗) ≤ b(n− 1) θL−1
θ−1 .

Criterion F3(x) minimizes the number of types of vertices of multiple center. Since the
multiple center consists of one vertex, the criterion takes its minimum possible value equal
to one: F3(x∗) = 1. The fourth criterion is also equal to one: F4(x∗) = p = 1. �

Figure 3 shows an example of finding the center of the prefractal graph G3 for the case
M = 1. The prefractal graph is weighted according to the edge weighting rule, where the
initial segment is [9; 18] and the weighting coefficient is 1/3. The center search algorithm
begins its work with seeds of the 3rd rank. Inside the seeds, the separation numbers of
common vertices are indicated in small print.
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Figure 3. Computing the center of a weighted prefractal graph G3 generated by a complete 3-vertex
seed, the old edges of which are adjacent.

The center of G3 is the vertex x∗ = x(1)1 , for which the separation number is minimal:

s
(

x(1)1

)
= min(20.5; 24.2; 24.5) = 20.5. The radius of G3 is equal to the separation number

of the vertex x(1)1 : ρ = s(x∗) = 20.5. Criteria values F1(x∗) = F2(x∗) = ρ = s(x∗) = 20.5.
The criteria estimates are as follows:

F1(x∗) = F2(x∗) ≤ b(n− 1)· (θL−1)
(θ−1) = 18·2· (1/3)3−1

1/3−1 = 52;

F1(x∗) = F2(x∗) ≥ a(n− 1)· (θL−1)
(θ−1) = 9· (1/3)3−1

1/3−1 = 13.

The evaluation of the criteria is correct: 13 < F1(x∗) = F2(x∗) < 52.

Consequence 3. Algorithm α0 finds x∗i , i = 1, 2, . . . , Mcenters of prefractal graph, which are
optimal by criteria F2M+1

(
x∗i
)
and F2M+2

(
x∗i
)
, and estimated by criteria ai

θL−1
θ−1 ≤ Fi

(
x∗i
)
≤

bi(n− 1) θL−1
θ−1 , ai

θL−1
θ−1 ≤ FM+i

(
x∗i
)
≤ bi(n− 1) θL−1

θ−1 , i = 1, 2, . . . , M.

In this case, it is assumed that the prefractal graph is weighted by M weights, where
M > 1. Each center x∗i is found by a set of weights i = 1, 2, . . . , M. The criterion Fi

(
x∗i
)

gives
an estimate for the separation number si

(
x∗i
)

of a particular center x∗i . For the criterion
FM+i

(
x∗i
)

an estimate of the radius of each center x∗i , i = 1, 2, . . . , M are presented.
All presented solutions x∗i of the individual problem of placing a multiple center

belong to the set of feasible solutions x∗i ∈ X. The solutions x∗i are Pareto-optimal solutions
and are included in the Pareto set x∗i ∈ X̃. Moreover, among x∗i there are identical ones.
The number of different solutions cannot be more than n—the number of seed vertices.

3. Results and Discussion

Setting an optimization problem on a graph implies using the graph as a tool for
modeling some object or process (the structure of a social network [40–42], transport and
logistics systems [43], processes in cryptocurrency networks [44,45], DNA structure, etc.).
The solution of such a problem is a subgraph of a given graph with optimal values of
parameters or characteristics. For example, selecting a subgraph of maximum or minimum
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weight, finding the shortest paths, selecting the most stable subgraph, etc. The choice of
the parameter to be optimized is determined by the criterion, and the solution lies in the
area of feasible solutions—all possible subgraphs corresponding to the given definition of
the solution.

In this paper, we consider the class of prefractal graphs on which multicriteria op-
timization problems are studied. Brief definitions and notation of a prefractal graph are
considered, as well as some important characteristics used in theorems and proofs. Mul-
ticriteria settings differ from single-criteria ones by their laboriousness and complexity.
Nevertheless, for modeling and solving multiparameter problems in the economy and
other areas of human life, it is advisable to use precise multicriteria statements. First of all,
the definitions of the area of feasible solutions and their representative samples are given—
the set of alternatives (Pareto, complete, lexicographic). Common individual problems
are divided into separate classes (Z1–Z11), which describe solutions and sets of feasible
solutions. A special type of classification by structural affiliation is also proposed, which is
represented by two main classes of problems: Zl2

l1
and Bl2

l1
.

Complete problems on graphs are considered separately. A problem in which the set
of feasible solutions X coincides with the Pareto set X̃ and the complete set of alternatives
X0: X = X̃ = X0 is a complete problem. That is, the general solution of such a problem is
to select the entire set of alternatives X.

The paper presents well-known Lemmas 1–3 and Theorems 1–6 that are also true for
the class of prefractal graphs. Lemma 1 defines the relationship between the cardinality of
the complete set X0 and the cardinality of the set of values of the objective function F

(
X̃
)

of the Pareto set:
∣∣X0
∣∣ = ∣∣∣F(X̃

)∣∣∣. Lemma 2 says that increasing the criteria of the vector-
objective function does not reduce the Pareto set and the complete set of alternatives. For a
fixed value of the index t, the family of individual problems Zt can contain both complete
and incomplete problems (Lemma 3). For example, problem Z1 of identifying a multiple
center will be complete under some criteria, but not under others. Theorems 4-7 indicate the
completeness conditions for individual problems Z3–Z5, Z7—the vector-objective function
contains at least two weight criteria. That is, the inclusion of many topological criteria
does not mean the completeness of the problem, but the presence of at least two weight
criteria guarantees completeness. Theorem 5 says that for multicriteria problems with two
or more weight criteria, linear convolution methods are not applicable, both in the sense
of convolution of weights and the criteria themselves. In some cases, linear convolution
algorithms are applicable to search for a lexicographic set of alternatives of a multicriteria
integer problem (Theorem 6).

