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1. Introduction

The article aims to follow up on the achieved results concerning the formal proofs of
fuzzy Peterson syllogisms.

The theory of syllogistic reasoning was investigated by several authors as a generaliza-
tion of classical Aristotelian syllogisms ([1–3]). Categorical syllogisms ([4,5]) consist of three
main parts: the major premise, the minor premise, and the conclusion. With the introduction of
the term “generalized quantifier“, which was proposed by Mostowski in [6], the study of
logical syllogisms expanded to a group of generalized logical syllogisms. Such syllogisms
include forms that contain different types of generalized quantifiers. One special group is
intermediate quantifiers. This topic started to be interesting for linguists and philosophers,
who laid a question of how to explain expressions that represent generalized quantifiers.

Peterson, in his book [7], is interested in the group of intermediate quantifiers which
lie between classical quantifiers. He first philosophically analyzed and explained the
meaning of intermediate quantifiers in terms of their position in the generalized square
of opposition. Furthermore, he continued the study of the group of generalized logical
syllogisms. Peterson’s enlargement was established on an idea to substitute a classical
quantifier with an intermediate one in the classical four figures, which returned in 105 new
valid intermediate syllogisms. A check of the validity of a group of logical syllogisms was
conducted using Venn diagrams, which was carried out by several authors [7–9]. Below,
we present an example of a non-trivial fuzzy intermediate syllogism as follows:

P1 : Almost all people do not have a plane.
P2 : Most people have a phone.
C : Some people who have a phone do not have a plane.

The work of authors who dealt with generalized quantifiers was followed by several
authors with the advent of the definition of a fuzzy set. Several authors followed up this
approach. They introduced several forms of logical syllogisms with fuzzy generalized
quantifiers. In 1985, L. Zadeh semantically interpreted a special group of fuzzy syllogisms
with fuzzy intermediate quantifiers in both premises as well as in the conclusion. Below,
we present a very famous multiplicative chaining syllogism ([10]) as follows:
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Q1 Y is M
Q2 M is X
(≥ Q1 ⊗Q2) Y are X.

As was explained by Zadeh, the expression ≥ Q1 ⊗Q2 in the conclusion of Zadeh’s
syllogism can be read as “at least Q1 ⊗Q2”.

Zadeh’s work was later extended and sophisticated by many authors. From the
point of view of fuzzy quantifiers, which are represented as intervals in Didier Duboise’s
approach in ([11,12]), Zadeh’s special syllogism is compared by M. Pereira-Fariña in [13].
In the publications, Dubois et al. work with quantifiers represented as crisp closed intervals
(more than a half = [0.5, 1], around five = [4, 6]). A typical example of such interval fuzzy
syllogism appears as follows:

P1: [5%, 10%] students have a job.
P2: [5%, 10%] students have a child.
C: [0%, 10%] students have a child and have a job.

Recall that a global overview of fuzzy generalized quantifiers and the various mecha-
nisms for defining these quantifiers can be found in [14].

M. Pereira-Fariña et al. follow, in the next publication [15], by interpreting logical
syllogisms with more premises. In this publication, a group of authors suggested a general
inference schema for syllogistic reasoning, which was proposed as the transformation of the
syllogistic reasoning study into an equivalent optimization problem.

The above-mentioned publications study and verify the validity of fuzzy syllogisms,
especially semantically. In [16], a mathematical definition of fuzzy intermediate quantifiers
based on the theory of evaluative linguistic expressions was proposed. The motivation,
fundamental assumptions, and formalization of this theory are described in detail in [17].
Later, in [18], we focused on the syntactic construction of proofs of all 105 basic fuzzy logical
syllogisms that relate to the graded Peterson’s square of opposition (see [19]). Typical
examples of natural language expressions contained in Peterson’s logical syllogisms are
as follows:

Most children like computer games.
Most cats like to sleep.

1.1. Application of Generalized Quantifiers

Generalized quantifiers offer several types of applications in economics, medicine,
heavy industry, biology, etc. Let us first mention applications related to a group of fuzzy
intermediate quantifiers which are represented by natural language expressions. One of
the interesting applications is time series prediction, which has its application mainly in
economic fields. In [20], the author proposed an interpretation, forecasting, and linguistic
characterization of time series. The result makes it possible to obtain information about
the data using natural language, which is much more understandable to the average user.
To illustrate the reader, we present an example of the linguistic interpretation of economic
time series, using natural language, as follows:

Most (many, few) analyzed time series stagnated recently, but their future trend is slightly
increasing [20].

Another area that is very closely related to this application is getting new infor-
mation from natural language data. Here, it is offered to use the theory of syllogistic
reasoning and to obtain new information from natural language data using valid forms
of syllogisms. Time series were also analyzed by a group of authors in [21]. There are
also publications of authors who are interested in the linguistic summarization of data.
In [22], the authors introduced methods for using the linguistic database to summarize
natural data (see [23–26]). Later, these methods were improved in [27] and implemented
by Kasprzyk and Zadrożny [28]. Another linguistic summarization of process data was
proposed in [29].
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Another area of application is the use of fuzzy association analysis and the use of
association rules to interpret natural language data. An algorithm for the interpretation of
biological data using fuzzy intermediate quantifiers was proposed in [30].

Most irises with both small-length sepals and petals have small-width petals.

1.2. Main Goals

The main idea of this publication is to work with terms that also contain negated terms
in the antecedent, and to study related valid fuzzy syllogisms. Typical examples of natural
language expressions which are related to the graded Peterson’s ([19]) cube are as follows:

Almost all students who do not like mathematics do not study technical fields.
Most people who do not drink alcohol have healthy livers.

A typical example of a syllogism with fuzzy intermediate quantifiers in both premises,
which is called non-trivial, reads as follows:

P1 : Almost all people who do sports have healthy lungs.
P2 : Almost all people who do sports do not have asthma.
C : Some people who do not have asthma have healthy lungs.

1.3. Application of New Forms of Fuzzy Intermediate Quantifiers

As mentioned above, there are several application areas where natural language
expressions are used. We also gave, in the previous section, specific examples of natural
language expressions that occur in both of the premises of syllogisms or are used to interpret
natural data. Therefore, the idea is offered to first find and formally prove the validity
of new forms of logical syllogisms, and further, to work on the use of these forms in the
areas of fuzzy association analysis, language interpretation, linguistic summarization, the
interpretation of time series, etc.

The paper is structured as follows: after the motivational introduction, the reader is
acquainted with mathematical theory in the methods section. The third section contains
important mathematical definitions of new forms of intermediate quantifiers. In this section,
we follow with proofs of new forms of logical syllogisms. The results section is closed
by concrete examples of valid forms of logical syllogisms. This section continues with a
discussion section, in which we summarize the results achieved. We conclude this paper
with a conclusion and statement of future directions.

2. Main Methods

The main approach of this section is to recall the theory of fuzzy natural logic (FNL)
that was designed based on the fuzzy type theory (FTT). FNL is a formal mathematical
theory that includes three theories:

• Theory of evaluative linguistic expressions (see [17]);
• Theory of fuzzy IF–THEN rules and approximate reasoning (see [31]);
• Theory of intermediate quantifiers, generalized syllogisms, and graded structures of

opposition (see [16,18]).

2.1. Fuzzy Type Theory

This section focuses on the reminder of the main symbols and of the fuzzy type theory.
We will not repeat all the details here; we refer readers to previous publications [17,32].

Let us recall, at this point, that the mathematical theory of fuzzy quantifiers was
proposed over the Łukasiewicz fuzzy type theory (Ł-FTT). The structure of truth values
is represented by a linearly ordered MV∆∆∆-algebra that is extended by the delta operation
(see [33,34]). A particular case is the standard Łukasiewicz MV∆-algebra:

L = 〈[0, 1],∨,∧,⊗,→, 0, 1, ∆〉. (1)



Mathematics 2022, 10, 906 4 of 27

The fundamental objects that represent the syntax of Ł-FTT are classical (cf. [35]).
We assume atomic types as follows: ε (elements) and o (truth values). General types are
marked by Greek letters α, β, . . .. A set of all types is marked by Types. The (meta-)symbol
“:= ” used below means “is defined by”.

The language contains of variables xα, . . ., special constants cα, . . . (α ∈ Types), symbol λ,
and parentheses. The connectives are fuzzy equality/equivalence ≡, conjunction ∧∧∧, implication
⇒⇒⇒, negation¬¬¬, strong conjunction &&&, strong disjunction∇∇∇, disjunction∨∨∨, and delta ∆∆∆. The fuzzy
type theory is complete, i.e., a theory T is consistent iff it has a (Henkin) model (M |= T).
We sometimes use the equivalent notion: T ` Ao iff T |= Ao.

The following special formulas are important in our theory below:

Υoo ≡ λzo · ¬¬¬∆∆∆(¬¬¬zo), (nonzero truth value)

Υ̂oo ≡ λzo · ¬¬¬∆∆∆(zo ∨∨∨¬¬¬zo). (general truth value)

Thus,M(Υ(Ao)) = 1 iffM(Ao) > 0, andM(Υ̂(Ao)) = 1 iffM(Ao) ∈ (0, 1) holds in
any modelM.

2.2. Evaluative Linguistic Expressions

As we stated in the introduction, the formal definitions of fuzzy intermediate quanti-
fiers are based on evaluation linguistic expressions. In this subsection, we recall the theory
of evaluative linguistic expressions.

Evaluative linguistic expressions are special expressions of a natural language, for
example, very small, roughly medium, extremely large, very long, quite roughly, extremely rich,
etc. Their theory is the main part of the fuzzy natural logic. The evaluative language
expressions themselves play an important role in everyday human reasoning. We can find
them in a wide variety of areas, such as economics, decision making, and more.

