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Abstract: Nonlinear mixed effects models have become a standard platform for analysis when
data is in the form of continuous and repeated measurements of subjects from a population of
interest, while temporal profiles of subjects commonly follow a nonlinear tendency. While frequentist
analysis of nonlinear mixed effects models has a long history, Bayesian analysis of the models has
received comparatively little attention until the late 1980s, primarily due to the time-consuming
nature of Bayesian computation. Since the early 1990s, Bayesian approaches for the models began to
emerge to leverage rapid developments in computing power, and have recently received significant
attention due to (1) superiority to quantify the uncertainty of parameter estimation; (2) utility to
incorporate prior knowledge into the models; and (3) flexibility to match exactly the increasing
complexity of scientific research arising from diverse industrial and academic fields. This review
article presents an overview of modeling strategies to implement Bayesian approaches for the
nonlinear mixed effects models, ranging from designing a scientific question out of real-life problems
to practical computations.
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1. Introduction

One of the common challenges in biological, agricultural, environmental, epidemiolog-
ical, financial, and medical applications is to make inferences on characteristics underlying
profiles of continuous, repeated measures data from multiple individuals within a popu-
lation of interest [1–4]. By ‘repeated measures data’ we mean the data type generated by
observing a number of individuals repeatedly under differing experimental conditions,
where the individuals are assumed to constitute a random sample from a population of
interest. A common type of repeated measures data is longitudinal data such that the
observations are ordered by time [5,6].

Linear mixed effects models for repeated measures data have become popular due
to their straightforward interpretations, flexibility allowing correlation structure among
the observations, and utility accommodating unbalanced and multi-level data structure
(i.e., clustered designs that vary among individuals) [7,8]. The modeling framework is
also intuitively appealing: the central idea that individuals’ responses are governed by a
linear model with slope or intercept parameters that vary among individuals seems to be
appropriate in many scientific problems (for, e.g., see [9,10]). It also allows practitioners to
test and evaluate multivariate causal relationships by conducting regression analysis at the
population level. By preserving the multi-level structure in a single model, estimation or
prediction for the analyses can take advantage of information borrowing [11].

For many applications, researchers often want to theorize that time courses of individ-
ual response commonly follow a certain nonlinear function dictated by a finite number of
parameters [12]. These nonlinear functions are based on reasonable scientific hypotheses,
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typically represented as a differential equation system. By tuning the parameters, the shape
of the function in terms of curvature, steepness, scale, height, etc., may change, which is
used as the rationale behind describing heterogeneity between subjects. Nonlinear mixed
effects models, also referred to as hierarchical nonlinear models, have gained broad accep-
tance as a suitable framework for these purposes [13–15]. Analyses based on this model
are now routinely reported in various industrial problems, which is, in part, enabled by the
breakthrough development of software [16–20]. The excellent books and review papers
were published by [14,15,21]. Although their works were published more than 20 years
ago, they still provide statisticians, programmers, and researchers with many pedagogical
insights about the modeling framework, implementations, and practical applications of
using the nonlinear mixed effects models.

While frequentist analysis of nonlinear mixed effects models has a long history,
Bayesian analysis for the models was a relatively dormant field until the late 1980s. This is
due primarily to the time-consuming nature of the calculations required for Bayesian com-
putation to implement a Bayesian model [22]. Since the early 1990s, Bayesian approaches
began to re-emerge, motivated both by exploitation of rapid developments in computing
power and by the growing desire to quantify the uncertainty associated with parameter
estimation and prediction [23–25]. Since then, Bayesian nonlinear mixed effects models,
also called Bayesian hierarchical nonlinear models, have been extensively used in diverse
industrial and academic researches, endowed with new computational tools providing a far
more flexible framework for statistical inference exactly matching the increasing complexity
of scientific research [26–31].

