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Abstract: Text representation is an important topic in the field of natural language processing, which
can effectively transfer knowledge to downstream tasks. To extract effective semantic information
from text with unsupervised methods, this paper proposes a quantum language-inspired tree struc-
tural text representation model to study the correlations between words with variable distance for
semantic analysis. Combining the different semantic contributions of associated words in different
syntax trees, a syntax tree-based attention mechanism is established to highlight the semantic contri-
butions of non-adjacent associated words and weaken the semantic weight of adjacent non-associated
words. Moreover, the tree-based attention mechanism includes not only the overall information of
entangled words in the dictionary but also the local grammatical structure of word combinations in
different sentences. Experimental results on semantic textual similarity tasks show that the proposed
method obtains significant performances over the state-of-the-art sentence embeddings.

Keywords: natural language processing; syntax tree; attention mechanism; semantic analysis;
quantum language-inspired

1. Introduction

The parallelism of quantum computing has attracted more and more attention in
different fields. Some scholars have combined quantum computing with natural language
processing (NLP). In the quantum computing-based text representation model, the word
vector was multiplied by its own transposed vector tensor to obtain a density matrix, and
the weighted density matrix was summed to obtain a sentence tensor representation [1,2].

ρ = Σn
i=1 pi|wi〉〈wi|, (1)

Sim(S1, S2) = tr(ρ1ρ2) = ∑
i,j

λiλj〈wi|wj〉2, (2)

where tr denoted the trace operation. The probability that event |u〉〈u| belongs to a system
was defined as the semantic measurement [3],

µρ(|u〉〈u|) = tr(ρ|u〉〈u|) = 〈u|ρ|u〉 (3)

where µρ ∈ [0, 1].
The association between adjacent words with all of the entanglement coefficients set

to 1 was discussed, ignoring the long-range modified relationship between non-adjacent
words [4]. When the sentence structure is complex, the two words that have a direct
modified relationship are not necessarily in close proximity. Especially for long sentences,
the complex syntactic structure makes adjacent words not necessarily grammatically related,
and the grammatically related words separated by several words. Take the following
sentence for example with the constituency parser and the dependency parser (https:
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//nlp.stanford.edu/software/lex-parser.shtml (accessed on 1 October 2020)) of S1 shown
in Figure 1.

(a)

(b)

Figure 1. S1: (a) constituency parser; (b) dependency parser. S1: The reading for both August and
July is the best seen since the survey began in August 1997.

According to the adjacent words to form a related phrase, the closest to the word best is
the nominal word July , but the two syntax trees in Figure 1 both show that there is no direct
modification relationship between the two words. The dependent relation between reading
and best is nsubj (nominal subject), but the distance between them is 8 words, meaning that
at least 9-gram can contain both of the words. If the 9-gram is considered, it will contain
at least seven irrelevant words except reading and best, thus introducing semantic errors.
Furthermore, the distance difference between two words of different relation entities is
different, which requires the size of the kernel function to change according to the change
of the distance difference between the two ends of the relation entity. Obviously, this is
difficult to achieve in reality. AS different weights of part-of-speech (PoS) combinations
of entangled word have different influences on sentence semantics [5], PoS combination
weight can be integrated with the attention mechanism to express the different modified
relationship. Inspired by the density matrix and attention mechanism, a quantum language-
inspired tree structural text representation model is established to reflect the association
between variable distance words.

https://nlp.stanford.edu/software/lex-parser.shtml
https://nlp.stanford.edu/software/lex-parser.shtml
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As different syntactic tree structures reflect different associations between words,
different semantic association models between words according to the dependency parser
and constituency parser of sentences are constructed. According to the association between
relation entities in the dependency parser of the sentence, the text representation based
on the dependency parser combines the word vector tensors of two words with relation
entities to establish the semantics between long-distance dependent words with relation
entities entanglement, so that distant words with a direct modified relationship can also be
semantically related. According to the different degrees of modified relationship between
words in the constituency parser, the text representation based on the constituency parser
combines the semantic correlation coefficient with the distribution characteristics of adjacent
words to establish the semantic association. The proposed model consists of two parts,
as shown in Figure 2. The first part is composed of all of the tensor products of the two
adjacent words in a sentence, combining the characteristics to establish the contribution of
the short-range dependence between words to the semantics. The second part consists of
the two words with long-range dependency of the direct modified relationship. Finally, the
entanglement between adjacent words is integrated with the word entanglement of direct
long-range modified relationship to form the sentence representation.

Figure 2. Flowchart of the quantum language-inspired tree structural text representation model.

In brief, the contributions of this work are as follows.

(1) A quantum language-inspired text representation model based on relation entity and
constituency parser is established, including long-range and short-range semantic
associations between words.

(2) The combination of attention mechanism and entanglement coefficient reduces the
semantic impact of indirect modified relationships between adjacent words and
enhances the semantic contribution of direct modified relationships with long-range
associations.

(3) The attention mechanism contains not only the overall information of the related
words in the dictionary, but also the local grammatical structure of different sentences.
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(4) The semantic association between words with variable distances is established by
combining the dependency parser.

The rest of the paper is organized as follows. Section 2 summarizes some related
literature on attention-based semantic analysis, the dependency tree and quantum based
NLP. Section 3 explains the approach in detail. The experimental settings are presented
in Section 4. Section 5 describes the experimental results and lists the detailed effects of
different parameters. In Section 6, some conclusions are drawn.

2. Related Work
2.1. Attention-Based Semantic Analysis

The neural network-based methods use the attention mechanism to assign different
semantic weights to words with good experimental results in many downstream tasks, such
as LSTM [6], BiLSTM [7] and BERT [8]. Semantic analysis based on attention mechanism
has been involved in many works [9–11] and can reflect the different weights of words
in different texts. The attention mechanism is introduced to obtain different weight of
words in order to extract enough key information. Semantic analysis can be applied to
many problems such as image-text matching [12], question answering [13,14], knowledge
extraction [15–19], and entailment reasoning [20]. To discover visual-textual interactions
across different dimensions of concatenations, memory attention networks were adopted
while marginalizing the effect of other dimensions [12]. A deep multimodal network with a
top-k ranking loss mitigated the data ambiguity problem for image-sentence matching [21].
LSTM with a bilinear attention function was adopted to infer the image regions [22]. A
mutual attention mechanism between the local semantic features and global long-term
dependencies was introduced for mutual learning [23]. A scheme of the efficient semantic
label extraction was developed to achieve an accurate image-text similarity measure [24].

Compared to the previous works mentioned above, the method proposed here is
mainly based on the traditional attention mechanism, which mainly reflects the relation
dependency between input and hidden without considering the relations of input words.
The transformer mainly relies on attention mechanisms [25]. An improved self-attention
module was proposed by introducing low-rank and locality linguistic constraints [26].
With the introduction of the self-attention mechanism, new models based on transformer
obtained much success in semantic analysis on large datasets [27–29]. The new model
BERT [30] and its variants [31,32] based on transformer divided the pretraining methods
into feature-based methods and fine-tuning methods [33].

2.2. Dependency Tree

Relation extraction plays a very important role in extracting structured information
from unstructured text resources. The dependency tree not merely expresses the semantics
of sentences but also reflects the modified relationship relationship between words. Each
note in dependency trees represents a word, and every word has at least one grammatically
related word. The dependency tree is constituted by the head word, PoS of the head word,
dependent word, PoS of the dependent word and the label of dependency. The works on
the dependency tree are mainly divided into two categories: statistics-based models and
deep-learning-based models [34]. Wang et al. structured a regional CNN-LSTM model
based on a subtree to analyze sentiment predictions [35]. A reranking approach for the de-
pendency tree was provided utilizing complex subtree representations [36]. A bidirectional
dependency tree representation was provided to extract dependency features from the
input sentences [37]. Zhang et al. [38] tried to upgrade the synchronous tree substitution
grammar-based syntax translation model by utilizing the string-to-tree translation model. A
graph-based dependency parsing model was presented by Chen et al. [39]. A bidirectional
tree-structured LSTM was provided to extract structural features based on the dependency
tree [40]. Fei et al. utilized a dependency-tree-based RNN to extract syntactic features
and used the CRF layer to decode the sentence labels [41]. Global reasoning on a depen-
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dency tree parsed from the question was performed [42]. A phrase-based text embedding
considering the integrity of semantic with a structured representation is reported [43].