The language JEv contains special symbols as follows:

• The constants >,⊥ ∈ Formo for truth and falsity, and † ∈ Formo for the middle
truth value;

• A special constant ∼∈ Form(oo)o for an additional fuzzy equality on the set of truth
values L;

• A set of special constants ννν, . . . ∈ Formoo for linguistic hedges. The JEv contains the
following special constants: {Ex, Si, Ve, ML, Ro, QR, VR}’ these denote the linguistic
hedges: (extremely, significantly, very, roughly, more or less, rather, quite roughly, and very
roughly, respectively);

• A set of triples of next constants (aννν, bννν, cννν), . . . ∈ Formo, where each hedge ννν is
uniquely connected with one triple of these constants.

The evaluative expressions are interpreted by special formulas Sm ∈ Formoo(oo) (small),
Me ∈ Formoo(oo) (medium), Bi ∈ Formoo(oo) (big), and Ze ∈ Formoo(oo) (zero) that can be
expanded by several linguistic hedges. Let us remind that a hedge, which is often an
adverb such as “extremely, significantly, very, roughly”, etc., is, in general, represented by
a formula ννν ∈ Formoo with specific properties. We proposed a formula Hedge ∈ Formo(oo).
Then, TEv ` Hedge ννν means that ννν is a hedge. The other details can be found in [17]. The
formula TEv ` Hedge ννν is provable for all ννν ∈ {Ex, Si, Ve, ML, Ro, QR, VR}. Furthermore,
evaluative linguistic expressions are represented by formulas:

Sm ννν, Me ννν, Bi ννν, Ze ννν ∈ Formoo, (2)

where ννν is a hedge. We will also assume an empty hedge ν̄νν that is introduced in front of small,
medium, and big if no other hedge is assumed. A special hedge is ∆∆∆oo, that represents the
expression “utmost” and occurs below in the evaluative expression Bi ∆∆∆.
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Let ννν1,oo, ννν2,oo be two hedges, i.e., TEv ` Hedge ννν1,oo and TEv ` Hedge ννν2,oo. We propose
a relation of the partial ordering of hedges by:

�:= λpooλqoo · (∀zo)(pooz⇒ qooz).

Lemma 1 ([17]). The following ordering of the specific hedges can be proved.

TEv ` ∆∆∆� Ex � Si� Ve� ν̄νν� ML� Ro � QR� VR. (3)

Theorem 1. If T IQ ` ννν1 � ννν2, then

T IQ ` (Bi ννν1)((µ(¬¬¬B))(¬¬¬B|z))⇒ (Bi ννν2)((µ(¬¬¬B))(¬¬¬B|z)).

Proof. Analogously to [16], this can be proved using Theorem 1(g), by replacing B with
its negation.

Evaluative expressions represent certain unspecified positions on a bounded linearly
ordered scale. It is important to introduce the context in which we characterize them. The
context can be characterized by a function w : L → N for some set N. We suggest the
context as a triple of numbers vL, vS, vR ∈ N, such that vL < vS < vR (the ordering on N is
induced by w). Then, x ∈ w iff x ∈ [vL, vS] ∪ [vS, vR]. Introducing the concept of context
means defining the concept of intension and extension. The intension of the evaluative
linguistic expressions (2) is equal to a simple fuzzy set in the support of truth values. For
further details, we recommend readers to the publication [17].

2.3. Fuzzy Measure

As discussed in our previous publications, the semantics of the intermediate quanti-
fiers assumes the idea of a “size” of a (fuzzy) set, which we describe by the concept of a
fuzzy measure. In our theory, we will assume the fuzzy measure below:

Definition 1. Let R ∈ Formo(oα)(oα) be a formula.

• A formula, µ ∈ Formo(oα)(oα), defined by:

µo(oα)(oα) := λzoα λxoα (Rzoα)xoα, (4)

represents a measure on fuzzy sets in the universe of type α ∈ Types if it has the following
properties:

1. ∆∆∆(xoα ⊆ zoα)&&& ∆∆∆(yoα ⊆ zoα)&&& ∆∆∆(xoα ⊆ yoα)⇒⇒⇒ ((µzoα)xoα⇒⇒⇒ (µzoα)yoα);
2. ∆∆∆(xoα ⊆ zoα)⇒⇒⇒ ((µzoα)(zoα \ xoα) ≡ ¬¬¬(µzoα)xoα);
3. ∆∆∆(xoα ⊆ yoα)&&& ∆∆∆(xoα ⊆ zoα)&&& ∆∆∆(yoα ⊆ zoα)⇒⇒⇒ ((µzoα)xoα⇒⇒⇒ (µyoα)xoα).

The fuzzy measure introduced above is defined using three axioms—the axiom of
normality, the axiom of monotonicity, and the fuzzy measure is closed with respect to
the negation.

Example 1. A fuzzy measure on a finite universe can be introduced as follows. Let M be a finite
set and A, B ⊂∼ M be fuzzy sets. Put:

|A| = ∑
m∈Supp(A)

A(m). (5)
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Furthermore, let us define a function FR ∈ (LF (M))F (M) by:

FR(B)(A) =


1, if B = A = ∅,

min
{

1, |A||B|
}

, if Supp(A) ⊆ Supp(B),

0, otherwise

(6)

for all A, B ⊂∼ M.

2.4. Formal Definition of Intermediate Quantifiers

In this subsection, we will recall the modified definition of the fuzzy intermediate
quantifier, which is based on a special fuzzy set representing the cut of a fuzzy set (support).

In this article, we will work with the special fuzzy sets; they represent “cuts” of the
universe B.

Let y, z ∈ Formoα. The cut of y by z is the fuzzy set:

y|z ≡ λxα · zx &&& ∆∆∆(Υ(zx)⇒⇒⇒ (yx ≡ zx)).

The following result can be proved.

Proposition 1. LetM be a model such that B =M(y) ⊂∼ Mα, Z =M(z) ⊂∼ Mα. Then, for
any m ∈ Mα:

M(y|z)(m) = (B|Z)(m) =

{
B(m), if B(m) = Z(m),
0 otherwise.

We can observe that the operation B|Z picks only those elements m ∈ Mα from the
support B, whose membership degree B(m) is equal to the degree Z(m); otherwise, it is
equal to zero ((B|Z)(m) = 0). If there is no such element, then the cut is represented by an
empty set (B|Z = ∅).

Definition 2. Let Ev be a formula representing an evaluative expression, x be a variable and A, B, z
be formulas. Then, either of the formulas:

(Q∀Ev x)(B, A) ≡ (∃z)[(∀x)((B|z) x⇒⇒⇒ Ax)∧∧∧ Ev((µB)(B|z))], (7)

(Q∃Ev x)(B, A) ≡ (∃z)[(∃x)((B|z)x∧∧∧ Ax)∧∧∧ Ev((µB)(B|z))], (8)

construe the sentence:

“〈Quantifier〉 Bs are A”.

Below, we introduce several examples of fuzzy intermediate quantifiers which fulfill
the property of the monotonicity.
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A: All Bs are A := (Q∀Bi∆∆∆x)(B, A) ≡ (∀x)(Bx⇒⇒⇒ Ax);

E: No Bs are A := (Q∀Bi∆∆∆x)(B,¬¬¬A) ≡ (∀x)(Bx⇒⇒⇒¬¬¬Ax);

P: Almost all Bs are A := (Q∀Bi Exx)(B, A);

B: Almost all Bs are not A := (Q∀Bi Exx)(B,¬¬¬A);

T: Most Bs are A := (Q∀Bi Vex)(B, A);

D: Most Bs are not A := (Q∀Bi Vex)(B,¬¬¬A);

K: Many Bs are A := (Q∀¬ Smx)(B, A);

G: Many Bs are not A := (Q∀¬ Smx)(B,¬¬¬A);

F: A few (A little) Bs are A := (Q∀Sm Six)(B, A);

V: A few (A little) Bs are not A := (Q∀Sm Six)(B,¬¬¬A);

S: Several Bs are A := (Q∀Sm Vex)(B, A);

Z: Several Bs are not A := (Q∀Sm Vex)(B,¬¬¬A);

I: Some Bs are A := (Q∃Bi∆∆∆x)(B, A) ≡ (∃x)(Bx∧∧∧ Ax);

O: Some Bs are not A := (Q∃Bi∆∆∆x)(B,¬¬¬A) ≡ (∃x)(Bx∧∧∧¬¬¬Ax).

The mathematical definition of fuzzy intermediate quantifiers is extended by a formula
that ensures the non-emptiness of the fuzzy set representing the antecedent.

Definition 3 ([19]). Let Ev be a formula representing an evaluative expression, x be a variable,
and A, B, z be formulas. Then, either of the formulas:

(∗Q∀Ev x)(B, A) ≡ (∃z)[(∀x)((B|z) x⇒⇒⇒ Ax)&(∃x)(B|z)x∧∧∧ Ev((µB)(B|z))], (9)

(∗Q∃Ev x)(B, A) ≡ (∃z)[(∃x)((B|z)x ∧∧∧ Ax)∇¬¬¬(∃x)(B|z)x ∧∧∧ Ev((µB)(B|z))], (10)

construe the sentence:

“〈*Quantifier〉 Bs are A”.

The corresponding quantifiers with presuppositions are denoted by *A, *E, *P, *B, *T,
*D, *K, *G, *F, *V, *S, *Z, *I, and *O.

3. Results
3.1. Formal Structure of Peterson’s Syllogisms Related to Peterson’s Square

Definition 4 (Syllogism). A syllogism is a triple 〈P1, P2, C〉 of three statements. P1, P2 are called
premises (P1 represents major, P2 is minor) and C denotes a conclusion. S (subject) is somewhere
in P2 and also as the first formula of the conclusion C, formula P (predicate) is somewhere in P1
and as the second formula of C; a formula that is not introduced in the conclusion C is called a
middle formula M.

Fuzzy syllogisms are obtained by replacing the classical quantifier (or classical quantifiers)
with the fuzzy quantifier (or fuzzy quantifiers).

Definition 5. Syllogism 〈P1, P2, C〉 is strongly valid in T IQ if T IQ ` (P1&P2)⇒⇒⇒ C, or equiva-
lently, if T IQ ` P1⇒⇒⇒ (P2⇒⇒⇒ C).