The objective of this article is to present an updated look at the Bayesian nonlinear
mixed effects models. Although the works of [14,15] discuss some of the Bayesian ap-
proaches for the nonlinear mixed effects models, the main perspective adopted in the
works is much more oriented to the frequentist framework, and prior distributions and
Bayesian computing strategy explained in the works are quite outdated. In the literature,
it is striking that very few research works provide an updated overview of the Bayesian
methodologies on the nonlinear mixed effects models. Motivated by this, in this article,
we provide an overview of modeling strategies to implement Bayesian approaches for the
nonlinear mixed effects models, ranging from designing a scientific question out of real-life
problems to practical computations. The novelty of this paper is as follow:

I. Guidance for Bayesian workflow to solve a real-life problem is provided for domain
experts to facilitate efficient collaboration with quantitative researchers;

II. Recently developed prior distributions and Bayesian computation techniques for a
basic model and its extensions are illustrated for statisticians to develop more complex
models built on the basic model;

III. Illustrated methodologies can be directly exploited in diverse applications, ranging
from small data to big data problems, for quantitative researchers, modeling scientists,
and professional programmers working in diverse industries.

This article is organized as follows. In Section 2, we explore trends and workflow
on the use of Bayesian nonlinear mixed effects. In Section 3, we motivate readers to
understand why it is necessary to use the Bayesian nonlinear mixed effects model by
illustrating four real-life problems, which will be conceptualized as a statistical problem.
To solve the statistical problem, we suggest a basic version of the Bayesian nonlinear mixed
effects models in Section 4, and its likelihood is analyzed in Section 5 wherein frequentist
computations are briefly discussed. Section 6 describes modern Bayesian computation
strategies to implement the basic model. Popularly used prior distributions are presented
in Section 7. Section 8 discusses model selection, and Section 9 reviews recent advances
and extensions that build on the basic model. Finally, Section 10 concludes the article.
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2. Trends and Workflow of Bayesian Nonlinear Mixed Effects Models
2.1. Rise in the Use of Bayesian Approaches for the Nonlinear Mixed Effects Models

As of January 1970 to December 2021, PubMed.gov (https://pubmed.ncbi.nlm.nih.
gov/, accessed on 23 February 2022) searched of “nonlinear mixed-effect models” yielded
6288 publications. Among the published articles, nearly 94% of works used frequentist
approaches (5929 articles), while only 6% of works adopted Bayesian approaches (359
articles). Figure 1 displays a bar plot based on the published articles, categorized by the
frequentist and Bayesian approaches over time. In the panel, it is observed that, until the
late 1980s, the Bayesian research was nearly dormant, but since the early 1990s, Bayesian
works begin to re-emerge, and the gap between frequentist and Bayesian works becomes
gradually narrower as time evolves.
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Figure 1. Publication trends of the nonlinear mixed-effect models categorized by frequentist and
Bayesian frameworks. the x-axis represents the year from 1 January 1970 to 31 December 2021.
The value on the y-axis is the number of published articles in each year (data sources: PubMed.gov,
accessed on 23 February 2022).

The dormancy of the Bayesian approaches until the late 1980s is mainly due to the time-
consuming nature of the calculations based on a sampling scheme, which was previously
impossible by the limitation of computing power. Fortunately, a breakthrough in computer
processors (for, e.g., Am386 in 1991, Pentium Processor in 1993, etc.) took place in the
early 1990s, driving the computing revolution to solve computationally intense problems,
and this has given the statistical community the ability to solve statistical questions by
using Bayesian methods. This timeline is also aligned with the widespread Markov chain
Monte Carlo (MCMC) sampling techniques in the Bayesian community [32,33]. Since then,
the Bayesian community has been gradually gaining the momentum to leverage the rapidly
growing developments of computing power, and now, assorted Bayesian software packages
(e.g., JAGS [34], BUGS [35], and STAN [17]) are available for researchers to answer scientific
questions arising from industrial and academic research.