2.3. Quantum Based NLP

In recent years, the application of quantum language models (QLM) in NLP has at-
tracted more and more attention [44]. Aerts and Sozzo theoretically proved that under some
conditions, the joint probability density of the two entities selected to define the uncertainty
of selection to establish an entanglement between the concepts was reasonable [45]. Quan-
tum theory is applied to neural networks to form quantum neural networks. To achieve
comparable or better results, quantum network needed far fewer epochs and a much
smaller network [46]. Quantum probability was first practically applied in information
retrieval (IR) with significant improvements over a robust bag-of-words baseline [47–52].
At the same time, an unseparable semantic entity was used in IR, considering the pure
high-order dependence among words or phrases [53]. On this basis, quantum entangle-
ment (QE) was applied to terms dependency co-occurrences on quantum language models
with theoretical proof of the connection between QE and statistically unconditional pure
dependence [54].

Commonly, semantic representation generalized quantum or quantum-like use Hilbert
spaces to model concepts, and the similarity is measured by scalar product and projection
operators [55]. Density matrix representation can be used to many fields, such as document
interaction [2], different modality correlations [56] and sentiment analysis [1,3,57]. The
mathematical formalism of quantum theory could resist traditional model with significant
effectiveness in cognitive phenomena [58]. A semiotic interpretation of the role played
based on quantum entanglement was provided to find a finite number of the smallest
semantic units to form every possible complex meaning [59].

3. Approaches
3.1. Read Text and Generate Syntax Tree

Each sentence is read, and the dependency tree and relation entity are generated. The
word2vec embedding, PoS tagging and tree depth of each word in a sentence are stored,
forming a quadruple T (A,P ,H,R). The A array stores all of the words with the original
sequences in the sentence.

A = {w1, w2, · · · , wi, · · · , wn}, (4)

where wi is the ith word in the sentence and n is the total number of the words.
The P array stores the PoS of each word in sequence.

P = {P1, P2, · · · , Pi, · · · , Pn}, (5)

where Pi is the PoS of the ith word wi.
TheH array denotes the tree depth of the ith word wi in the dependency tree.

H = {h1, h2, · · · , hi, · · · , hn}, (6)

where hi represents the tree depth of the ith word wi.
The R array denotes the relation entity of the ith word wi in the dependency tree.

We only consider whether an entity relationship exists between entangled words. If a
relationship exists, the words, the associated vocabularies and the relationship between
them are saved.

3.2. Entanglement between Words with Short-Range Modified Relationship

The model mainly describes the entanglement between two adjacent words. The
attention mechanism is introduced to highlight word entanglement with a direct modi-
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fied relationship while weakening the impact of the entanglement of indirect modified
relationship on sentence semantics.

3.2.1. Normalize the Word Vector

Normalize the word2vec of an input word.

|wi〉 =
~si
|~si|

, (7)

where ~si is the d dimensional column vector of the ith word and |~si| is the module of ~si.
Therefore, |wi〉 is set as |wi〉 =

[
a1 a2 · · · ad

]T, with d dimensional column vector.

3.2.2. Embedding of Entangled Word

Two adjacent words are entangled together in order, forming the arrays

B = {(w1w2), (w2w3), · · · , (wiwi+1), · · · , (wn−1wn)}, (8)

and
C = {(P1P2), (P2P3), · · · , (PiPi+1), · · · , (Pn−1Pn)}, (9)

where wiwi+1 is the combination of the adjoint words wi and wi+1, and PiPi+1 is the PoS
combination of wiwi+1. The representation of (wiwi+1) is defined by the tensor product
between |wi〉 and |wi+1〉.

|wiwi+1〉 = |wi〉|wi+1〉

=
[
a1 a2 · · · ad

]T[b1 b2 · · · bd
]T (10)

For simplicity and clarity, |wiwi+1〉 is rewritten into a square matrix form.

|wiwi+1〉 =


a1b1 a1b2 · · · a1bd
a2b1 a2b2 · · · a2bd

...
...

. . .
...

adb1 adb2 · · · adbd

. (11)

Similarly, |wi+1wi〉 is obtained,

|wi+1wi〉 =


b1a1 b1a2 · · · b1ad
b2a1 b2a2 · · · b2ad

...
...

. . .
...

bda1 bda2 · · · bdad

. (12)

Obviously, the inequality is obtained, |wiwi+1〉 6= |wi+1wi〉, which reflects the influence
of the order of the entangled words.
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3.2.3. Attention Mechanism

The attention mechanism consists of three components: the cosine similarity between
the entangled words, the influence of PoS combination and the dependency tree depth
difference of the two words.

The similarity between the adjacent words is defined as follows:

Sim(wi, wi+1) =
〈wi|wi+1〉

||wi〉| · ||wi+1〉|
, (13)

where

〈wi|wi+1〉 =
[
a1 a2 · · · ad

][
b1 b2 · · · bd

]T
=

d

∑
i=1

aibi, (14)

||wi〉| =

√√√√ d

∑
i=1

a2
i , (15)

||wi+1〉| =

√√√√ d

∑
i=1

b2
i . (16)

The weight of PoS combination of the entangled words can reflect some common
modified relationships between words [5]. The different combinations of the two adjacent
words are set to different values to express the different contributions for grammatical
structures. We use ti,i+1 to represent the influence of the PoS combination of the ith word
and the (i + 1)th word, where ti,i+1 ∈ (0, 1), reflecting the global information of the corpus.

The last part is a parameter di,i+1, which is determined by the dependent relationship
in the syntax tree and the tree depth difference. The tree depth difference is the absolute
value of the difference between the tree depth of the ith word and that of the (i + 1)th
word.

∆hi,i+1 = |hi − hi+1|. (17)

The weight of ∆hi,i+1 is set as follows:

di,i+1 =


d1, f or ∆hi,i+1 = 0
d2, f or ∆hi,i+1 ≤ a,
d3, f or ∆hi,i+1 > a

(18)

where d1, d2 and d3 satisfy the condition of d1 > d2 > d3, a = 2 and the value of a can be
altered.

Hence, the attention mechanism is described as follows:

pi,i+1 = Sim(wi, wi+1)× ti,i+1 × di,i+1. (19)

3.2.4. Adjacent Words Entanglement-Based Sentence Representation

The adjacent words entanglement-based sentence representation is defined as follows.

|S1〉 =
n−1

∑
i=1

pi,i+1|wi〉|wi+1〉 =
n−1

∑
i=1

pi,i+1|wiwi+1〉, (20)

where pi,i+1 =
pi,i+1

n−1
∑

i=1
pi,i+1

.
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3.2.5. Sentence Similarity

Since both the representations of |S1〉 and |wiwi+1〉 are the second-order tensor with
d2 dimensions, the normalized dot product between the two sentence representations |S1〉
and |S′1〉 is defined as the sentence similarity of the sentence pair,

Sim(|S1〉, |S
′
1〉) =

〈S1|S
′
1〉

||S1〉| · ||S
′
1〉|

, (21)

where 〈S1|S
′
1〉 denotes the inner product of 〈S1| and |S′1〉, ||S1〉| and ||S′1〉| are the norms of

|S1〉 and |S′1〉, respectively, and 〈S1| is the conjugate transpose of |S1〉.

3.3. Optimize the Sentence Embedding

The ultimate goal of text representation is to enable computers to understand human
language. For the calculation of the text semantic similarity in this paper, the calculated
value xi is infinitely close to the artificial score yi. Therefore, the Pearson correlation
coefficient (Pcc) reaches the maximum value and the mean square error (MSE) reaches the
minimum values. To maximize the Pcc and minimize the MSE, we optimize the sentence
embedding using two approaches.

3.3.1. Entanglement between Words with Long-Range Modified Relationship

For long sentences or sentences with complex structures, two modified words are not
necessarily adjacent. Aiming at the modified relationship of the long-distance association, a
long-range dependent relationship Ri,j is defined as the R array between words wi and wj.

R = {Ri,j}, (i, j = 1, . . . , n) (22)

Ri,j = (ri,j, |wi〉, |wj〉), (23)

where ri,j is a binary element, defined by whether there is a correlation entity between
words wi and wj. If there is a relation entity between words wi and wj, ri,j = 1; if not,
ri,j = 0. The entanglement between wi and wj is

pi,j = ri,j × Sim(wi, wj). (24)

Equation (24) indicates that only the word pair with relation entity is considered to
expand the sentence semantics.