Naturally speaking, the syllogism is valid if the Łukasiewicz conjunction of the degrees
of both premises is less than or equal to the value of the conclusion.
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Since we assume one middle formula, we can therefore consider four possible figures,
which will arise according to the position of the middle formula.

Definition 6. Let Q1, Q2, Q3 be fuzzy quantifiers and M, P, S ∈ Formoα be formulas. Let M be a
middle formula, S be a subject, and P be a predicate. Then, we distinguish four corresponding figures:

Figure I

Q1 M are P
Q2 S are M
Q3 S are P

Figure II

Q1 P are M
Q2 S are M
Q3 S are P

Figure III

Q1 M are P
Q2 M are S
Q3 S are P

Figure IV

Q1 P are M
Q2 M are S
Q3 S are P

For demonstration, we present an overview of the valid Peterson’s logical syllogisms
of Figure I, which were formally proved in [18]. We can observe that the main role plays
the property of the monotonicity.

Theorem 2 ([18]). The following syllogisms are strongly valid in T IQ:

AAA
AAP APP
AAT APT ATT
AAK APK ATK AKK
AAF APF ATF AKF AFF
AAS APS ATS AKS AFS ASS

A(*A)I A(*P)I A(*T)I A(*K)I A(*F)I A(*S)I AII

Below, we present an example of valid logical syllogism AKK-I with the fuzzy inter-
mediate quantifiers.

All cows are herbivores.
Many animals on the farm are cows.
Many animals on the farm are herbivores.

We follow with the negative syllogisms of Figure I.

Theorem 3 ([18]). The following syllogisms are strongly valid in T IQ:

EAE
EAB EPB
EAD EPD ETD
EAG EPG ETG EKG
EAV EPV ETV EKV EFV
EAZ EPZ ETZ EKZ EFZ ESZ

E(*A)O E(*P)O E(*T)O E(*K)O E(*F)O E(*S)O EIO

At this point, we will not present other figures and their valid syllogisms. We refer
readers to publications in which we have addressed the formal construction of mathematical
proofs of all of Peterson’s syllogisms (see [18]).

3.2. New Forms of Fuzzy Intermediate Quantifiers Related to Graded Peterson’s Cube

Below, we introduce the mathematical definitions of intermediate quantifiers, which
form a graded Peterson’s cube of opposition (see Figure A2).

Definition 7 (New forms of fuzzy intermediate quantifiers). Let Ev be a formula representing
an evaluative expression, x be a variable, and A, B, z be formulas. Then, for either of the formulas:

(Q∀Ev x)(¬¬¬B,¬¬¬A) ≡ (∃z)[(∀x)((¬¬¬B|z) x⇒⇒⇒¬¬¬Ax)∧∧∧ Ev((µ(¬¬¬B))(¬¬¬B|z))], (11)

(Q∃Ev x)(¬¬¬B,¬¬¬A) ≡ (∃z)[(∃x)((¬¬¬B|z)x∧∧∧¬¬¬Ax)∧∧∧ Ev((µ(¬¬¬B))(¬¬¬B|z))], (12)



Mathematics 2022, 10, 906 9 of 27

either of the quantifiers (11) or (12) construes the sentence

“〈quantifier〉 not Bs are not A”.

Below, we introduce the list of several forms of fuzzy intermediate quantifiers.

a: All ¬¬¬Bs are not A := (Q∀Bi∆∆∆x)(¬¬¬B,¬¬¬A) ≡ (∀x)(¬¬¬Bx⇒⇒⇒¬¬¬Ax);

e: No ¬¬¬Bs are not A := (Q∀Bi∆∆∆x)(¬¬¬B, A) ≡ (∀x)(¬¬¬Bx⇒⇒⇒ Ax);

p: Almost all ¬¬¬Bs are not A := (Q∀Bi Exx)(¬¬¬B,¬¬¬A);

b: Almost all ¬¬¬Bs are A := (Q∀Bi Exx)(¬¬¬B, A);

t: Most ¬¬¬Bs are not A := (Q∀Bi Vex)(¬¬¬B,¬¬¬A);

d: Most ¬¬¬Bs are A := (Q∀Bi Vex)(¬¬¬B, A);

k: Many ¬¬¬Bs are not A := (Q∀¬ Smx)(¬¬¬B,¬¬¬A);

g: Many ¬¬¬Bs are A := (Q∀¬ Smx)(¬¬¬B, A);

f: A few (A little) ¬¬¬Bs are not A := (Q∀Sm Six)(¬¬¬B,¬¬¬A);

v: A few (A little) ¬¬¬Bs are A := (Q∀Sm Six)(¬¬¬B, A);

s: Several ¬¬¬Bs are not A := (Q∀Sm Vex)(¬¬¬B,¬¬¬A);

z: Several ¬¬¬Bs are A := (Q∀Sm Vex)(¬¬¬B, A)

i: Some ¬¬¬Bs are not A := (Q∃Bi∆∆∆x)(¬¬¬B,¬¬¬A) ≡ (∃x)(¬¬¬Bx∧∧∧¬¬¬Ax);

o: Some ¬¬¬Bs are A := (Q∃Bi∆∆∆x)(¬¬¬B, A) ≡ (∃x)(¬¬¬Bx∧∧∧ Ax).

If the presupposition is needed, we will denote the corresponding quantifiers by *a,
*e, *p, *b, *t, *d, *k, *g, *f, *v, *s, *z, *i, and *o

Just as the theorem represents the monotonicity of the quantifiers that form Peter-
son’s square of opposition, we can also prove the monotonic behavior for new forms
of quantifiers.

Theorem 4. The set of implications below is provable in Ł-FTT:

1. TIQ ` a⇒⇒⇒ p, TIQ ` p⇒⇒⇒ t, TIQ ` t⇒⇒⇒ k,
TIQ ` k⇒⇒⇒ f, TIQ ` f⇒⇒⇒ s, TIQ ` s⇒⇒⇒ i;

2. TIQ ` e⇒⇒⇒ b, TIQ ` b⇒⇒⇒ d, TIQ ` d⇒⇒⇒ g,
TIQ ` g⇒⇒⇒ v, TIQ ` v⇒⇒⇒ z, TIQ ` z⇒⇒⇒ o.

Proof. We will show the proof of T IQ ` p⇒ t. We know that:

T IQ ` (∀x)((¬¬¬B|z) x⇒⇒⇒¬¬¬Ax)⇒ (∀x)((¬¬¬B|z) x⇒⇒⇒¬¬¬Ax). (13)

By Lemma 1, we know that Ex � Ve and, therefore, from Theorem 1 and from (13),
we obtain:

T IQ ` [(∀x)((¬¬¬B|z) x⇒⇒⇒¬¬¬Ax)∧∧∧ BiEx((µ(¬¬¬B))(¬¬¬B|z))]⇒
⇒ [(∀x)((¬¬¬B|z) x⇒⇒⇒¬¬¬Ax)∧∧∧ BiVe((µ(¬¬¬B))(¬¬¬B|z))].
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Then, by generalization (∀z) and the properties of the quantifiers, we obtain

T IQ ` (∃z)[(∀x)((¬¬¬B|z) x⇒⇒⇒¬¬¬Ax)∧∧∧ BiEx((µ(¬¬¬B))(¬¬¬B|z))]⇒
⇒ (∃z)[(∀x)((¬¬¬B|z) x⇒⇒⇒¬¬¬Ax)∧∧∧ BiVe((µ(¬¬¬B))(¬¬¬B|z))].

This proof is analogous to the proof of T IQ ` P⇒ T - we only replace each formula in
the proof by its negation. The monotonicity of fuzzy intermediate quantifiers is ensured
by the monotonicity of evaluative linguistic expressions. The other proofs of implications
are similar to the proof of Theorem A2; we only replace each formula in the proof with
its negation.

There are valid forms of examples of logical syllogisms with new forms of fuzzy inter-
mediate quantifiers related to a graded Peterson’s cube of opposition (see Appendix A).

g: Many animals which are not mammals are fish.
A: All dolphins are mammals.
o: Some animals which are not dolphins are fish.

g: Many diseases which are not lethal are virus diseases.
E: All virus diseases can not be cured by antibiotics.
i: Some diseases which can not be cured by antibiotics are not lethal diseases.

3.3. Valid Forms Related to Second Face

First, the reader is reminded of the valid syllogisms of the first figure that are related to
the second face of the graded Peterson’s cube of opposition. It is not necessary to construct
mathematical proofs, because the validity of syllogisms can be verified very easily by
replacing individual formulas with their negations.

Theorem 5. The following syllogisms are strongly valid in T IQ:

aaa
aap app
aat apt att
aak apk atk akk
aaf apf atf akf aff
aas aps ats aks afs ass

a(*a)i a(*p)i a(*t)i a(*k)i a(*f)i a(*s)i aii

Proof. Analogously to Theorem 2, this can be proved by replacing each formula with its
negation.

Theorem 6. The following syllogisms are strongly valid in T IQ:

eae
eab epb
ead epd etd
eag epg etg ekg
eav epv etv ekv efv
eaz epz etz ekz efz esz

e(*a)o e(*p)o e(*t)o e(*k)o e(*f)o e(*s)o eio

Proof. Analogously to Theorem 3, this can be proved by replacing each formula by its
negation.

Similarly, we can verify the validity of other forms of logical syllogisms of the other
figures. We will not repeat other figures at this point.
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3.4. New Forms of Figure I

In the previous part of this paper, we showed strongly valid syllogisms of the first
face and strongly valid syllogisms of the second face. Another goal of the publication is to
verify the validity of logical syllogisms that describe the relationship between the first face
and the second face in a graded Peterson’s cube of opposition.

Firstly we prove a strong validity of the following syllogisms by concrete syntacti-
cal proofs.

Theorem 7. Syllogisms aEE-I, aBB-I, aDD-I, aGG-I, aVV-I, aZZ-I, and aOO-I are strongly
valid in T IQ.

Proof. Let us assume the syllogism as follows:

aEE-I:
(∀x)(¬¬¬Mx⇒⇒⇒¬¬¬Px)
(∀x)(Sx⇒⇒⇒¬¬¬Mx)
(∀x)(Sx⇒⇒⇒¬¬¬Px).