To understand the rise of the Bayesian approaches, we first want to understand what
will be some of the advantages of using Bayesian methods over frequentist methods in the
context of nonlinear mixed effects models. As the primary focus of this review paper is to
provide the readers with some insight on methodologies and practical implementation of
using Bayesian approaches, our comparison and exposition below are described from an
operational viewpoint. Table 1 summarizes the modeling strategies of using the frequen-
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tist and Bayesian approaches for the nonlinear mixed effects models. Broadly speaking,
the usual estimation method of the frequentist computation is optimization, while that
of the Bayesian computation is sampling. Normally, it is known that the former is much
faster than the latter. This is not surprising because a sampling scheme, by its nature, needs
to explore a wide range of the parameter space, whereas the optimization only needs to
find the best point estimate, which is often described by the maximum likelihood estimate.
In many practical problems, widely used frequentist optimization algorithms are the first-
order approximation [36], Laplace approximation [37], and stochastic approximation of
expectation-maximization algorithm [38]. They will be briefly discussed in Section 5.4.
As for the Bayesian sampling algorithms, combinations of Gibbs sampler [39], Metropolis-
Hastings algorithm [40], Hamiltonian Monte Carlo [41], and No-U-Turn sampler [42] are
popularly used, among many others [43–45]. We explain these in detail in Section 6.

Table 1. Comparison of modeling strategies used in frequentist and Bayesian approaches for the
nonlinear mixed effects models from an implementational viewpoint.

Characteristic Frequentist Bayesian

Estimation objective Maximize a
likelihood [14,15,21]

Sample from a
posterior [22,28,30]

Computation algorithm

First-order
approximation [36], Laplace

approximation [37],
and stochastic approximation

of EM algorithm [38]

Gibbs sampler [39],
Metropolis-Hastings

algorithm [40], Hamiltonian
Monte Carlo [41],

and No-U-Turn sampler [42]

Software SAS [46], NONMEM [47],
MONOLIX [48], NLMIXR [18]

JAGS [49], BUGS [35],
STAN [17], BRMS [50]

Advantages

Relatively fast computation
speed, the objectivity of

inference results, and widely
available software packages to
implement complex models

Inherent uncertainty
quantification, better small

sample performance,
and utility of prior

knowledge

Disadvantages

Needs large-sample theory for
uncertainty quantification and

cannot incorporate prior
knowledge

Needs high computing power
for big data and requires

Bayesian expertise in prior
elicitation

The stark difference between using frequentist and Bayesian approaches may be
the procedure of describing an uncertainty underlying the parameter estimation for the
nonlinear mixed effects models. Here, the parameter which is of primary interest is the
population-level parameters (also called fixed effects), typical values for the individual-
level parameters. In many cases, frequentist 95% confidence intervals for the parameters of
the models are constructed by assuming that asymptotic normality of maximum likelihood
estimator holds in a finite sample study, which is actually the most accurate in large
sample scenario [51]. Most frequentist software packages, such as NONMEM [13,47],
MONOLIX [48], and NLMIXR [18], by default, may print out a 95% confidence interval of the
form, “Estimate ± 1.96 × Standard Error”, or some transformation of the lower and upper
bounds, if necessary, such that the Standard Error is calculated by using (observed) Fisher
information matrix [52–54]. Using such a scheme in small sample studies is highly likely to
overlook the gap between the reality of the data and the idealistic asymptotic situation.

In contrast, as for the Bayesian approaches, the large-sample theory is not needed
for the uncertainty quantification, and the procedure to obtain 95% posterior credible
intervals is a lot easier than obtaining 95% confidence intervals (See Chapter 4 of [55]).
Furthermore, Bayesian credible intervals based on percentiles of posterior samples allow
for a strongly skewed distribution, wherein frequentist confidence intervals (based on
large-sample theory) may induce a non-negligible approximating error due to the deviation
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from the asymptotic normality. Along with that, Bayesian methods are highly appreciated
when researchers wish to incorporate prior knowledge from previous studies into the
model so that posterior inference provides the researchers with an updated view on the
problem, possibly with a more accurate estimation. Using prior information would be
particularly useful in small-sample contexts [56,57]. For example, in medical device clinical
trials, some opportunities and challenges in developing a new medical device are: (i) there
is often a great deal of prior information for a medical device; (ii) a medical device evolves
in relatively small increments from previous generations to a new generation; (iii) there
are only a few numbers of patients for the trials; and (iv) companies need to make a
rational decision promptly to reduce cost. In those settings, Bayesian methods have
been demonstrated to be suitable, and their proper use is guided by Food and Drug
Administration [58,59].