The main result to which attention should be paid is the general formulation of a mul-
ticriteria problem on a (multi-weighted) prefractal graph. The vector-objective function is
represented by two types of criteria, weight and topological. Standard forms are presented
for each type of criteria. As an example, an individual multicriteria problem of identifying
a multiple center of an M-weighted prefractal graph with two types of weight criteria and
two types of topological criteria is formulated. Algorithm α0 is proposed for solving an
individual problem. Theorem 7 on the validity of the algorithm is formulated and proved.
The execution time of the algorithm α0 depends linearly on the dimension of the problem
N, as well as on the parameter c, which depends on the number of seed vertices. The c
parameter is a constant since it is determined before the start of the algorithm and does not
change during its execution. The proposed algorithm α0 is an «algorithm with estimates».
Algorithm α0 finds one possible center x∗ and offers the following criteria estimates. Two
criteria F3 and F4 is optimal (with minimum values): F3(x∗) = F4(x∗) = 1, and for two
weight criteria F1, F2 estimates are calculated: a θL−1

θ−1 ≤ Fi(x∗) ≤ b(n− 1) θL−1
θ−1 , i = 1, 2. As

an example, the algorithm is applied on a prefractal graph G3 to find the center. Exact
values were calculated for all criteria and compared with estimates.
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Consequence 3 should be noted separately. The execution of the algorithm α0 for each
weight i = 1, 2, . . . , M allows us to find the centers of x∗i . The centers x∗i are Pareto optimal
solutions: x∗i ∈ X̃.

A single-criteria task differs from a multicriteria one by the presence of many alterna-
tives. Finding the optimal solution to a multicriteria problem is often a laborious process.
Moreover, in some problems it is difficult to find at least some solution or describe the set
of alternatives.

In this paper, we give a definition of a complete problem for which the set of alter-
natives coincides with the Pareto set. That is, any solution found from the set of feasible
solutions is Pareto optimal. The proposed classification of individual problems Z1–Z11
is necessary for further study of their sets of feasible solutions, in particular under what
conditions these problems become complete. Theorems 1–4 suggest such completeness
conditions for problems Z3–Z5, Z7. Then any solution found will be optimal. For other
tasks, it is necessary to formulate proofs and highlight such conditions, and it is possible
that they will be repeated.

Since we are talking about several weight criteria that cannot be collapsed into a
single one by a linear convolution method, the paper proposes a formulation of a general
multicriteria problem with two types of criteria—weight and topological. In graph theory,
each weight criterion is usually given its own set of weights, that is, we are talking about
a multi-weighted graph. For this purpose, in Section 2.4, a rule for weighing a prefractal
graph by many real numbers is proposed, and standard forms of criteria are also presented.

For the class Z1, an individual formulation of the problem is proposed. This paper
does not provide a theorem and a proof of the completeness of this problem, therefore,
up to this point, for the proposed Algorithm 1, it cannot be said that it finds a Pareto
optimal solution. On the other hand, Algorithm 1 already finds the lexicographic optimum
(according to one criteria) and estimates are calculated for all criteria (within what limits
the values of these criteria lie).

Algorithm 1, denoted as α0, is a reference algorithm, on the basis of which it is possible
to construct algorithms for any problem from the class Z1. It should also be noted once
again that Dijkstra’s algorithm is used as a procedure which can be changed to any modern
algorithm for finding the shortest chains with better computational characteristics. This
will reduce the parameter c of the O(c·N) estimate of the execution time of the algorithm.

The result of future research should be the selection of completeness conditions for
all problems Z1–Z11 and the development of families of algorithms for covering each class
Z1–Z11. Separately, the possibility of enumerating or at least limiting the sets of alternatives
of these tasks should be studied. Also, additional studies require the multiweightedness of
prefractal graphs, including fuzzy weights.

This work is theoretical in nature. In the future I plan to present the results of using the
apparatus of prefractal graphs for modeling large-scale objects and processes, in particular
of social networks and large graphs.

4. Conclusions

In this paper, we propose an introduction to multicriteria discrete optimization for a
special class of prefractal graphs. An individual multicriteria problem is determined by the
set of its feasible solutions. Therefore, for well-known graph problems, the corresponding
classes of multicriteria problems on prefractal graphs (Z1–Z11) are proposed. Further
research is expected to expand this list of tasks. For some problems, the conditions for
their completeness (Z3–Z5, Z7) are proposed, but it is necessary to consider other problems,
including those with many weight and topological criteria. It is also possible to expand the
types of weight and topological criteria.

In modern problems, in addition to the multiplicity of sets of weights, non-deterministic
weights are considered. These include, for example, interval and fuzzy numbers, time
series, and other types of uncertainty. Therefore, it is necessary to consider sets of weights
not only with real numbers but also non-deterministic ones.
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The prefractal graph also belongs to the class of dynamic graphs and is represented by
its trajectory G1, G2, . . . , GL [46–48]. The proposed formulations of multicriteria problems
refer to the graph GL from the trajectory. It is necessary to consider the applicability of
the statements to the sequence G1, G2, . . . , GL and propose a through operation of the
algorithms and link the sequence of solutions.

It should be noted that prefractal graphs are used to model large graphs and networks.
For a number of artificial networks, it is difficult to talk about the exact construction of a
prefractal graph as a model. In this case, it is necessary to apply a measure of similarity
and then use it in all calculations as an indicator of the error in solving the problem.

To speed up algorithms, one should also pay attention to the possibility of parallel
implementation of sequential algorithms. The structure of prefractal graphs makes it
possible to parallelize many well-known sequential algorithms [49].

Special attention should be paid to the stability of solutions, both in the case of
structural changes and changes in weight values. This is especially true for the dynamic
properties of prefractal graphs.
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