We know that:

T IQ ` (¬¬¬Mx⇒⇒⇒¬¬¬Px)⇒⇒⇒ ((Sx⇒⇒⇒¬¬¬Mx)⇒⇒⇒ (Sx⇒⇒⇒¬¬¬Px)).

By the rule of generalization of (∀x) and using the properties of the quantifiers,
we have:

T IQ ` (∀x)(¬¬¬Mx⇒⇒⇒¬¬¬Px)⇒⇒⇒ ((∀x)(Sx⇒⇒⇒¬¬¬Mx)⇒⇒⇒ (∀x)(Sx⇒⇒⇒¬¬¬Px)).

Proof. Let us assume the syllogism as follows:

aOO-I:
(∀x)(¬¬¬Mx⇒⇒⇒¬¬¬Px)
(∃x)(Sx∧∧∧¬¬¬Mx)
(∃x)(Sx∧∧∧¬¬¬Px).

We know that:

T IQ ` (¬¬¬Mx⇒⇒⇒¬¬¬Px)⇒⇒⇒ ((Sx∧∧∧¬¬¬Mx)⇒⇒⇒ (Sx∧∧∧¬¬¬Px)).

By the rule of generalization (∀x) and using the properties of the quantifiers, we have:

T IQ ` (∀x)(¬¬¬Mx⇒⇒⇒¬¬¬Px)⇒⇒⇒ ((∃x)(Sx∧∧∧¬¬¬Mx)⇒⇒⇒ (∃x)(Sx∧∧∧¬¬¬Px)).

Proof. Let us assume the syllogism as follows:

aBB-I:
(∀x)(¬¬¬Mx⇒⇒⇒¬¬¬Px)
(∃z)[(∀x)((S|z)x⇒⇒⇒¬¬¬Mx)∧∧∧ (BiEx)((µS)(S|z))]
(∃z)[(∀x)((S|z)x⇒⇒⇒¬¬¬Px)∧∧∧ (BiEx)((µS)(S|z))].

Let us denote, by Ev := (BiEx)((µS)(S|z)).
We know that:

T IQ ` (¬¬¬Mx⇒⇒⇒¬¬¬Px)⇒⇒⇒
(
((S|z)x⇒⇒⇒¬¬¬Mx)⇒⇒⇒ ((S|z)x⇒⇒⇒¬¬¬Px)

)
.

By the rule of generalization (∀x) and using the properties of the quantifiers, we have:

T IQ ` (∀x)(¬¬¬Mx⇒⇒⇒¬¬¬Px)⇒⇒⇒
(
(∀x)((S|z)x⇒⇒⇒¬¬¬Mx)⇒⇒⇒ ((∀x)(S|z)x⇒⇒⇒¬¬¬Px)

)
.
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By Ł-FTT properties, we have the provable formula as follows:

T IQ ` (∀x)(¬¬¬Mx⇒⇒⇒¬¬¬Px)⇒⇒⇒
⇒⇒⇒
(
[(∀x)((S|z)x⇒⇒⇒¬¬¬Mx)∧∧∧ Ev]⇒⇒⇒ [(∀x)((S|z)x⇒⇒⇒¬¬¬Px)∧∧∧ Ev]

)
.

Using the generalization rule for (∀z) and by the properties of the quantifiers we
know that:

T IQ ` (∀x)(¬¬¬Mx⇒⇒⇒¬¬¬Px)⇒⇒⇒
⇒⇒⇒
(
(∃z)[(∀x)((S|z)x⇒⇒⇒¬¬¬Mx)∧∧∧ Ev]⇒⇒⇒ (∃z)[(∀x)((S|z)x⇒⇒⇒¬¬¬Px)∧∧∧ Ev]

)
.

By putting Ev := (BiEx)((µS)(S|z)), we obtain the strong validity of aBB-I. If we
denote Ev := (BiVe)((µS)(S|z)), we obtain the strong validity of aDD-I. If we put Ev :=
(¬Sm)((µS)(S|z)), we have the strong validity of syllogism aGG-I. By denoting Ev :=
(SmSi)((µS)(S|z)), we obtain the strong validity of syllogism aVV-I. Finally, if we denote
Ev := (SmVe)((µS)(S|z)), we conclude that the syllogism aZZ-I is strongly valid.

From these strongly valid syllogisms, we can obtain other strongly valid syllogisms by
using monotonicity. Below, we continue with other forms of valid syllogisms of Figure I.

Theorem 8. Let syllogisms aEE-I, aBB-I, aDD-I, aGG-I, aVV-I, aZZ-I, aOO-I be strongly valid
in T IQ. Then, the following syllogisms are strongly valid in T IQ:

aEE
aEB aBB
aED aBD aDD
aEG aBG aDG aGG
aEV aBV aDV aGV aVV
aEZ aBZ aDZ aGZ aVZ aZZ

a(*E)O a(*B)O a(*D)O a(*G)O a(*V)O a(*Z)O aOO

Proof. From strongly valid syllogism aEE-I (Theorem 7) and from monotonicity (Theo-
rem A2) by transitivity, we prove the strong validity of syllogisms in the first column. We
prove the strong validity of syllogisms in other columns analogously.

Theorem 9. Syllogisms Aee-I, Abb-I, Add-I, Agg-I Avv-I, Azz-I, Aoo-I are strongly valid
in T IQ.

Proof. Analogously to the proof of Theorem 7, this can be proved by replacing each formula
by its negation.

Theorem 10. Let syllogisms Aee-I, Abb-I, Add-I, Agg-I, Avv-I, Azz-I, and Aoo-I be strongly
valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

Aee
Aeb Abb
Aed Abd Add
Aeg Abg Adg Agg
Aev Abv Adv Agv Avv
Aez Abz Adz Agz Avz Azz

A(*e)o A(*b)o A(*d)o A(*g)o A(*v)o A(*z)o Aoo

Proof. This can be proved by monotonicity (Theorem 4) similarly to Theorem 8.

In other constructions, we will assume a selected group of valid syllogisms (these
proofs can be obtained similarly as in Theorem 7), from which we will verify the validity of
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other forms of syllogisms, especially with the help of monotonicity. In Theorem 11 and in
Theorem 12, we present other strongly valid syllogisms of Figure I.

Theorem 11. Let syllogisms Eea-I, Ebp-I, Edt-I, Egk-I, Evf-I, Ezs-I, and Eoi-I be strongly valid
in T IQ. Then, the following syllogisms are strongly valid in T IQ:

Eea
Eep Ebp
Eet Ebt Edt
Eek Ebk Edk Egk
Eef Ebf Edf Egf Evf
Ees Ebs Eds Egs Evs Ezs

E(*e)i E(*b)i E(*d)i E(*g)i E(*v)i E(*z)i Eoi

Proof. This can be proved by monotonicity (Theorem 4), similarly to Theorem 8.

Theorem 12. Let syllogisms eEA-I, eBP-I, eDT-I, eGK-I, eVF-I, eZS-I, and eOI-I be strongly
valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

eEA
eEP eBP
eET eBT eDT
eEK eBK eDK eGK
eEF eBF eDF eGF eVF
eES eBS eDS eGS eVS eZS

e(*E)I e(*B)I e(*D)I e(*G)I e(*V)I e(*Z)I eOI

Proof. This can be proved by monotonicity (Theorem A2), analogously to Theorem 8.

We can prove other strongly valid syllogisms using the following proposition, which
shows the relationship of the sub-alterns between the first and second squares of opposition.

Proposition 2 ([19]). The following is provable:

(a) TIQ ` A⇒⇒⇒ i;
(b) TIQ ` E⇒⇒⇒ o;
(c) TIQ ` a⇒⇒⇒ I;
(d) TIQ ` e⇒⇒⇒ O.

Theorem 13. Let syllogisms AAA-I, aaa-I, EAE-I, eae-I, Aee-I, aEE-I, Eea-I, and eEA-I be
strongly valid in T IQ. Then, the following syllogisms are strongly valid in T IQ: (*A)Ai-I (*a)aI-I,
(*E)Ao-I, (*e)aO-I, (*A)eO-I, (*a)Eo-I, (*E)eI-I, and (*e)Ei-I.

Proof. This can be proved by transitivity and by Proposition 2.

Theorem 14. Syllogisms oAo-I, iAi-I, oeI-I, ieO-I, IEo-I, OEi-I, IaI-I, and OaO-I are strongly
valid in T IQ.

Proof. Let us assume the syllogism as follows:

oAo-I:
(∃x)(¬¬¬Mx∧∧∧ Px)
(∀x)(Sx⇒⇒⇒ Mx)
(∃x)(¬¬¬Sx∧∧∧ Px).

We know that:
T IQ ` (Sx⇒⇒⇒ Mx)⇒⇒⇒ (¬¬¬Mx⇒⇒⇒¬¬¬Sx).
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We also know that:

T IQ ` (¬¬¬Mx⇒⇒⇒¬¬¬Sx)⇒⇒⇒ ((¬¬¬Mx∧∧∧ Px)⇒⇒⇒ (¬¬¬Sx∧∧∧ Px)).

By transitivity, we obtain:

T IQ ` (Sx⇒⇒⇒ Mx)⇒⇒⇒ ((¬¬¬Mx∧∧∧ Px)⇒⇒⇒ (¬¬¬Sx∧∧∧ Px)).

By the rule of generalization for (∀x) and using the properties of the quantifiers,
we have:

T IQ ` (∀x)(Sx⇒⇒⇒ Mx)⇒⇒⇒ ((∃x)(¬¬¬Mx∧∧∧ Px)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px)).

By adjunction, we obtain:

T IQ ` ((∃x)(¬¬¬Mx∧∧∧ Px)&(∀x)(Sx⇒⇒⇒ Mx))⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px).

The strong validity of syllogism OaO-I can be proven analogously, by replacing
each formula with its negation. The strong validity of other syllogisms can be proven
similarly.