2.2. Bayesian Workflow

We outline the first two steps in the Bayesian workflow of using Bayesian nonlinear
mixed effect models described in Figure 2. The panel includes some mathematical notations
that are consistently used throughout the paper. These notations will be clearly understood
later. The aim of our explanation at this point is to provide readers with a blueprinted plan
to implement Bayesian modeling strategies for the nonlinear mixed effects models. We
assume that readers are familiar with basic concepts and generic workflow in Bayesian
statistics; see [55,60,61] for those basic concepts and refer to the review paper by [62] and
references therein for detailed concepts and general terminologies used in workflow, such
as prior and posterior predictive checks, and prior elicitation, etc.

The first step of the Bayesian research cycle is (a) standard research cycle [63,64]. Some
early activities at this step involve reviewing literature, defining a problem, and specifying
a research question and a hypothesis. After that, researchers specify which analytic strategy
would be taken to solve the research question and suggest possible model types, followed
by data collection. The data type arising in this process may include a response variable and
some covariates that are grouped longitudinally, which then formulates repeated measures
data of a population of interest. Furthermore, if there appears to be some nonlinear temporal
tendency at each subject, then a possible model type for the analysis is a nonlinear mixed
effects model [15,65].

The second step of the Bayesian research cycle is (b) Bayesian-specific workflow.
Logically, the first thing to do at this step is to determine prior distributions (see Step
(b)–(i) in Figure 2). The selection of priors is often viewed as one of the most crucial
choices that a researcher makes when implementing a Bayesian model, as it can have
a substantial impact on the final results [66]. As exemplified earlier in the context of
Bayesian medical device trials, using a prior in small sample studies may improve the
estimation accuracy, but an unthoughtful choice of priors would lead to a significant
bias in estimation. Prior elicitation effort would require Bayesian expertise to formulate
domain expert’s knowledge in a probabilistic form [67]. Strategies for prior elicitation
include asking domain experts to provide suitable values for the hyperparameters of the
prior [68,69]. After prior is specified, one can check the appropriateness of the priors
through prior predictive checking process [70]. For almost all practical problems, prior
distribution of Bayesian nonlinear mixed effect models can be hierarchically represented
as follow: (1) a prior for the parameters used in likelihood, often called ‘population-level
model’ in the literature of mixed effects modeling; and (2) a prior for the parameters used
in the population-level model and for the parameters describing the residual errors used in
likelihood. It is important to note that the former type of prior distribution (that is, (1)) is
also a requirement to implement frequentist approaches for the nonlinear mixed effects
model, as a name of ‘distribution for random effects’. Essentially, the defining factor of the
Bayesian framework is the latter type of prior distribution (that is, (2)), which is fixed in the
frequentist framework, as a name of ‘fixed effects’. Some prior options of the latter type
will be discussed in Section 7.
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Figure 2. The Bayesian research cycle. A research cycle using Bayesian nonlinear mixed effects
model comprises two steps: (a) standard research cycle and (b) Bayesian-specific workflow. Standard
research cycle involves literature review, defining a problem and specifying the research question
and hypothesis. Bayesian-specific workflow comprises three sub-steps: (b)–(i) formalizing prior
distributions based on background knowledge and prior elicitation; (b)–(ii) determining the likelihood
function based on a nonlinear function f ; and (b)–(iii) making a posterior inference. The resulting
posterior inference can be used to start a new research cycle. Distributions for prior, likelihood,
and posterior are colored in blue, yellow, and green, respectively. Θ, model matrix; σ2, error variance
parameter; α, intercepts; B, coefficient matrix; Ω, covariance matrix; p(.), probability distribution;
π(.), prior or posterior probability distribution; {(yi, ti, xi)}N

i=1, data.