Therefore, the sentence embedding based on relation entity is altered as follows.

|S2〉 =
n

∑
i<j,i,j=1

pi,j|wi〉|wj〉

=
n

∑
i<j,i,j=1

pi,j|wiwj〉,
(25)

where
n
∑

i<j,i,j=1
defines that all of the long-range dependencies in the sentence are taken into

account, and pi,j =
pi,j

N
∑

i,j=1
pi,j

.
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3.3.2. Sentence Embedding Based on Constituency Parser and Relation Entity

The entanglement between the short-range modified words and the entanglement
between the long-range modified relationship form a sentence representation. Hence, the
optimized sentence representation is altered as

|T〉 = |S1〉+ |S2〉

=
n−1

∑
i=1

pi,i+1|wiwi+1〉+
n

∑
i<j,i,j=1

pi,j|wiwj〉.
(26)

|S1〉 uses the entanglement coefficient pi,i+1 to highlight the semantic contribution of
adjacent words with modified relationships, and to weaken the semantic contribution of
the adjacent words without modified relationship. |S2〉 only considers the semantic contri-
bution of word pairs with a relation entity. Therefore, |T〉 includes not only the modified
relationship between adjacent words, but also the long-range modified relationship be-
tween related words. In addition, the entanglement coefficient analyzes the relevant degree
between words from multiple perspectives by the relation entity of the text, combining the
local information of the words in the same text with the global information in a dictionary.

3.3.3. Reduce Sentence Embedding Dimensions

The semantics of some phrases cannot be expressed by any of their constituent words
alone, nor can the semantics of these two words be simply added together, such as lung
cancer. The semantics of lung cancer is less than the semantics adding of lung and cancer.
To reduce the redundant information after word entanglement, we use the two methods
of dimensionality reduction on the level of sentence embedding and of entangled word
representation. For dimensionality reduction at the sentence level, we delete some smaller
absolute values in the sentence embedding. At the entangled word level, we delete some
smaller absolute values of the entangled word embedding to reduce the dimension of the
sentence representation.

4. Experimental Settings
4.1. Parameters Definition

Some parameters and variables are defined in Table 1.

Table 1. Definitions of the parameters and variables.

Parameter/Variable Definition

|wi〉 word embedding of the ith word
|wiwj〉 entangled word embedding of the ith word and the jth word
|T〉 sentence embedding

Sim(wi, wj) direction cosine between the word embedding of the ith word and the (i + 1)th word
ti,i+1 part of speech combination weight of the ith word and the (i + 1)th word
∆h depth difference between two words in the parser tree
di,j weight of the depth difference between the ith word and the jth word
pi,j entanglement coefficient between the ith word and the jth word
y annotated sentence similarity by humans
x calculated sentence similarity by the proposed model

σ, γ threshold value of annotated sentence similarity
λ threshold value of relative error

∆E relative error between the experimental result and annotated score of sentence similarity
D dimensionality of the sentence representation
D1 sentence dimension reduced at the level of sentence embedding
D2 sentence dimension reduced at the level of entangled word embedding
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4.2. Datasets

Datasets include the SemEval Semantic Textual Similarity (STS) Tasks (years of 2012
(STS’12), 2014 (STS’14), 2015 (STS’15)) and STS-benchmark (STSb). E. Agirre et al. selected
and piloted annotations of 4300 sentence pairs to compose the STS tasks in SemEval,
including machine translation, surprise datasets and lexical resources [60]. E. Agirre et
al. added new genres to the previous corpora, including 5 aspects in STS’14 [61]. In 2015,
sentence pairs on answer pairs and belief annotations were added [62]. STS-benchmark
and STS-companion include English text from image captions, news headlines and user
forums [63]. In the study, the public lib of word2vec with 300 dimensions is assigned
(http://code.google.com/archive/p/word2vec (accessed on 1 October 2020)). The input
vectors of fasttext are 300 dimensions (http://fasttext.cc/docs/en/english-vectors.html
(accessed on 1 October 2020)). The total number of sentence pairs for each corpus is
summarized in Table 2 (http://groups.google.com/group/STS-semeval (accessed on 1
October 2020)). The corpora consist of English sentence pairs and the annotated similarities
ranging from 0.0 to 1.0 (divided by 5). All the grammatical structures of sentences in the
provided model are generated by Stanford Parser models package (https://nlp.stanford.
edu/software/lex-parser.shtml (accessed on 1 October 2020)).

Table 2. The number of sentence pairs in each corpus.

STS’12 STS’14 STS’15

MSRvid (750) deft-forum (450) answers-forums (375) STSb (4225)
SMTeuroparl (459) deft-news (300) answers-students (750) STS’12 (3108)

OnWN (750) headlines (750) belief (375) STS’14 (3750)
MSRpar (750) images (750) images (750) STS’15 (3000)

SMTnews (399) tweet-news (750) headlines (750)
OnWN (750)

4.3. Experimental Settings

To make the calculated sentence similarity xi approximately equal to the annotated
score yi, we perform a simple classification of the calculated results based on the relative
error ∆E:

∆E =
|xi − yi|

yi
. (27)

When ∆E > λ, we introduce the optimized models to recompute the sentence similar-
ities. This is performed in order to reduce the difference between the calculated value and
the labeled value:

min(Σ∆E>λ|xi − yi|+ Σ∆E≤λ|xi − yi|). (28)

Then, we divide the calculated results into two parts. The first is computed by the
short-range entanglement, and the other is modeled by the optimized models. When
∆E ≤ λ, the calculated result is considered feasible and is stored as x0i. When ∆E > λ,
the calculated result is too large and must be optimized. To exploit the advantages of the
two dimensionality reduction models, we divide the sentence pairs with ∆E > λ into two
parts according to the annotated scores yi. When σ < yi ≤ 1, the sentence similarity is
recomputed by the sentence-level dimensionality reduction model with the result of x1i.
When γ ≤ yi < σ, we utilize the entangled-word-level dimensionality reduction model to
recompute the sentence similarity, with the calculated result of x2i. The algorithm is listed

http://code.google.com/archive/p/word2vec
http://fasttext.cc/docs/en/english-vectors.html
http://groups.google.com/group/STS-semeval
https://nlp.stanford.edu/software/lex-parser.shtml
https://nlp.stanford.edu/software/lex-parser.shtml
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in Algorithm 1.

Algorithm 1: Framework of sentence embedding based on constituency parser
and relation entity for semantic similarity computation.

Input: sentence pairs (T1, T2), annotated score y
Output: semantic similarity of (T1, T2)

1 for each sentence do
2 generate constituency parser and relation entity
3 for each adjacent words wi and wi+1 do
4 get |wi〉 and |wi+1〉, PoS combination weight ti,i+1 of wi and wi+1
5 compute |wiwi+1〉 by tensor product
6 compute di,i+1 according to depth difference between wi and wi+1
7 compute pi,i+1
8 end
9 sentence embedding based on constituency parser is obtained:

10 |S1〉 ←− ∑n−1
i=1 (pi,i+1|wiwi+1〉)

11 for each word pair (wi,wj) with relation entity do
12 get |wi〉 and |wj〉
13 compute |wiwj〉 by tensor product
14 determine ri,j whether there is a relation entity between wi and wj

15 compute |wiwj〉 by tensor product
16 compute pi,j

17 sentence embedding based on relation entity is obtained:
18 |S2〉 ←− ∑n−1

i<j,i=1(pi,j|wiwj〉)
19 end
20 sentence embedding based on constituency parser and relation entity:
21 |T1〉 ←− |S1〉+ |S2〉
22 end
23 get |T2〉 in the same way
24 compute x ← Sim(|T1〉, |T2〉)
25 determine whether the sentence embedding needs to be optimized
26 return x

5. Experimental Results
5.1. Comparing with Some Unsupervised Methods

The Spearman’s rank correlation and Pearson correlation are used to compare the
experimental results, as shown in Tables 3 and 4. Table 3 shows that the Srcs of STS’14,
STS’15 and STSb are significantly higher than the comparison models, but the average Src
of our model is higher than all the comparison models. The results in Table 4 show that,
except for 4 corpora, the Pcc of all corpora has increased. The average Pccs of STS’12, STS’14
and STS’15 have all been significantly improved, especially the maximum improvement
rate of the provided model compared to ACVT on STS’12 has reached 29%. The growth
rates of the top three are 20.3%, 9.8% and 7.2% for STS’12.MSRpar, STS’14.tweet-news
and STS’12.SMTeuroparl, respectively. Moreover, STS’12.SMTeuroparl achieves a growth
rate of 42.3%. Comparing all the Pccs of the 16 corpora, The Pccs of 3 corpora are above
0.9, of 3 corpora are below 0.8, and only of 1 corpus is below 0.7. Though the Pcc of
STS’14.deft-forum is less than 0.7, it is also increased slightly, with an increase of 0.02.
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Table 3. Comparison of the Spearman’s rank correlation (Src) in each dataset.