Theorem 15. Let syllogisms oAo-I, iAi-I, oeI-I, ieO-I, IEo-I, OEi-I, IaI-I, and OaO-I be
strongly valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

(*e)Ao (*E)aO (*a)Ai (*A)aI (*e)eI (*E)Ei (*a)eO (*A)Eo
(*b)Ao (*B)aO (*p)Ai (*P)aI (*b)eI (*B)Ei (*p)eO (*P)Eo
(*d)Ao (*D)aO (*t)Ai (*T)aI (*d)eI (*D)Ei (*t)eO (*T)Eo
(*g)Ao (*G)aO (*k)Ai (*K)aI (*g)eI (*G)Ei (*k)eO (*K)Eo
(*v)Ao (*V)aO (*f)Ai (*F)aI (*v)eI (*V)Ei (*f)eO (*F)Eo
(*z)Ao (*Z)aO (*s)Ai (*S)aI (*z)eI (*Z)Ei (*s)eO (*S)Eo

oAo OaO iAi IaI oeI OEi ieO IEo

Proof. By monotonicity (Theorem 4) and the strongly valid syllogism oAo-I, we prove, by
transitivity, the strong validity of the syllogisms in the first column. We prove the other
syllogisms in the other columns analogously by monotonicity (Theorems A2 and 4).

3.5. New Forms of Figure II

Figure II is similar to Figure I, so we will not present concrete syntactical proofs of
syllogisms. The syllogisms can be proved similarly to Theorems 7 and 14.

Theorem 16. Let syllogisms aAA-II, aPP-II, aTT-II, aKK-II, aFF-II, aSS-II, and aII-II be
strongly valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

aAA
aAP aPP
aAT aPT aTT
aAK aPK aTK aKK
aAF aPF aTF aKF aFF
aAS aPS aTS aKS aFS aSS

a(*A)I a(*P)I a(*T)I a(*K)I a(*F)I a(*S)I aII

Proof. This can be proved by monotonicity (Theorem A2), similarly to Theorem 8.

Theorem 17. Let syllogisms Aaa-II, App-II, Att-II, Akk-II, Aff-II, Ass-II, and Aii-II be strongly
valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:
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Aaa
Aap App
Aat Apt Att
Aak Apk Atk Akk
Aaf Apf Atf Akf Aff
Aas Aps Ats Aks Afs Ass

A(*a)i A(*p)i A(*t)i A(*k)i A(*f)i A(*s)i Aii

Proof. This can be proved by monotonicity (Theorem 4), similarly to Theorem 8.

Theorem 18. Let syllogisms eEA-II, eBP-II, eDT-II, eGK-II, eVF-II, eZS-II, and eOI-II be
strongly valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

eEA
eEP eBP
eET eBT eDT
eEK eBK eDK eGK
eEF eBF eDF eGF eVF
eES eBS eDS eGS eVS eZS

e(*E)I e(*B)I e(*D)I e(*G)I e(*V)I e(*Z)I eOI

Proof. This can be proved by monotonicity (Theorem A2), similarly to Theorem 8.

Theorem 19. Let syllogisms Eea-II, Ebp-II, Edt-II, Egk-II, Evf-II, Ezs-II, and Eoi-II be strongly
valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

Eea
Eep Ebp
Eet Ebt Edt
Eek Ebk Edk Egk
Eef Ebf Edf Egf Evf
Ees Ebs Eds Egs Evs Ezs

E(*e)i E(*b)i E(*d)i E(*g)i E(*v)i E(*z)i Eoi

Proof. This can be proved by monotonicity (Theorem 4), similarly to Theorem 8.

Theorem 20. Let syllogisms EAE-II, eae-II, AEE-II, aee-II, aAA-II, Aaa-II, Eea-II, and eEA-II
be strongly valid in T IQ. Then, the following syllogisms are strongly valid in T IQ: (*E)Ao-II,
(*e)aO-II, (*A)Eo-II, (*a)eO-II, (*a)Ai-II, (*A)aI-II, (*E)eI-II, and (*e)Ei-II.

Proof. This can be proved by transitivity and by Proposition 2.

Theorem 21. Let syllogisms OAo-II, oaO-II, IEo-II, ieO-II, OeI-II, oEi-II, IaI-II, and iAi-II be
strongly valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

(*E)Ao (*e)aO (*A)Eo (*a)eO (*E)eI (*e)Ei (*a)Ai (*A)aI
(*B)Ao (*b)aO (*P)Eo (*p)eO (*B)eI (*b)Ei (*p)Ai (*P)aI
(*D)Ao (*d)aO (*T)Eo (*t)eO (*D)eI (*d)Ei (*t)Ai (*T)aI
(*G)Ao (*g)aO (*K)Eo (*k)eO (*G)eI (*g)Ei (*k)Ai (*K)aI
(*V)Ao (*v)aO (*F)Eo (*f)eO (*V)eI (*v)Ei (*f)Ai (*F)aI
(*Z)Ao (*z)aO (*S)Eo (*s)eO (*Z)eI (*z)Ei (*s)Ai (*S)aI
OAo oaO IEo ieO OeI oEi iAi IaI

Proof. This can be proved by monotonicity (Theorems A2 and 4), analogously to
Theorem 15.
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Theorem 22. Syllogisms (*A)Ai-II, (*a)aI-II, (*E)Ei-II, (*e)eI-II, (*e)Ao-II, (*E)aO-II, (*A)eO-
II, and (*a)Eo-II are strongly valid in T IQ.

Proof. Let us assume the syllogism as follows:

(*A)Ai-II:
(∀x)(Px⇒⇒⇒ Mx)&(∃x)(¬¬¬Mx)
(∀x)(Sx⇒⇒⇒ Mx)
(∃x)(¬¬¬Sx∧∧∧¬¬¬Px).

We know that:
T IQ ` (Sx⇒⇒⇒ Mx)⇒⇒⇒ (¬¬¬Mx⇒⇒⇒¬¬¬Sx). (14)

We know that:
T IQ ` (Px⇒⇒⇒ Mx)⇒⇒⇒ (¬¬¬Mx⇒⇒⇒¬¬¬Px). (15)

We also know that:

T IQ ` (¬¬¬Mx⇒⇒⇒¬¬¬Sx)⇒⇒⇒
(
(¬¬¬Mx⇒⇒⇒¬¬¬Px)⇒⇒⇒ (¬¬¬Mx⇒⇒⇒ (¬¬¬Sx∧∧∧¬¬¬Px))

)
. (16)

By the application of transitivity on (14) and (16), we obtain:

T IQ ` (Sx⇒⇒⇒ Mx)⇒⇒⇒
(
(¬¬¬Mx⇒⇒⇒¬¬¬Px)⇒⇒⇒ (¬¬¬Mx⇒⇒⇒ (¬¬¬Sx∧∧∧¬¬¬Px))

)
.

By adjunction, we obtain:

T IQ ` (¬¬¬Mx⇒⇒⇒¬¬¬Px)⇒⇒⇒
(
(Sx⇒⇒⇒ Mx)⇒⇒⇒ (¬¬¬Mx⇒⇒⇒ (¬¬¬Sx∧∧∧¬¬¬Px))

)
. (17)

By the application of transitivity on (15) and (17), we obtain:

T IQ ` (Px⇒⇒⇒ Mx)⇒⇒⇒
(
(Sx⇒⇒⇒ Mx)⇒⇒⇒ (¬¬¬Mx⇒⇒⇒ (¬¬¬Sx∧∧∧¬¬¬Px))

)
.

By generalization (∀x) and the properties of the quantifiers, we obtain:

T IQ ` (∀x)(Px⇒⇒⇒ Mx)⇒⇒⇒
(
(∀x)(Sx⇒⇒⇒ Mx)⇒⇒⇒ ((∃x)¬¬¬Mx⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧¬¬¬Px))

)
.

The strong validity of other fuzzy logical syllogisms can be verified similarly.

3.6. New Forms of Figure III

Firstly, we will show some syntactical proofs of syllogisms on this Figure.

Theorem 23. Syllogisms AOo-III, *(PG)o-III, *(TD)o-III, *(KB)o-III, and IEo-III are strongly
valid in T IQ.

Proof. Let us assume the syllogism as follows:

AOo-III:
(∀x)(Mx⇒⇒⇒ Px)
(∃x)(Mx∧∧∧¬¬¬Sx)
(∃x)(¬¬¬Sx∧∧∧ Px).

We know that:

T IQ ` (Mx⇒⇒⇒ Px)⇒⇒⇒ ((Mx∧∧∧¬¬¬Sx)⇒⇒⇒ (¬¬¬Sx∧∧∧ Px)).

Analogously, as in previous proofs, using the properties of the quantifiers, we obtain:

T IQ ` (∀x)(Mx⇒⇒⇒ Px)⇒⇒⇒ ((∃x)(Mx∧∧∧¬¬¬Sx)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px)).

Proof. Let us assume the syllogism as follows:
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IEo-III:
(∃x)(Mx∧∧∧ Px)
(∀x)(Mx⇒⇒⇒¬¬¬Sx)
(∃x)(¬¬¬Sx∧∧∧ Px).

We know that:

T IQ ` (Mx⇒⇒⇒¬¬¬Sx)⇒⇒⇒ ((Mx∧∧∧ Px)⇒⇒⇒ (¬¬¬Sx∧∧∧ Px)).

Using the generalization of (∀x) and by the logical properties of the quantifiers,
we have:

T IQ ` (∀x)(Mx⇒⇒⇒¬¬¬Sx)⇒⇒⇒ ((∃x)(Mx∧∧∧ Px)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px)).

By adjunction, we obtain:

T IQ ` (∃x)(Mx∧∧∧ Px)⇒⇒⇒ ((∀x)(Mx⇒⇒⇒¬¬¬Sx)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px)).

Proof. Let us assume the syllogism as follows:

PGo-III:
(∃z)[(∀x)((M|z)x⇒⇒⇒ Px)∧∧∧ (BiEx)((µM)(M|z))]
(∃z′)[(∀x)((M|z′)x⇒⇒⇒¬¬¬Sx)∧∧∧ (¬¬¬Sm)((µM)(M|z′))]
(∃x)(¬¬¬Sx∧∧∧ Px).