The second task is to determine the likelihood function (see Step (b)–(ii) in the panel).
At this time, the raw dataset collected in (a) standard research cycle should be cleaned
and preprocessed. Before embarking on more serious statistical modeling, it is a common
practice to get some insight about the research question via exploratory data analysis
and have a discussion with domain experts such as clinical pharmacologists, clinicians,
physicians, engineers, etc. To some extent, eventually, all these efforts are to determine a
nonlinear function (denoted as f in this paper) that best describes the temporal profiles
of all subjects. This nonlinear function is a known function because it should be specified
by researchers. In other words, the branch of the nonlinear mixed effects models belongs
to parametric statistics. However, one technical challenge is that, in many problems, such
a nonlinear function is represented as a solution of a differential equation system [71,72],
and therefore there is no guarantee that we can conveniently work with a closed-form
expression of the nonlinear function. For example, if researchers wish to work with
nonlinear differential equations [73,74], then some approximation via differential equation
solver [75,76] may be needed to calculate the nonlinear function. As such, most software
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packages dedicated to implementing a nonlinear mixed effect model, or, more generally,
a Bayesian hierarchical model, are equipped with several built-in differential equation
solvers [17,47,77]. For instance, visit the website (https://mc-stan.org/docs/2_29/stan-
users-guide/ode-solver.html, accessed on 20 February 2022) to see some functionality
supported in Stan [17].

Finally, the likelihood is combined with the prior to form the posterior distribution (see
Step (b)–(iii) in the panel). Given the important roles that the prior and the likelihood have
in determining the posterior, this step must be conducted with care. The implementational
challenge at this step is to construct an efficient MCMC sampling algorithm. The basic
idea behind MCMC here is the construction of a sampler that simulates a Markov chain
that is converging to the posterior distribution. One can use software packages if prior
distributions to be implemented in Bayesian models exist in the list of prior options
available in the packages. Otherwise, professional programmers and Bayesian statisticians
are needed to make codes manually; this review paper will be useful for that purpose.
Another activity important at this step is to compare multiple models with different priors
and nonlinear functions, specified in Step (b)–(i) and (ii), and select the best model out
of them. This topic is broadly called the model selection [78], which will be discussed in
Section 8.

3. Applications of Bayesian Nonlinear Mixed Effects Model in Real-Life Problems
3.1. The Setting

To exemplify circumstances for which the nonlinear mixed effects model is a suitable
modeling framework, we review challenges from several diverse applications. Table 2
summarize four real-life problems that will be illustrated in the next subsections.

Table 2. Summary of examples.

Research Field Problem Objective References

Pharmaceutical
industry

Pharmacokinetics
analysis

Estimation of typical
values of

pharmacokinetics
parameters

[79–82]

Oil and gas industry Decline curve
analysis

Prediction of
estimated ultimate

recovery
[31,83–85]

Financial industry Yield curve modeling
Estimation of the

interest rate
parameters over time

[86–89]

Epidemiology Epidemic spread
prediction

Prediction of final
epidemic size and
finding risk factors

[30,90,91]

3.2. Example 1: Pharmacokinetics Analysis

Studies of the pharmacokinetics of drugs help us learn about the variability in drug
disposition in a population [92]. Figure 3 shows theophylline concentration in the plasma
as a function of time after oral administration of the same amount of anti-asthmatic theo-
phylline for 12 subjects (the data considered here are courtesy of Dr. Robert A. Upton of
the University of California, San Francisco.) As seen in the panel, concentration trajec-
tories have a similar functional shape for all individuals. However, Cmax and tmax (peak
concentration and time when it is achieved), absorption, and elimination phases are sub-
stantially different across subjects. Clinical pharmacologists believe that these differences
are attributable to between-subject variation in the underlying pharmacokinetic processes,
explained by Absorption, Distribution, Metabolism, and Excretion (ADME), understanding
of which is crucial in a new drug development in the pharmaceutical industry.

https://mc-stan.org/docs/2_29/stan-users-guide/ode-solver.html
https://mc-stan.org/docs/2_29/stan-users-guide/ode-solver.html
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Figure 3. Theophylline concentrations for 12 subjects following an oral dose.