Model STS’12 STS’14 STS’15 STSb Avg.

SimCSE-base [64] 0.702 0.732 0.814 0.802 0.763
IS-Bert-NLI [65] 0.568 0.630 0.752 0.692 0.661
Bert-flow [66] 0.652 0.694 0.749 0.723 0.705

DINO [67] 0.703 0.713 0.805 0.778 0.750
SBERT-base [68] 0.710 0.732 0.791 0.770 0.751
Provided model 0.641 0.774 0.844 0.830 0.772

Table 4. Comparison of the Pearson correlation coefficient (Pcc) in each dataset.

Dataset ACVT [69] SCBOW-att [70] PP-att [70] No Tree-Based [4] Provided Model

12’MSRpar 0.58 0.58 0.50 0.59 0.71
12’MSRvid 0.83 0.83 0.85 0.90 0.92

12’SMTeuroparl 0.43 0.52 0.52 0.69 0.74
12’OnWN 0.70 0.73 0.73 0.84 0.82

12’SMTnews 0.54 0.66 0.67 0.78 0.81
STS’12 0.62 0.66 0.65 0.76 0.80

14’deft-forum 0.48 0.54 0.56 0.66 0.68
14’deft-news 0.74 0.74 0.76 0.78 0.75
14’headlines 0.72 0.72 0.72 0.81 0.82

14’images 0.81 0.81 0.83 0.87 0.87
14’OnWN 0.87 0.87 0.85 0.92 0.93

14’tweet-news 0.75 0.82 0.79 0.82 0.90
STS’14 0.73 0.75 0.75 0.81 0.82

15’answers-forums 0.69 0.69 0.69 0.86 0.88
15’answers-students 0.79 0.79 0.79 0.86 0.89

15’belief 0.70 0.78 0.78 0.87 0.88
15’images 0.82 0.84 0.85 0.85 0.86

15’headlines 0.79 0.79 0.77 0.89 0.86
STS’15 0.76 0.78 0.78 0.86 0.87

To compare the semantic influence of the input word embedding, the entanglement
coefficients of word2vec and fasttext for each corpus in Table 5 are set to the same value,
that is, the influence of the syntax tree is mainly considered. For easy comparison, the
entanglement coefficients pi,j of ‘word2vec’ and ‘fasttext’ are set to the same values for each
corpus in the table; namely, the influence of the long-range dependency relation is mainly
considered. Comparison of the experimental results in Table 5 shows that all of the MSEs
of ‘word2vec’ are smaller than those of ‘fasttext’. There are 5 datasets with a difference
of less than 0.01 and 5 corpora with an MSE with a multiplied value greater than 2. The
main reason for this result is that all of the MSEs are adjusted under the parameters of
‘word2vec’, which are not the optimal parameters of ‘fasttext’. Additionally, the maximum
value of ‘word2vec’ is less than 0.055, and that of ‘fasttext’ is less than 0.09.

Table 5. The semantic influence of the input word embedding.

STS′12 STS′14

MSRpar MSRvid SMTeu OnWN SMTnews deft-f deft-n headlines images OnWN tweet-n

word2vec Pcc 0.71 0.91 0.74 0.82 0.81 0.68 0.75 0.82 0.87 0.92 0.89
word2vec MSE 0.022 0.017 0.047 0.020 0.022 0.053 0.033 0.029 0.022 0.022 0.015

fasttext Pcc 0.51 0.84 0.42 0.74 0.60 0.51 0.63 0.76 0.76 0.79 0.86
fasttext MSE 0.028 0.035 0.086 0.049 0.073 0.055 0.039 0.035 0.040 0.062 0.028

STS′15
STSb

answ-for answ-stu belief images headlines

word2vec Pcc 0.88 0.89 0.88 0.86 0.86 0.86
word2vec MSE 0.016 0.017 0.023 0.033 0.030 0.028

fasttext Pcc 0.78 0.76 0.78 0.81 0.81 0.78
fasttext MSE 0.029 0.041 0.037 0.037 0.044 0.037
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5.2. Influence of PoS Combination Weight TI,J

We mainly discuss the influence of notional words on sentence semantics including
noun, verb, adjective and adverb. The four PoS types of notional words are combined in
pairs to form 16 different PoS combinations. The weights of other PoS combinations are set
to 0.5.

In Table 6, ti,j is set to different values to illustrate the influence of the parameters
of the combination of PoS for different word entanglement. The word ‘first’ denotes the
number combination of ‘0.5, 0.2, 0.7, 0.9, 0.3, 0.1, 0.5, 0.9, 0.6, 0.1, 0.6, 0.9, 0.5, 0.9, 0.9, 0.1’,
for which the numbers are scattered around 0.5. The word ‘second’ denotes the number
combination of ‘0.3, 0.5, 0.3, 0.6, 0.5, 0.5, 0.4, 0.3, 0.5, 0.6, 0.4, 0.3, 0.5, 0.4, 0.5, 0.4’, for which
the numbers are concentrated around 0.5. ti,j = 0.5 means that all sixteen weights of the
PoS combinations are set to 0.5. Comparing all of the Pccs, there are 10 out of 16 corpora
achieving the maximum for ti,j = second, with the greatest improvement by 0.037 from
STS’15.headlines. Additionally, the top three advances are derived from ti,j = second, with
an improvement of 0.037 from STS’15.headlines, an increase of 0.023 from STS’12.MSRpar
and an increase of 0.012 from STS’14.headlines. Comparing the three different MSEs of
the same corpus in Table 6, the ratio of the minimums among the three PoS parameters
combinations is 6:5:6, approximately evenly distributed. However, there are 8 out of 16
corpora reaching the maximum from ti,j = f irst, and the other corpora average from
ti,j = 0.5 and ti,j = second. In brief, the Pcc and MSE are clearly affected by the distribution
of the PoS combination weights. A more discrete parameter distribution corresponds to
greater influence on the Pcc and MSE.

The detailed influence of ti,j on STS’12.OnWN is shown in Table 7. When D2 changes,
the trends of the Pcc and MSE with ti,j are still consistent. A higher concentration of ti,j
corresponds to a larger Pcc and smaller MSE, as shown in Figure 3. Comparison of the
Pccs in Figure 3a and the MSEs in Figure 3b shows that for ti,j = 0.5, the Pcc reaches the
maximum and the MSE reaches the minimum. This result can be explained based on the
entanglement coefficient pi,j = Sim(|wi〉, |wj〉)× ti,j × di,j. When the entangled words |wi〉
and |wj〉 are determined, the cosine similarity of the two words is a fixed value. For the
same input sentence, the dependency tree of the sentence is a certain structure; that is, the
tree depth difference ∆h between the two words is a constant value so that the difference
weight di,j is a certain value. Hence, when the input sentence is known, pi,j is only changed
by ti,j. The value of ti,j has a strong effect. For example, when the two weights are 0.1 and
0.9, the weight of the PoS combination corresponding to 0.9 is nine times that of the PoS
combination corresponding to 0.1. To compare the influence of other parameters, ti,j is set
to 0.5 for the experiments discussed below.

(a) (b)

Figure 3. Detailed influence of ti,j on STS’12.OnWN. (a) Pearson correlation coefficient, (b) Mean
squred error.
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Table 6. Influence of parameters ti,j on sentence semantics of different corpora. The figures in bold-
type refer to the maximum Pearson correlation coefficient of each corpus. The figures in red-type
refer to the minimum mean squared error of each corpus.