We know that:

T IQ ` ((M|z)x⇒⇒⇒ Px)⇒⇒⇒
⇒⇒⇒
(
((M|z′)x⇒⇒⇒¬¬¬Sx)⇒⇒⇒ (((M|z)x&(M|z′)x)⇒⇒⇒ (¬¬¬Sx∧∧∧ Px))

)
.

By generalization (∀x) and the properties of the quantifiers, we obtain:

T IQ ` (∀x)((M|z)x⇒⇒⇒ Px)⇒⇒⇒
⇒⇒⇒
(
(∀x)((M|z′)x⇒⇒⇒¬¬¬Sx)⇒⇒⇒ ((∃x)((M|z)x&(M|z′)x)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px))

)
.

By using the property of Łukasiewicz logic, we obtain:

T IQ ` [(∀x)((M|z)x⇒⇒⇒ Px)∧∧∧ Ev]⇒⇒⇒
⇒⇒⇒
(
(∀x)((M|z′)x⇒⇒⇒¬¬¬Sx)⇒⇒⇒ ((∃x)((M|z)x&(M|z′)x)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px))

)
.

By adjunction and the property of Łukasiewicz logic, we obtain:

T IQ ` [(∀x)((M|z′)x⇒⇒⇒¬¬¬Sx)∧∧∧ Ev′]⇒⇒⇒
⇒⇒⇒
(
[(∀x)((M|z)x⇒⇒⇒ Px)∧∧∧ Ev]⇒⇒⇒ ((∃x)((M|z)x&(M|z′)x)⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px))

)
.

By adjunction, we obtain:

T IQ `
(
[(∀x)((M|z)x⇒⇒⇒ Px)∧∧∧ Ev]&[(∀x)((M|z′)x⇒⇒⇒¬¬¬Sx)∧∧∧ Ev′]&

&(∃x)((M|z)x&(M|z′)x)
)
⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px).

By generalization (∀z), (∀z′), and the properties of the quantifiers, we obtain:

T IQ ` (∃z)(∃z′)
(
[(∀x)((M|z)x⇒⇒⇒ Px)∧∧∧ Ev]&[(∀x)((M|z′)x⇒⇒⇒¬¬¬Sx)∧∧∧ Ev′]&

&(∃x)((M|z)x&(M|z′)x)
)
⇒⇒⇒ (∃x)(¬¬¬Sx∧∧∧ Px).

If we put Ev := (BiEx)((µM)(M|z)) and Ev′ := (¬Sm)((µM)(M|z′)), we obtain
the strong validity of syllogism *(PG)o-III. If we put Ev := (BiVe)((µM)(M|z)) and
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Ev′ := (BiVe)((µM)(M|z′)), we obtain the strong validity of syllogism *(TD)o-III. If
we put Ev := (¬Sm)((µM)(M|z)) and Ev′ := (BiEx)((µM)(M|z′)), we obtain the strong
validity of syllogism *(KB)o-III.

Theorem 24. Let syllogisms AOo-III, *(PG)o-III, *(TD)o-III, *(KB)o-III, and IEo-III be strongly
valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

(*A)Eo (*P)Eo (*T)Eo (*K)Eo (*F)Eo (*S)Eo IEo
A(*B)o *(PB)o *(TB)o *(KB)o
A(*D)o *(PD)o *(TD)o
A(*G)o *(PG)o
A(*V)o
A(*Z)o
AOo

Proof. From the strongly valid logical syllogism AOo-III, and using the monotonicity (The-
orem A2), we prove the strong validity of the syllogisms in the first column by transitivity.
From the strongly valid syllogism IEo-III, and by monotonicity (Theorem A2), we can verify
the strong validity of the syllogisms in the first row by transitivity. Analogously, using the
strongly valid syllogism *(PG)o-III and by monotonicity (Theorem A2), we can verify the
strong validity of the syllogisms in the second column by transitivity. The syllogisms in the
third and the fourth column can be proven analogously.

Theorem 25. Syllogisms aoO-III, *(pg)O-III, *(td)O-III, *(kb)O-III, and ieO-III are strongly
valid in T IQ.

Proof. This can be proven analogously to the proof of Theorem 23, by replacing each
formula with its negation.

Theorem 26. Let syllogisms aoO-III, *(pg)O-III, *(td)O-III, *(kb)O-III, and ieO-III be strongly
valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

(*a)eO (*p)eO (*t)eO (*k)eO (*f)eO (*s)eO ieO
a(*b)O *(pb)O *(tb)O *(kb)O
a(*d)O *(pd)O *(td)O
a(*g)O *(pg)O
a(*v)O
a(*z)O

aoO

Proof. This can be proven by monotonicity (Theorem 4), similarly to Theorem 24.

Next, we will consider the strong validity of some syllogisms without concrete proofs.
These proofs are similar to the proofs in Theorem 23.

Theorem 27. Let syllogisms EOi-III, *(BG)i-III, *(DD)i-III, *(GB)i-III, and OEi-III be strongly
valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

E(*E)i (*B)Ei (*D)Ei (*G)Ei (*V)Ei (*Z)Ei OEi
E(*B)i *(BB)i *(DB)i *(GB)i
E(*D)i *(BD)i *(DD)i
E(*G)i *(BG)i
E(*V)i
E(*Z)i
EOi

Proof. This can be proven by monotonicity (Theorem A2), similarly to Theorem 24.
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Theorem 28. Let syllogisms oeI-III, *(gb)I-III, *(dd)I-III, *(bg)I-III, and eoI-III be strongly
valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

e(*e)I (*b)eI (*d)eI (*g)eI (*v)eI (*z)eI oeI
e(*b)I *(bb)I *(db)I *(gb)I
e(*d)I *(bd)I *(dd)I
e(*g)I *(bg)I
e(*v)I
e(*z)I

eoI

Proof. This can be proven by monotonicity (Theorem 4), similarly to Theorem 24.

The following syllogisms are also strongly valid in Figure III.

Theorem 29. Let syllogisms eAe-III, EaE-III, aAa-III, AaA-III, eEA-III, Eea-III, aEE-III, and
Aee-III be strongly valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

eAe EaE aAa AaA eEA Eea aEE Aee
eAb EaB aAp AaP eEP Eep aEB Aeb
eAd EaD aAt AaT eET Eet aED Aed
eAg EaG aAk AaK eEK Eek aEG Aeg
eAv EaV aAf AaF eEF Eef aEV Aev
eAz EaZ aAs AaS eES Ees aEZ Aez

e(*A)o E(*a)O a(*A)i A(*a)I e(*E)I E(*e)i a(*E)O A(*e)o

Proof. From the strongly valid syllogism eAe-III, and from monotonicity (Theorem 4),
we can prove, by transitivity, the strong validity of the syllogisms in the first column.
Analogously, from monotonicity (Theorems A2 and 4), we can prove the strong validity of
the syllogisms in the other columns.

Theorem 30. Let syllogisms eAe-III, EaE-III, aAa-III, AaA-III, eEA-III, Eea-III, aEE-III, and
Aee-III be strongly valid in T IQ. Then, the following syllogisms are strongly valid in T IQ: (*e)AO-
III, (*E)ao-III, (*a)AI-III, (*A)ai-III, (*e)Ei-III, (*E)eI-III, (*a)Eo-III, and (*A)eO-III.

Proof. This can be proven by transitivity and by Proposition 2.

3.7. New Forms of Figure IV

Firstly, we show a proof of the strongly valid syllogisms of this figure.

Theorem 31. Syllogisms aII-IV, Aii-IV, EOi-IV, eoI-IV, aOo-IV, and AoO-IV are strongly valid
in T IQ.

Proof. Let us assume the syllogism as follows:

aII-IV:
(∀x)(¬¬¬Px⇒⇒⇒¬¬¬Mx)
(∃x)(Mx∧∧∧ Sx)
(∃x)(Sx∧∧∧ Px).

We know that:
T IQ ` (¬¬¬Px⇒⇒⇒¬¬¬Mx)⇒⇒⇒ (Mx⇒⇒⇒ Px). (18)

We also know that:

T IQ ` (Mx⇒⇒⇒ Px)⇒⇒⇒ ((Mx∧∧∧ Sx)⇒⇒⇒ (Sx∧∧∧ Px)). (19)
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By the application of transitivity on (18) and (19), we obtain:

T IQ ` (¬¬¬Px⇒⇒⇒¬¬¬Mx)⇒⇒⇒ ((Mx∧∧∧ Sx)⇒⇒⇒ (Sx∧∧∧ Px)).

By generalization (∀x) and quatifier properties, we obtain:

T IQ ` (∀x)(¬¬¬Px⇒⇒⇒¬¬¬Mx)⇒⇒⇒ ((∃x)(Mx∧∧∧ Sx)⇒⇒⇒ (∃x)(Sx∧∧∧ Px)).

The strong validity of other syllogisms can be proven similarly.

Theorem 32. Let syllogisms aII-IV, Aii-IV, EOi-IV, eoI-IV, aOo-IV, and AoO-IV be strongly
valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

a(*A)I A(*a)i E(*E)i e(*e)I a(*E)o A(*e)O
a(*P)I A(*p)i E(*B)i e(*b)I a(*B)o A(*b)O
a(*T)I A(*t)i E(*D)i e(*d)I a(*D)o A(*d)O
a(*K)I A(*k)i E(*G)i e(*g)I a(*G)o A(*g)O
a(*F)I A(*f)i E(*V)i e(*v)I a(*V)o A(*v)O
a(*S)I A(*s)i E(*Z)i e(*z)I a(*Z)o A(*z)O

aII Aii EOi eoI aOo AoO

Proof. From the strongly valid syllogism aII-IV, and from monotonicity (Theorem A2),
we prove the strongly valid syllogisms in the first column by transitivity. We can prove
the syllogisms in the other columns analogously by using monotonicity (Theorem A2,
Theorem 4).

We will consider the strong validity of some syllogisms without concrete proofs. These
proofs are similar to the previous proofs in this article.

Theorem 33. Let syllogisms AAa-IV, aaA-IV, eAe-IV, EaE-IV, eEA-IV, and Eea-IV be strongly
valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:

AAa aaA eAe EaE eEA Eea
AAp aaP eAb EaB eEP Eep
AAt aaT eAd EaD eET Eet
AAk aaK eAg EaG eEK Eek
AAf aaF eAv EaV eEF Eef
AAs aaS eAz EaZ eES Ees

A(*A)i a(*a)I e(*A)o E(*a)O e(*E)I E(*e)i

Proof. From the strongly valid syllogism AAa-IV and monotonicity (Theorem 4), we prove,
by transitivity, the strongly valid syllogism in the first column. Similarly, we can prove
the strong validity of the syllogisms in the other columns by monotonicity (Theorems A2
and 4).

Theorem 34. Let syllogisms eAe-IV, EaE-IV, eEA-IV, and Eea-IV be strongly valid in T IQ. Then,
the following syllogisms are strongly valid in T IQ: (*e)AO-IV, (*E)ao-IV, (*e)Ei-IV, and (*E)eI-IV.

Proof. This can be proven by transitivity and by Proposition 2.

Theorem 35. Let syllogisms oAO-IV, Oao-IV, oEi-IV, OeI-IV, IEo-IV, and ieO-IV be strongly
valid in T IQ. Then, the following syllogisms are strongly valid in T IQ:
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(*e)AO (*E)ao (*e)Ei (*E)eI (*A)Eo (*a)eO
(*b)AO (*B)ao (*b)Ei (*B)eI (*P)Eo (*p)eO
(*d)AO (*D)ao (*d)Ei (*D)eI (*T)Eo (*t)eO
(*g)AO (*G)ao (*g)Ei (*G)eI (*K)Eo (*k)eO
(*v)AO (*V)ao (*v)Ei (*V)eI (*F)Eo (*f)eO
(*z)AO (*Z)ao (*z)Ei (*Z)eI (*S)Eo (*s)eO

oAO Oao oEi OeI IEo ieO

Proof. From the strongly valid syllogism oAO-IV and monotonicity (Theorem 4), we prove
the strongly valid syllogisms in the first column by transitivity. The syllogisms in the other
columns can be proven similarly, by using monotonicity (Theorems A2 and 4).

3.8. Examples of Logical Syllogisms in Finite Model

The model theory deals with the relation between syntax and semantics. In finite model
theory, an interpretation is restricted to finite structures which have finite universes. In our
examples, the models are restricted to finite universes—the universe in the first example
consists of six elements and the universe in the second example consists of eight elements.

Below, we introduce several examples of new forms of logical syllogisms. We will show
examples of valid syllogisms in the simple model with the finite set Mε of elements. Details of
the constructed model can be found in [16]. The built model isM = 〈(Mα,=α)α∈Types,L∆〉,
where Mo = [0, 1] is based on the standard Łukasiewicz MV∆-algebra. The Łukasiewicz
biresiduation↔ represents the fuzzy equality =o. The logical implication is represented by
the Łukasiewicz residuation→.

We will assume the example of the fuzzy measure which was proposed in Section 2.3
by Equation (6). For modelM, it holds true thatM |= T IQ. The syllogism in modelM is
valid if

M(P1)⊗M(P2) ≤M(C).

3.8.1. Example of Valid Syllogism of Figure III

Let us assume the following syllogism:

AOo:
P1 : All flu are viral diseases.
P2 : Some flu are not diseases transmittable to humans
C Some diseases which are not transmittable to humans are viral diseases.

We assume the frame which is described in the previous subsection. Let Mε be a set of
diseases. We consider six diseases U = {u1, u2, u3, u4, u5, u6}. We interpret the formulas in
the considered model as follows: Let Fluoε be the formula “flu”, with the interpretation
M(Fluoε) = F ⊂∼ Mε defined by

F = {0.3/u1, 0.8/u2, 0.4/u3, 0.7/u4, 0.4/u5, 0.5/u6}.

Let Viroε be the formula “viral diseases”, with the interpretationM(Viroε) = V ⊂∼ Mε

defined by
V = {0.8/u1, 0.2/u2, 0.3/u3, 0.9/u4, 0.7/u5, 0.6/u6}.

Let Tranoε be the formula “diseases transmittable to humans”, with the interpretation
M(Tranoε) = T ⊂∼ Mε defined by

T = {0.2/u1, 0.1/u2, 0.7/u3, 0.3/u4, 0.1/u5, 0.6/u6}.

Let Ntranoε be the formula “diseases not transmittable to humans”, with the interpre-
tationM(Ntranoε) = ¬T ⊂∼ Mε defined by

¬T = {0.8/u1, 0.9/u2, 0.3/u3, 0.7/u4, 0.9/u5, 0.4/u6}.
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Major premise: “All flu are viral diseases” is the formula:

Q∀Bi∆∆∆(Fluoε, Viroε) := (∀xε)(Fluoε(xε)⇒⇒⇒ Viroε(xε)),

which is interpreted by:

M(Q∀Bi∆∆∆(Fluoε, Viroε)) =
∧

m∈Mε

(M(Fluoε(m))→M(Viroε(m))) = 0.4. (20)

Minor premise: “Some flu are not diseases transmittable to humans” is the formula:

Q∃Bi∆∆∆(Fluoε, Ntranoε) := (∃xε)(Fluoε(xε)∧∧∧Ntranoε(xε)),

which is interpreted by:

M(Q∃Bi∆∆∆(Fluoε, Ntranoε)) =
∨

m∈Mε

(M(Fluoε(m)) ∧M(Ntranoε(m))) = 0.8. (21)

Conclusion: “Some diseases which are not transmittable to humans are viral diseases”
is the formula:

Q∃Bi∆∆∆(Ntranoε, Viroε) := (∃xε)(Ntranoε(xε)∧∧∧Viroε(xε)),

which is interpreted by:

M(Q∃Bi∆∆∆(Ntranoε, Viroε)) =
∨

m∈Mε

(M(Ntranoε(m)) ∧M(Viroε(m))) = 0.8. (22)

From (20)–(22), we can see that the condition of validity in our model is satisfied
becauseM(P1)⊗M(P2) = 0.4⊗ 0.8 = 0.2 ≤M(C) = 0.8.

3.8.2. Example of Valid Syllogism of Figure IV

(*g)Ei:
P1: Many diseases which are not lethal are virus diseases.
P2: All virus diseases can not be cured by antibiotics.
P3: Some diseases which can not be cured by antibiotics are not lethal diseases.

We suppose the same frame and the fuzzy measure as in the previous example. Let Mε

be a set of diseases. We consider eight diseases V = {v1, v2, v3, v4, v5, v6, v7, v8}. We inter-
pret the formulas in the considered model as follows: Let Nlethaloε be the formula “diseases
which are not lethal”, with the interpretationM(Nlethaloε) = ¬L ⊂∼ Mε defined by

¬L = {1/v1, 0.8/v2, 0.3/v3, 0.5/v4, 0.7/v5, 0.4/v6, 0.4/v7, 0.4/v8}.

Let Viroε be the formula “virus diseases”, with the interpretationM(Viroε) = V ⊂∼ Mε

defined by

V = {0.6/v1, 0.4/v2, 0.2/v3, 0.6/v4, 0.7/v5, 0.5/v6, 0.3/v7, 0.2/v8}.

Let Natboε be the formula “diseases which cannot be cured by antibiotics”, with the
interpretationM(Natboε) = ¬A ⊂∼ Mε defined by

¬A = {0.7/v1, 0.5/v2, 0.3/v3, 0.7/v4, 0.7/v5, 0.5/v6, 0.3/v7, 0.5/v8}.

Major premise: “Many diseases which are not lethal are virus diseases.” can be
represented in our model as:

M((∃zoε)[(∀xε)((Nlethaloε|zoε)(xε)⇒⇒⇒ Viroε(xε))&

&(∃xε)(Nlethaloε|zoε)(xε)∧∧∧ (¬Sm)((µ Nlethaloε)(Nlethaloε|zoε))]). (23)
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This leads us to find the fuzzy setM(Nlethaloε|zoε) = C ⊂∼ Mε, which gives us the
greatest degree in (23). It can be confirmed that fuzzy set C = {0.5/v4, 0.7/v5, 0.4/v6} ⊂∼ ¬L
leads to the greatest degree in (23).

M(Q∀¬ Sm(Nlethaloε, Viroε)) = 1⊗ 0.7∧ 1 = 0.7. (24)

Minor premise: “All virus diseases can not be cured by antibiotics” is the formula:

Q∀Bi∆∆∆(Viroε, Natboε) := (∀xε)(Viroε(xε)⇒⇒⇒ Natboε(xε)),

which is interpreted by:

M(Q∀Bi∆∆∆(Viroε, Natboε)) =
∧

m∈Mε

(M(Viroε(m))→M(Natboε(m))) = 1. (25)

Conclusion: “Some diseases which can not be cured by antibiotics are not lethal
diseases” is the formula:

Q∃Bi∆∆∆(Natboε, Nlethaloε) := (∃xε)(Natboε(xε)∧∧∧Nlethaloε(xε)),

which is interpreted by:

M(Q∃Bi∆∆∆(Natboε, Nlethaloε)) =
∨

m∈Mε

(M(Natboε(m)) ∧M(Nlethaloε(m))) = 0.7. (26)

From (24)–(26), we can see that the condition of validity is satisfied in our model
becauseM(P1)⊗M(P2) = 0.7⊗ 1 = 0.7 ≤M(C) = 0.7.

4. Discussion

In the discussion section, we will comment on new forms of fuzzy syllogisms which
we have proven in Section 3. In Section 3, we can see that we can order strongly valid
syllogisms into triangles or columns by monotonicity. In the vertexes of these triangles are
fuzzy syllogisms that consist of classical quantifiers or new forms of classical quantifiers. At
the endpoints of the columns are also fuzzy syllogisms which contain classical quantifiers
or new forms of classical quantifiers. Fuzzy syllogisms are proved by syntactic proofs,
but we also use monotonicity to prove the strong validity of fuzzy syllogisms. We use
monotonicity in three ways - to strengthen the first premise, to strengthen the second
premise, or to weaken the conclusion. We also use Proposition 2 for the proofs.