Year Dataset
Pcc MSE

ti,j = 0.5 ti,j = second ti,j = f irst ti,j = 0.5 ti,j = second ti,j = f irst

MSRpar 0.688 0.711 0.703 0.0248 0.0224 0.0235
MSRvid 0.882 0.881 0.872 0.0248 0.0250 0.0270

2012 SMTeuroparl 0.728 0.732 0.732 0.0987 0.1013 0.1023
OnWN 0.825 0.824 0.818 0.0179 0.0183 0.0196

SMTnews 0.773 0.779 0.770 0.0195 0.0200 0.0198

2014

deft-forum 0.654 0.658 0.665 0.0515 0.0519 0.0432
deft-news 0.750 0.747 0.752 0.0328 0.0337 0.0326
headlines 0.805 0.806 0.794 0.0294 0.0294 0.0320

images 0.872 0.876 0.873 0.0225 0.0215 0.0222
OnWN 0.918 0.919 0.916 0.0257 0.0255 0.0262

tweet-news 0.906 0.909 0.909 0.0161 0.0154 0.0151

answers-forums 0.891 0.891 0.892 0.0214 0.0211 0.0209
answers-students 0.842 0.843 0.843 0.0274 0.0275 0.0272

2015 belief 0.888 0.886 0.885 0.0233 0.0234 0.0232
images 0.858 0.858 0.857 0.0326 0.0327 0.0328

headlines 0.909 0.910 0.863 0.0200 0.0199 0.0301

Table 7. Influence of parameters ti,j on sentence semantics of STS’12.surprise.OnWN.txt with the
variables of y1 = 0.7, 0.3 < y2 < 0.7, ∇E1 = ∇E2 = 0.2 and D1 = 10,000.

ti,j D2 Pcc MSE

f irst D2 = 75,000 0.80803 0.01465
f irst D2 = 80,000 0.81801 0.01962
0.5 D2 = 75,000 0.81312 0.01404
0.5 D2 = 80,000 0.82549 0.01792

second D2 = 75,000 0.81251 0.01413
second D2 = 80,000 0.82427 0.01833

5.3. Influence of the Tree Depth Difference ∆H
5.3.1. On STS-Benchmark

The influence of the tree depth difference ∆h on STS-benchmark is listed in Table 8.
The list named ‘∆h changes’ represents the condition, and the list labeled ‘di,j stays the
same’ describes the values under this condition. For example, the condition combination of
‘(1.5, 1.2, 0.8)’ and ‘(∆h = 0, 0 < ∆h <= 2, ∆h > 2)’ denotes that when ∆h = 0, di,j = 1.5;
when 0 < ∆h <= 2, di,j = 1.2; and when ∆h > 2, di,j = 0.8. The condition ∆h = 0 that
denotes the tree depth difference between the two words is zero; that is, the two words
have a direct modified relationship. When ∆h changes, the Pcc and MSE show very small
changes. The main reason for this result is that the corpus consists mostly of short sentences,
with sentence lengths of less than 10. A shorter sentence tends to have a simpler parser tree
structure.

Table 8. Influence of parameters ph and ∆h on sentence semantics of STS-benchmark with the
variables of y1 = 0.7, 0.25 < y2 < 0.7, ∇E1 = ∇E2 = 0.25, D1 = 10,000 and D2 = 75,000.

di,j Stays the Same ∆h Changes Pcc MSE

(1.5, 1.2, 0.8)
(∆h = 0, 0 < ∆h ≤ 2, ∆h > 2) 0.85837 0.02869
(∆h = 0, 0 < ∆h ≤ 3, ∆h > 3) 0.85829 0.02868
(∆h = 1, 1 < ∆h ≤ 3, ∆h > 3) 0.85812 0.02868

5.3.2. On STS’14.deft-News

The influences of the tree depth difference ∆h and the tree depth difference weight di,j
on STS’14.deft-news are illustrated in Table 9. In the STS’14.deft-news corpus, there are
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some long-sentences with more than 20 words. The complexity of the sentence structure
tends to increase with the sentence length.

Table 9. Influence of parameters ph and ∆h on sentence semantics of STS’14.deft-news.txt with the
variables of y1 = 0.7, 0.25 < y2 < 0.7, ∇E1 = ∇E2 = 0.2, D1 = 10,000 and D2 = 85,000.

di,j Stays the Same ∆h Changes Pcc MSE

(1.5, 1.2, 0.8)

(∆h = 0, 0 < ∆h ≤ 2, ∆h > 2) 0.75023 0.03280
(∆h = 0, 0 < ∆h ≤ 4, ∆h > 4) 0.74806 0.03296
(∆h = 0, 0 < ∆h ≤ 3, ∆h > 3) 0.74431 0.03340
(∆h ≤ 1, 1 < ∆h ≤ 3, ∆h > 3) 0.74687 0.03313
(∆h ≤ 1, 1 < ∆h ≤ 4, ∆h > 4) 0.74554 0.03312
(∆h ≤ 1, 1 < ∆h ≤ 5, ∆h > 5) 0.74560 0.03310
(∆h ≤ 1, 1 < ∆h ≤ 6, ∆h > 6) 0.74532 0.03313
(∆h ≤ 1, 1 < ∆h ≤ 7, ∆h > 7) 0.74533 0.03313
(∆h ≤ 1, 1 < ∆h ≤ 8, ∆h > 8) 0.74540 0.03312
(∆h ≤ 1, 1 < ∆h ≤ 9, ∆h > 9) 0.74682 0.03302

∆h Stays the Same di,j Changes Pcc MSE

(∆h = 0, 0 < ∆h ≤ 2, ∆h > 2) (1.5, 1.2, 0.6) 0.75083 0.03276
(2.0, 1.2, 0.6) 0.75083 0.03276

(∆h = 0, 0 < ∆h ≤ 2, ∆h > 2) (2.0, 1.5, 1.0) 0.74690 0.03292
(2.0, 1.5, 0.8) 0.75023 0.03280

(∆h = 0, 0 < ∆h ≤ 2, ∆h > 2) (1.5, 1.2, 0.6) 0.75083 0.03276
(1.5, 1.5, 0.6) 0.75008 0.03285

(∆h = 0, 0 < ∆h ≤ 2, ∆h > 2) (2.0, 1.5, 1.0) 0.74690 0.03292
(1.5, 1.2, 0.6) 0.75083 0.03276

We use the variable-controlling approach to discuss the impact of ∆h and di,j on
semantics from two aspects, as shown in the upper and lower parts of Table 9. The upper
half shows the semantic changes when ∆h changes. The detailed influence of the tree depth
difference ∆h between the entangled words with indirect modified relationship on sentence
semantics is illustrated in Figure 4. As shown in Figure 4a, when 2 ≤ ∆h < 4, the Pcc
decreases markedly, whereas for ∆h ≥ 4, the change curve of the Pcc is almost horizontal.
Examination of Figure 4b shows that the MSE changes only slightly. The lower part of
Table 9 shows the influence of the weight di,j of the direct modified relationship and that of
the indirect modified relationship on sentence semantics. The values in blue are the values
of the variable changes, and the values in red indicate the maximum Pcc and the minimum
MSE. When the weight of direct modified relationship is altered, the Pcc and MSE remain
unchanged. However, comparing the second group and the third group, it is found that
when di,j increases, the Pcc decreases and MSE increases, implying that entangled words
modified indirectly will produce semantic errors. Additionally, when all three weights
increase, the Pcc decreases and the MSE increases. Hence, when two adjacent words are
entangled together by the tensor, if their modified relationship is indirect, semantic errors
will be introduced.

Comparison of the results presented in Tables 8 and 9 shows that the influence on the
sentence semantics of the long-range entanglement of words with modified relationship is
more apparent than that of the short-range entanglement.
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(a) (b)

Figure 4. Detailed influence of the distance between the entangled words with indirect modified
relationship on sentence semantics in STS’14.deft-news. (a) Pearson correlation coefficient, (b) Mean
squred error.

5.4. Influence of the Dimension Reduction
5.4.1. Influence on STS’15.Images

The influences of dimension D1 of the sentence dimensionality reduction and dimen-
sion D2 of the entangled word dimensionality reduction on STS’15.images are illustrated in
Figure 5. As D2 increases, the Pcc first decreases slowly and then fluctuates with smaller
variables, as shown by the orange curve in Figure 5a. Excluding D1 = 15,000, the overall
change in the MSE is small; as D1 increases, the MSE gradually increases, as explained by the
orange curve in Figure 5b. As D2 increases, the Pcc first increases and then decreases, and
the MSE first decreases and then increases, as shown in Figure 5c and Figure 5d, respectively.
When the Pcc reaches the maximum, the MSE is not the minimum, such that D2 = 75,000.
When D2 = 80,000, the MSE reaches the minimum, but the Pcc is not at the maximum.

(a) (b)

Figure 5. Cont.
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(c) (d)

Figure 5. Detailed influence of the D1 and D2 on semantics of STS’15.images.txt. (a) Pearson
correlation coefficient-D1, (b) Mean squred error-D1, (c) Pearson correlation coefficient-D2, (d) Mean
squred error-D2.