4.1. Figure I

In the proofs of the strongly valid syllogisms in Theorems 8, 10, 11 and 12, we use
monotonicity to weaken the conclusion. In these Theorems, we can see that we can order
strongly valid syllogisms by monotonicity into triangles.

In Theorem 15, we order, by monotonicity, the strongly valid syllogisms into columns.
In Theorem 15, we proved the syllogisms by strengthening the first premise.

4.2. Figure II

The structures of the syllogisms of Figure II are similar to the structures of Figure I.
We use monotonicity to weaken the conclusion in the proofs of Theorems 16–19. As we
can see in these Theorems that we ordered the strongly valid syllogisms into triangles
by monotonicity.

In Theorem 21, we ordered the syllogisms into columns by monotonicity. In the proof,
we used monotonicity to strengthen the first premise.

In Theorem 22, we can find eight strongly valid syllogisms. We showed the proof of
syllogism (*A)Ai-II, in which we can see that its presupposition is a formula (∃x)(¬Mx),
but the middle formula in this syllogism is (Mx). This is a consequence of the property of
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contraposition (Lemma A1(h)). The formula representing the presupposition is related to
the assumption that all formulas are not empty.

4.3. Figure III

Figure III is different than previous figures. Firstly, on this figure, we can prove non-
trivial syllogisms. Non-trivial syllogisms are syllogisms, as we said in the introduction,
which contain intermediate quantifiers in both premises. This group of syllogisms is specific
in that valid syllogisms work with a common presupposition. While in the previous figures, it
was enough to always assume the presupposition and thus the non-emptiness of the fuzzy
set for one fuzzy set, for non-trivial syllogisms it is necessary to assume the non-emptiness
of the fuzzy set in the antecedent in both premises. This assumption is represented by the
formula below.

(∃x)((B|z) x &&&(B|z′) x). (27)

We denote the Formula (27) as a common presupposition of existential import of two
fuzzy intermediate quantifiers (Q∀Ev x)(B, A) and (Q∀Ev x)(B,¬¬¬A).

We can order strongly valid syllogisms by monotonicity into triangles. As we can
see in Theorems 24 and 26–28, these triangles are oriented differently than the triangles in
Figure I and Figure II. In the proofs of Theorems 24 and 26–28, we strengthen the second
premise to obtain strongly valid syllogisms in the columns. To obtain the strong validity
the syllogisms in the first row, we strengthen the first premise.

In Theorem 29, we can order the strongly valid syllogisms into columns by monotonic-
ity. In this Theorem, we use monotonicity to weaken the conclusion.

4.4. Figure IV

In Figure IV, we order strongly valid syllogisms only into columns by monotonicity.
We can see that in Theorem 32, we use monotonicity to strengthen the second premise. We
can also see that in Theorem 33, we use monotonicity to weaken the conclusion. Finally, we
can see that in Theorem 35, we use monotonicity to strengthen the first premise.

5. Conclusion and Future Work

In the article, we followed up on previous results concerning the formal proof of fuzzy
logic syllogisms in fuzzy natural logic. In the introduction to the article, we first set out
the motivation for this, with various references to application areas that address the issue
of fuzzy generalized quantifiers. We also introduced the reader to the main mathematical
territories that shape natural fuzzy logic. The main results are contained in the third section,
where we first presented the mathematical definitions of fuzzy intermediate quantifiers
that form a graded Peterson’s cube of opposition. We managed to formally prove, in the
formal mathematical system, several new forms of logical syllogisms, the validity of which
we semantically verified in the finite model. The main result is that all syntactically proven
fuzzy syllogisms hold in every model.

We see further development of this article in two directions. We will first focus on
extending the structure of valid fuzzy logical syllogisms by more premises. In the second
part, we would like to mathematically propose Peterson’s rules of distributivity, quality,
and quantity for verifying the validity of logical syllogisms related to a graded Peterson’s
cube of opposition. The second main objective for the future is to program an algorithm
based on these rules and verify the validity of new forms of fuzzy syllogisms automatically.
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Appendix A

Appendix A.1. Main Properties of Ł-FTT

The following properties are provable in Ł-FTT and will be used in the proofs.

Lemma A1. (Propositional properties [32]) Let A, B, C, D ∈ Formo. Then, the following is
provable:

(a) ` ((A&B)⇒⇒⇒ C) ≡ (A⇒⇒⇒ (B⇒⇒⇒ C));
(b) ` (A⇒⇒⇒ (B⇒⇒⇒ C))⇒⇒⇒ (B⇒⇒⇒ (A⇒⇒⇒ C));
(c) ` (A&B)⇒⇒⇒ A; (A∧∧∧ B)⇒⇒⇒ A; (A&B)⇒⇒⇒ (A∧∧∧ B);
(d) ` (A&B) ≡ (B&A);
(e) ` (B⇒⇒⇒ C)⇒⇒⇒ ((A⇒⇒⇒ B)⇒⇒⇒ (A⇒⇒⇒ C));
(f) ` (C⇒⇒⇒ A)⇒⇒⇒ ((C⇒⇒⇒ B)⇒⇒⇒ (C⇒⇒⇒ (B∧∧∧ A)));
(g) ` (A⇒⇒⇒ B)⇒⇒⇒ ((A∧∧∧ C)⇒⇒⇒ (B∧∧∧ C));
(h) ` (A⇒⇒⇒ B)⇒⇒⇒ (¬¬¬B⇒⇒⇒¬¬¬A);
(i) ` ((A⇒⇒⇒ B)&(C⇒⇒⇒ D))⇒⇒⇒ ((A&C)⇒⇒⇒ (B&D)).

Lemma A2. (Properties of quantifiers [32]). Let A, B ∈ Formo and α ∈ Types. Then, the following
is provable:

(a) ` (∀xα)(A⇒⇒⇒ B)⇒⇒⇒ ((∀xα)A⇒⇒⇒ (∀xα)B);
(b) ` (∀xα)(A⇒⇒⇒ B)⇒⇒⇒ ((∃xα)A⇒⇒⇒ (∃xα)B);
(c) ` (∀xα)(A⇒⇒⇒ B)⇒⇒⇒ (A⇒⇒⇒ (∀xα)B), xα is not free in A;
(d) ` (∀xα)(A⇒⇒⇒ B)⇒⇒⇒ ((∃xα)A⇒⇒⇒ B), xα is not free in B.

Lemma A3. Let T be a theory and A, B, C, D ∈ Formo.

If T ` A⇒⇒⇒ (B⇒⇒⇒ C), then T ` A⇒⇒⇒ ((B∧∧∧ D)⇒⇒⇒ (C∧∧∧ D)).

In the proofs, we also use the rules of modus ponens and generalization, which are
derived rules in our theory.

Theorem A1 ([32]). Let T be a theory, and A, B ∈ Formo and α ∈ Types.

• If T ` A and T ` A⇒⇒⇒ B, then T ` B;
• If T ` A, then T ` (∀xα)A.

Appendix A.2. Graded Peterson’s Square of Opposition

The characteristics and position of the above-mentioned fuzzy intermediate quantifiers
were studied using a graded Peterson’s square of opposition. In this part of the article, we
will not deal with the whole construction of the square in detail (for details, see [19]). We
will recall the main definitions that form the before-mentioned square of oppositions, and
show the connection between the property of monotonicity and the property of sub-altern.

Definition A1. Let T be a consistent theory of Ł-FTT, M |= T be a model, and P1, P2 be
closed formulas.

• P1 and P2 are contraries ifM(P1)⊗M(P2) = 0;
• P1 and P2 are sub-contraries ifM(P1)⊕M(P2) = 1;
• P1 and P2 are contradictories if bothM(∆∆∆P1)⊗M(∆∆∆P2) = 0 andM(∆∆∆P1)⊕M(∆∆∆P2) = 1;
• P2 is a sub-altern of P1 ifM(P1) ≤M(P2).
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The proposed mathematical definitions generalize the classical definitions that form
both Aristotle’s and Peterson’s squares of opposition. At this point, we would like to
emphasize that all formally proven syllogisms apply in every model of TIQ.

A : All Bs are A E : No Bs are A

P : Almost all Bs are A B : Almost all Bs are not A

T : Most Bs are A D : Most Bs are not A

K : Many Bs are A G : Many Bs are not A

F : A few Bs are A V : A few Bs are not A

S : Several Bs are A Z : Several Bs are not A

I : Some Bs are A O : Some Bs are not A

Figure A1. 7-graded Peterson’s square of opposition.

Let us remind that the dashed lines denote contraries, the straight lines indicate
contradictories, and the dotted lines represent subcontraries. The arrows denote the
relation between superaltern–subaltern.

We continue with the theorem which represents the property of the monotonicity of
quantifiers which form the 7-graded Peterson’s square of opposition.

Theorem A2. [16] Let A,. . . ,O be intermediate quantifiers. Then, the following set of implications
is provable in TIQ:

1. TIQ ` A⇒⇒⇒ P, TIQ ` P⇒⇒⇒ T, TIQ ` T⇒⇒⇒ K,
TIQ ` K⇒⇒⇒ F, TIQ ` F⇒⇒⇒ S, TIQ ` S⇒⇒⇒ I;

2. TIQ ` E⇒⇒⇒ B, TIQ ` B⇒⇒⇒ D, TIQ ` D⇒⇒⇒ G,
TIQ ` G⇒⇒⇒ V, TIQ ` V⇒⇒⇒ Z, TIQ ` Z⇒⇒⇒ O.

There are, of course, other studies of the graded cube of opposition. At this point, we
also recall the classic cubes of opposition that were proposed by Moretti and Keyne. Gradual
extensions to these two structures have been made and deeply studied by Dubois et al. in [36].
In the possibility theory, a graded extension of these cubes of opposition was analyzed by
Dubois in [37].
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