5.4.2. Influence on STS’15.Headlines

The effects of dimension D1 of dimensionality reduction at the sentence level and
dimension D2 of the dimensionality reduction at the entangled word level on sentence
semantics in STS’15.headlines are described in Figure 6. With the except of D1 = 15,000,
with increasing D1, the Pcc first increases and then linearly decreases, while the MSE first
decreases and then gradually increases, as shown by the orange curves in Figure 6a,b.
However, considering all of the experimental results including D1 = 15,000, the change
curves of the Pcc and MSE both show large fluctuations, as presented by the blue curves in
Figure 6a,b. Moreover, the Pcc of D1 = 15,000 is higher than all of the Pcc values, and the
MSE of D1 = 15,000 achieves the minimum value. Comparisons of Figure 6c,d show that
with the increasing of D2, the Pcc first increases slowly and then decreases sharply, while
the MSE decreases slightly and then increases rapidly.

(a) (b)

Figure 6. Cont.
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(c) (d)

Figure 6. Detailed influence of the D1 and D2 on semantics of STS’15.headlines.txt. (a) Pearson
correlation coefficient-D1, (b) Mean squred error-D1, (c) Pearson correlation coefficient-D2, (d) Mean
squred error-D2 .

5.4.3. Summary

Comparisons of the orange curves to the blue curves in Figures 5a,b and 6a,b show
that the change trend of the orange curves is smoother than that of the blue curves. The
blue curves only consider one more point D1 = 15,000 than the orange curve. Hence, the
optimum value is related to the interval variables. A larger interval variable corresponds to
greater fluctuations of the the curve, as observed by the comparison of the orange curves
and the blue curves of Figures 5a,b and 6a,b. A smaller interval variable makes it more
likely that the optimal value will be obtained. This result shows that the optimal solution
obtained when the interval variable is large may not even be the local optimal value.

6. Conclusions and Future Works

This paper proposes a quantum entangled word representation based on syntax trees
to represent sentences. When the sentence structure is complex, the two words that have a
direct modified relationship are not necessarily in close proximity. Introducing quantum
entanglement between words that have long-range dependencies enables remote words to
also directly establish modified relationships. Combining the attention mechanism based
on the dependency tree with the quantum entanglement coefficient, the entanglement
coefficient between words is related not only to the PoS combination of the two words and
the distribution of the two words in the dictionary but also to the modified relationship
between the words. Utilizing the dependency trees of sentences to establish long-distance
connections between words only considering the entangled words reduces semantic errors.
Moreover, the use of the dependency tree-based attention weight can reduce the influence
of adjacent entangled words without directly modifying the sentence semantics, thereby
more accurately expressing the sentence semantics. We also discuss the impact of PoS
combination, tree depth difference, and dimensionality reduction of entangled words on
the sentence semantics. As the maximum of Pcc and the minimum value of MSE obtained
here are not the optimal solutions, and may not even be the local optimal solutions, in
future works, we mainly consider how to obtain the optimal value easily and effectively by
introducing the theory of convex optimization to generalize this model. In this model, the
semantic expansion of associated words is obtained by the tensor product of word vectors
of the two related words, which is not applicable to the short sentences consisting of only
one content word.



Mathematics 2022, 10, 914 19 of 21

Author Contributions: Y.Y. conceptualization and project administration; D.Q., data curation and
formal analysis; R.Y., software and validation. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
no. 12171065 and 11671001) and the Doctor Training Program of Chongqing University of Posts and
Telecommunications, China (Grant no. BYJS201915).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Zhang, Y.; Song, D.; Li, X.; Zhang, P.; Wang, P.; Rong, L.; Yu, G.; Wang, B. A quantum-like multimodal network framework for

modeling interaction dynamics in multiparty conversational sentiment analysis. Inf. Fusion 2020, 62, 14–31. [CrossRef]
2. Zhang, P.; Niu, J.; Su, Z.; Wang, B.; Ma, L.; Song, D. End-to-end quantum-like language models with application to question

answering. In Proceedings of the 32nd Conference on Artificial Intelligence, and the 8th AAAI Symposium on Educational
Advances in Artificial Intelligence, Baltimore, MD, USA, 9–11 November 2018; pp. 5666–5673.

3. Zhang, Y.; Song, D.; Zhang, P.; Li, X.; Wang, P. A quantum-inspired sentiment representation model for twitter sentiment analysis.
Appl. Intell. 2018, 49, 3093–3108. [CrossRef]

4. Yu, Y.; Qiu, D.; Yan, R. A quantum entanglement-based approach for computing sentence similarity. IEEE Access 2020, 8,
174265–174278. [CrossRef]

5. Yu, Y.; Qiu, D.; Yan, R. Quantum entanglement based sentence similarity computation. In Proceedings of the 2020 IEEE
International Conference on Progress in Informatics and Computing (PIC2020), Online, 18–20 December 2020; pp. 250–257.

6. Zhang, Y.; Wang, Y.; Yang, J. Lattice LSTM for chinese sentence representation. IEEE ACM Trans. Audio Speech Lang. Process. 2020,
28, 1506–1519. [CrossRef]

7. Liu, D.; Fu, J.; Qu, Q.; Lv, J. BFGAN: Backward and forward generative adversarial networks for lexically constrained sentence
generation. IEEE ACM Trans. Audio Speech Lang. Process. 2019, 27, 2350–2361. [CrossRef]

8. Wang, B.; Kuo, C. SBERT-WK: A sentence embedding method by dissecting bert-based word models. IEEE ACM Trans. Audio
Speech Lang. Process. 2020, 28, 2146–2157. [CrossRef]

9. Hosseinalipour, A.; Gharehchopogh, F.; Masdari, M.; Khademi, A. Toward text psychology analysis using social spider optimiza-
tion algorithm. Concurr. Comp.-Pract. E 2021, 33, e6325. [CrossRef]

10. Hosseinalipour, A.; Gharehchopogh, F.; Masdari, M.; Khademi, A. A novel binary farmland fertility algorithm for feature selection
in analysis of the text psychology. Appl. Intell. 2021, 51, 4824–4859. [CrossRef]

11. Osmani, A.; Mohasefi, J.; Gharehchopogh, F. Enriched latent Dirichlet allocation for sentiment analysis. Expert Syst. 2020, 37,
e12527. [CrossRef]

12. Huang, X.; Peng, Y.; Wen, Z.Visual-textual hybrid sequence matching for joint reasoning. IEEE Trans. Cybern. 2020, 51, 5692–5705.
[CrossRef]

13. Dai, D.; Tang, J.; Yu, Z.; Wong, H.; You, J.; Cao, W.; Hu, Y.; Chen, C. An inception convolutional autoencoder model for chinese
healthcare question clustering. IEEE Trans. Cybern. 2021, 51, 2019–2031. [CrossRef] [PubMed]

14. Yin, C.; Tang, J.; Xu, Z.; Wang, Y. Memory augmented deep recurrent neural network for video question answering. IEEE Trans.
Neural Netw. Learn Syst. 2020, 31, 3159–3167. [CrossRef] [PubMed]

15. Mohammadzadeh, H.; Gharehchopogh, F. A multi-agent system based for solving high-dimensional optimization problems: A
case study on email spam detection. Int. J. Commun. Syst. 2021, 34, e4670. [CrossRef]

16. Li, X.; Jiang, H.; Kamei, Y.; Chen, X. Bridging semantic gaps between natural languages and apis with word embedding. IEEE
Trans. Softw. Eng. 2020, 46, 1081–1097. [CrossRef]

17. Osmani, A.; Mohasefi, J.; Gharehchopogh, F. Sentiment classification using two effective optimization methods derived from the
artificial bee colony optimization and imperialist competitive algorithm. Comput. J. 2022, 65, 18–66. [CrossRef]

18. Li, L.; Jiang, Y. Integrating language model and reading control gate in BLSTM-CRF for biomedical named entity recognition.
IEEE ACM Trans. Comput. Biol. Bioinform. 2020, 17, 841–846. [CrossRef] [PubMed]

19. Khataei, M.H.; Gharehchopogh, F.; Majidzadeh, K.; Sangar, A. A new hybrid based on long Short-term memory network with
spotted Hyena optimization algorithm for multi-label text classification. Mathematics 2022, 10, 488. [CrossRef]

20. Choi, H.; Lee, H. Multitask learning approach for understanding the relationship between two sentences. Inf. Sci. 2019, 485,
413–426. [CrossRef]

21. Zhang, L.; Luo, M.; Liu, J.; Chang, X.; Yang, Y.; Hauptmann, A. Deep top-k ranking for image-sentence matching. IEEE Trans.
Multimed. 2020, 22, 775–785. [CrossRef]

http://doi.org/10.1016/j.inffus.2020.04.003
http://dx.doi.org/10.1007/s10489-019-01441-4
http://dx.doi.org/10.1109/ACCESS.2020.3025958
http://dx.doi.org/10.1109/TASLP.2020.2991544
http://dx.doi.org/10.1109/TASLP.2019.2943018
http://dx.doi.org/10.1109/TASLP.2020.3008390
http://dx.doi.org/10.1002/cpe.6325
http://dx.doi.org/10.1007/s10489-020-02038-y
http://dx.doi.org/10.1111/exsy.12527
http://dx.doi.org/10.1109/TCYB.2019.2956975
http://dx.doi.org/10.1109/TCYB.2019.2916580
http://www.ncbi.nlm.nih.gov/pubmed/31180903
http://dx.doi.org/10.1109/TNNLS.2019.2938015
http://www.ncbi.nlm.nih.gov/pubmed/31545745
http://dx.doi.org/10.1002/dac.4670
http://dx.doi.org/10.1109/TSE.2018.2876006
http://dx.doi.org/10.1093/comjnl/bxz163
http://dx.doi.org/10.1109/TCBB.2018.2868346
http://www.ncbi.nlm.nih.gov/pubmed/30183643
http://dx.doi.org/10.3390/math10030488
http://dx.doi.org/10.1016/j.ins.2019.02.026
http://dx.doi.org/10.1109/TMM.2019.2931352


Mathematics 2022, 10, 914 20 of 21

22. Huang, F.; Zhang, X.; Zhao, Z.; Li, Z. Bidirectional spatial-semantic attention networks for image-text matching. IEEE Trans. Image
Process. 2019, 28, 2008–2020. [CrossRef]

23. Ma, Q.; Yu, L.; Tian, S.; Chen, E.; Ng, W. Global-local mutual attention model for text classification. IEEE ACM Trans. Audio Speech.
Lang. Process. 2019, 27, 2127–2139. [CrossRef]

24. Xu, X.; Wang, T.; Yang, Y.; Zuo, L.; Shen, F.; Shen, H. Cross-modal attention with semantic consistence for image-text matching.
IEEE Trans. Neural Netw. Learn. Syst. 2020, 31, 5412–5425. [CrossRef]

25. Vaswani, A.; Shazeer, N.; Parmar, N. Attention is all you need. In Proceedings of the Advances in Neural Information Processing
Systems 30: Annual Conference on Neural Information Processing Systems 2017, Long Beach, CA, USA, 4–9 December 2017;
pp. 5998–6008.

26. Guo, Q.; Qiu, X.; Xue, X.; Zhang, Z. Low-rank and locality constrained self-attention for sequence modeling. IEEE ACM Trans.
Audio Speech Lang. Process. 2019, 27, 2213–2222. [CrossRef]

27. Yang, Z.; Dai, Z.; Yang, Y.; Carbonell, J.; Salakhutdinov, R.; Le, Q. Xlnet: Generalized autoregressive pretraining for language
understanding. In Proceedings of the Advances in Neural Information Processing Systems 32: Annual Conference on Neural
Information Processing Systems 2019 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December 2019; pp. 5754– 5764.

28. Dong, L.; Yang, N.; Wang, W.; Wei, F.; Liu, X.; Wang, Y.; Gao, J.; Zhou, M.; Hon, H. Unified language model pre-training for
natural language understanding and generation. In Proceedings of the Advances in Neural Information Processing Systems 32:
Annual Conference on Neural Information Processing Systems 2019 (NeurIPS 2019), Vancouver, BC, Canada, 8–14 December
2019; pp. 13042–13054.

29. Bao, H.; Dong, L.; Wei, F.; Wang, W.; Yang, N.; Liu, X.; Wang, Y.; Gao, J.; Piao, S.; Zhou, M.; Hon, H. Unilmv2: Pseudo-masked
language models for unified language model pre-training. In Proceedings of the 37th International Conference on Machine
Learning, (ICML 2020), Online, 13–18 July 2020; pp. 642–652.

30. Devlin, J.; Chang, M.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional transformers for language understanding.
In Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACLHLT 2019), Minneapolis, MN, USA, 2–7 June 2019; pp. 4171–4186.

31. Lan, Z.; Chen, M.; Goodman, S.; Gimpel, K.; Sharma, P.; Soricut, R. ALBERT: A lite BERT for selfsupervised learning of language
representations. In Proceedings of the 8th International Conference on Learning Representations (ICLR 2020), Addis Ababa,
Ethiopia, 26–30 April 2020; pp. 1–16.

32. Conneau, A.; Lample, G. Cross-lingual language model pretraining. In Proceedings of the Advances in Neural Information
Processing Systems 32: Annual Conference on Neural Information Processing Systems 2019 (NeurIPS 2019), Vancouver, BC,
Canada, 8–14 December 2019; pp. 7057–7067.

33. Peters, M.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies (NAACL-HLT 2018), New Orleans, LA, USA, 1–6 June 2018; pp. 2227–2237.

34. Gharehchopogh, F. Advances in tree seed algorithm: A comprehensive survey. Arch. Comput. Methods Eng. 2022, 1–24. [CrossRef]
35. Wang, J.; Yu, L.; Lai, K.; Zhang, X. Treestructured regional CNN-LSTM model for dimensional sentiment analysis. IEEE ACM

Trans. Audio Speech Lang. Process. 2020, 28, 581–591. [CrossRef]
36. Shen, M.; Kawahara, D.; Kurohashi, S. Dependency parser reranking with rich subtree features. IEEE ACM Trans. Audio Speech

Lang. Process. 2014, 22, 1208–1218. [CrossRef]
37. Luo, H.; Li, T.; Liu, B.; Wang, B.; Unger, H. Improving aspect term extraction with bidirectional dependency tree representation.

IEEE ACM Trans. Audio Speech Lang. Process. 2019, 27, 1201–1212. [CrossRef]
38. Zhang, J.; Zhai, F.; Zong, C. Syntax-based translation with bilingually lexicalized synchronous tree substitution grammars. IEEE

Trans. Speech Audio Process. 2013, 21, 1586–1597. [CrossRef]
39. Chen, W.; Zhang, M.; Zhang, Y. Distributed feature representations for dependency parsing. IEEE ACM Trans. Audio Speech Lang.

Process. 2015, 23, 451–460. [CrossRef]
40. Geng, Z.; Chen, G.; Han, Y.; Lu, G.; Li, F. Semantic relation extraction using sequential and treestructured LSTM with attention.

Inf. Sci. 2020, 509, 183–192. [CrossRef]
41. Fei, H.; Ren, Y.; Ji, D. A tree-based neural network model for biomedical event trigger detection. Inf. Sci. 2020, 512, 175–185.

[CrossRef]
42. Cao, Q.; Liang, X.; Li, B.; Lin, L. Interpretable visual question answering by reasoning on dependency trees. IEEE Trans. Pattern

Anal. Mach. Intell. 2021, 43, 887–901. [CrossRef] [PubMed]
43. Wu, Y.; Zhao, S.; Li, W. Phrase2vec: Phrase embedding based on parsing. Inf. Sci. 2020, 517, 100–127. [CrossRef]
44. Widdows, D.; Cohen, T. Graded semantic vectors: An approach to representing graded quantities in generalized quantum models.

In Proceedings of the Quantum Interaction—9th International Conference (QI 2015), Filzbach, Switzerland, 15–17 July 2015;
Volume 9535, pp. 231–244.

45. Aerts, D.; Sozzo, S. Entanglement of conceptual entities in quantum model theory (qmod). In Proceedings of the Quantum
Interaction—6th International Symposium (QI 2012), Paris, France, 27–29 June 2012; Volume 7620, pp. 114–125.

46. Nguyen, N.; Behrman, E.; Moustafa, M.; Steck, J. Benchmarking neural networks for quantum computations. IEEE Trans. Neural
Netw. Learn. Syst. 2020, 31, 2522–2531. [CrossRef]

http://dx.doi.org/10.1109/TIP.2018.2882225
http://dx.doi.org/10.1109/TASLP.2019.2942160
http://dx.doi.org/10.1109/TNNLS.2020.2967597
http://dx.doi.org/10.1109/TASLP.2019.2944078
http://dx.doi.org/10.1007/s11831-021-09698-0
http://dx.doi.org/10.1109/TASLP.2019.2959251
http://dx.doi.org/10.1109/TASLP.2014.2327295
http://dx.doi.org/10.1109/TASLP.2019.2913094
http://dx.doi.org/10.1109/TASL.2013.2255283
http://dx.doi.org/10.1109/TASLP.2014.2365359
http://dx.doi.org/10.1016/j.ins.2019.09.006
http://dx.doi.org/10.1016/j.ins.2019.09.075
http://dx.doi.org/10.1109/TPAMI.2019.2943456
http://www.ncbi.nlm.nih.gov/pubmed/31562071
http://dx.doi.org/10.1016/j.ins.2019.12.031
http://dx.doi.org/10.1109/TNNLS.2019.2933394


Mathematics 2022, 10, 914 21 of 21

47. Sordoni, A.; Nie, J.; Bengio, Y. Modeling term dependencies with quantum language models for IR. In Proceeding of the
36th International ACM SIGIR conference on research and development in Information Retrieval (SIGIR’13), Dublin, Ireland,
28 July–1 August 2013; pp. 653–662.

48. Cohen, T.; Widdows, D. Embedding probabilities in predication space with hermitian holographic reduced representations. In
Proceedings of the Quantum Interaction—9th International Conference (QI 2015), Filzbach, Switzerland, 15–17 July 2015; Volume
9535, pp. 245–257.

49. Yuan, K.; Xu, W.; Li, W.; Ding, W. An incremental learning mechanism for object classificationbased on progressive fuzzy
three-way concept. Inf. Sci. 2022, 584, 127–147. [CrossRef]

50. Xu, W.; Yuan K.; Li W. Dynamic updating approximations of local generalized multigranulation neighborhood rough set. Appl.
Intell. 2022. [CrossRef]

51. Xu, W.; Yu, J. A novel approach to information fusion in multi-source datasets: A granular computing viewpoint. Inf. Sci. 2017,
378, 410–423. [CrossRef]

52. Xu, W.; Li, W. Granular computing approach to two-way learning based on formal concept analysis in fuzzy datasets. IEEE Trans.
Cybern. 2016, 46, 366–379. [CrossRef]

53. Hou, Y.; Zhao, X.; Song, D.; Li, W. Mining pure high-order word associations via information geometry for information retrieval.
ACM Trans. Inf. Syst. 2013, 31, 1–12. [CrossRef]

54. Xie, M.; Hou, Y.; Zhang, P.; Li, J.; Li, W.; Song, D. Modeling quantum entanglements in quantum language models. In Proceedings
of the 24th International Joint Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, 25–31 July 2015; pp. 1362–1368.

55. Aerts, D.; Beltran, L.; Bianchi, M.; Sozzo, S.; Veloz, T. Quantum cognition beyond hilbert space: Fundamentals and applications.
In Proceedings of the Quantum Interaction—10th International Conference (QI 2016), San Francisco, CA, USA, 20–22 July 2016;
Volume 10106, pp. 81–98.

56. Zhang, Y.; Song, D.; Zhang, P.; Wang, P.; Li, J.; Li, X.; Wang, B. A quantum-inspired multimodal sentiment analysis framework.
Theor. Comput. Sci. 2018, 752, 21–40. [CrossRef]

57. Zhang, Y.; Li, Q.; Song, D.; Zhang, P.; Wang, P. Quantum-inspired interactive networks for conversational sentiment analysis. In
Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI 2019), Macao, China, 10–16 August 2019;
pp. 5436–5442.

58. Aerts, D.; Arguelles, J.; Beltran, L.; Distrito, I.; Bianchi, M.; Sozzo, S.; Veloz, T. Context and interference effects in the combinations
of natural concepts. In Proceedings of the Modeling and Using Context—10th International and Interdisciplinary Conference
(CONTEXT 2017), Paris, France, 20–23 July 2017; Volume 10257, pp. 677–690.

59. Galofaro, F.; Toffano, Z.; Doan, B. A quantumbased semiotic model for textual semantics. Kybernetes 2018, 47, 307–320. [CrossRef]
60. Agirre, E.; Cer, D.; Diab, M.; Gonzalez-Agirre, A. Semeval-2012 task 6: A pilot on semantic textual similarity. In Proceedings of

the 6th International Workshop on Semantic Evaluation, Montreal, QC, Canada, 7–8 June 2012; pp. 385–393.
61. Agirre, E.; Banea, C.; Cardie, C.; Cer, D.; Diab, M.T.; Gonzalez-Agirre, A.; Guo, W.; Mihalcea, R.; Rigau, G.; Wiebe, J. Semeval-2014

task 10: Multilingual semantic textual similarity. In Proceedings of the 8th International Workshop on Semantic Evaluation,
Dublin, Ireland, 23–24 August 2014; pp. 81–91.

62. Agirre, E.; Banea, C.; Cardie, C.; Cer, D.; Diab, M.; Gonzalez-Agirre, A.; Guo, W.; Lopez-Gazpio, I.; Maritxalar, M.; Mihalcea, R.;
et al. Semeval-2015 task 2: Semantic textual similarity, english, spanish and pilot on interpretability. In Proceedings of the 9th
International Workshop on Semantic Evaluation, Denver, CO, USA, 4–5 June 2015; pp. 252–263.

63. Cer, D.; Diab, M.; Agirre, E.; Lopez-Gazpio, I.; Specia, L. Semeval-2017 task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of the 11th International Workshop on Semantic Evaluation, Vancouver, BC,
Canada, 3–4 August 2017; pp. 1–14.

64. Gao, T.; Yao, X.; Chen, D. SimCSE: Simple contrastive learning of sentence embeddings. In Proceedings of the 2021 Conference on
Empirical Methods in Natural Language Processing (EMNLP 2021), Online, 10–11 November 2021; pp. 6894–6910.

65. Zhang, Y.; He, R.; Liu, Z.; Lim, K.; Bing, L. An unsupervised sentence embedding method by mutual information maximiza-
tion. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020), Online,
16–20 November 2020; pp. 1601–1610.

66. Li, B.; Zhou, H.; He, J.; Wang, M.; Yang, Y.; Li, L. On the sentence embeddings from pre-trained language models. In Proceedings
of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP 2020), Online, 16–20 November 2020;
pp. 9119–9130.

67. Schick, T.; Schütze, H. Generating datasets with pretrained language models. In Proceedings of the 2021 Conference on Empirical
Methods in Natural Language Processing (EMNLP 2021), Online, 10–11 November 2021; pp. 6943–6951.

68. Reimers, N.; Gurevych, I. Sentence-BERT: Sentence embeddings using siamese BERT-networks. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing (EMNLP 2019), Hong Kong, China, 2–7 November 2019;
pp. 3982–3992.

69. Quan, Z.; Wang, Z.; Le Y. An efficient framework for sentence similarity modeling. IEEE/ACM Trans. Audio Speech Lang. Process.
2019, 27, 853–865. [CrossRef]

70. Wang, S.; Zhang, J.; Zong, C. Learning sentence representation with guidance of human attention. In Proceedings of the 26th
International Joint Conference on Artificial Intelligence (IJCAI2017), Melbourne, Australia, 19–25 August 2017; pp. 4137–4143.

http://dx.doi.org/10.1016/j.ins.2021.10.058
http://dx.doi.org/10.1007/s10489-021-02861-x
http://dx.doi.org/10.1016/j.ins.2016.04.009
http://dx.doi.org/10.1109/TCYB.2014.2361772
http://dx.doi.org/10.1145/2493175.2493177
http://dx.doi.org/10.1016/j.tcs.2018.04.029
http://dx.doi.org/10.1108/K-05-2017-0187
http://dx.doi.org/10.1109/TASLP.2019.2899494

	Introduction
	Related Work
	Attention-Based Semantic Analysis
	Dependency Tree
	Quantum Based NLP

	Approaches
	Read Text and Generate Syntax Tree
	Entanglement between Words with Short-Range Modified Relationship
	Normalize the Word Vector
	Embedding of Entangled Word
	Attention Mechanism
	Adjacent Words Entanglement-Based Sentence Representation
	Sentence Similarity

	Optimize the Sentence Embedding
	Entanglement between Words with Long-Range Modified Relationship
	Sentence Embedding Based on Constituency Parser and Relation Entity
	Reduce Sentence Embedding Dimensions


	Experimental Settings
	Parameters Definition
	Datasets
	 Experimental Settings

	Experimental Results
	 Comparing with Some Unsupervised Methods
	Influence of PoS Combination Weight TI,J
	Influence of the Tree Depth Difference  H
	On STS-Benchmark
	On STS'14.deft-News

	Influence of the Dimension Reduction
	Influence on STS'15.Images
	Influence on STS'15.Headlines
	Summary


	Conclusions and Future Works
	References