In pharmacokinetics analysis, often abbreviated by ‘PK analysis’, it is routine to use
compartmental modeling to describe the amount of drug in the body by dividing the whole
body into one or more compartments [93]. For theophylline, a one-compartment model is
normally used, which assumes that the entire body acts like a single, uniform compartment;
see page 30 from [94] for a detailed explanation about the model:

C(t) =
DFka

V(ka − Cl/V)

{
exp

(
−Cl

V
t
)
− exp(−kat)

}
, (1)

where C(t) is drug concentration at time t for a single subject following oral dose D at t = 0.
Here, F is the bioavailability which expresses the proportion of a drug that gains access
to the systemic circulation. ka is the absorption rate constant describing how quickly the
drug is absorbed from the gut into the systemic circulation. V is the volume of the central
compartment. Cl is the clearance rate representing the volume of plasma from which the
drug is eliminated per unit time. Eventually, the pharmacokinetic processes for a given
subject is summarized by the 4-dimensional vector with ‘PK parameters’ (F, ka, V, Cl).
Obviously, it is the modeler’s discretion to proceed with a more complex PK model such
as a three compartment models with nonlinear clearance to fit the data, but in this case,
over-parameterization should be carefully examined [95].

Typically, the dataset collected in a drug development program includes demographic
and clinical covariates obtained from each subject, for, e.g., body weight, height, age,
sex, creatinine clearance, albumin, etc.; and furthermore, one can also involve genetic
information in an individual’s response to drugs. Most covariates are measured at baseline,
before assigning the drug, while some covariates can be measured at every sampling time.
One of the crucial goals of PK analysis is to illustrate the effect of such covariates on the
PK parameters [96]. The causal relationship inferred by the covariate analysis can be used
to support physicians in making the necessary judgments about the medicines that they
prescribe, tailored to individual patients [97].

In a PK report for a new drug application to government authorities like U.S. Food
and Drug Administration (FDA) or European Medicines Agency (EMA), the PK param-
eters are summarized by mean or median, and very importantly, estimates of parameter
precision. Estimates of parameter precision can provide valuable information regarding
the adequacy of the data to support those parameters [98]. Parameter uncertainty can be
estimated through several methods, including bootstrap procedures [99], log-likelihood
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profiling [100], or using the asymptotic standard errors of parameter estimates, and recently,
Bayesian approaches draw a lot of attention from the pharmaceutical industry [101]. Partic-
ularly, Bayesian approach for the population PK analysis can be very useful when there is
prior knowledge about PK parameters learned from preclinical studies, published works,
etc., and one wants to incorporate them into the prior specification for PK parameters [28].

3.3. Example 2: Decline Curve Analysis

The US shale boom—a product of technological advances in horizontal drilling and
hydraulic fracturing that unlocked new stores of energy—has greatly benefited the growth
in the US economy. Horizontal drilling is a directional drilling technology where a well is
drilled parallel to the reservoir bedding plane [102]. Well productivity of a horizontal well
is known to often be 3 to 5 times greater than that of a vertical well [103,104], but it also
costs 1.5 to 2.5 times more than a vertical well [105]. Therefore, the eventual success of the
drilling project of unconventional shale wells relies on a large degree of well construction
costs [106]. Because of very low permeability, and a flow mechanism very different from
that of conventional reservoirs, estimates for the shale well construction cost often contain
high levels of uncertainty. For this reason, one of the crucial tasks of petroleum engineers is
to quantify the uncertainty associated with the process of oil or gas production to reduce
the extra initial risk for the projects.

Figure 4 shows monthly production rate trajectories of 360 shale oil wells completed
in the Eagle Ford Shale of South Texas, studied by [31]. The declining pattern manifested
in the trajectories is commonly observed in almost all oil production rate time series data
following well completion. Here, the completion is terminology in petroleum engineering,
meaning the process of transforming a well ready for the initial production [107]. Decline
curve analysis (DCA), introduced by [83] around 100 years ago, is one of the most popularly
utilized methods for petroleum engineers. Its purpose is to (i) theorize a curve describing
the declining pattern, (ii) analyze the declining production rates, (iii) characterize the
well-productivity, and (iv) forecast the future performance of oil and gas wells. Particularly,
estimation and uncertainty quantification of estimated ultimate recovery (EUR) (here, EUR
is a special jargon defined as an approximated quantity of oil from a well that is potentially
recoverable by the end of its producing life [108]) is the utmost important task and a starting
point in the decision-making process for future drilling projects. In addition, the oil and gas
companies comply with financial regulations for EUR outlined by the U.S. Securities and
Exchange Commission: see https://www.sec.gov/rules/final/2008/33-8995.pdf (accessed
on 20 February 2022), for the regulations.

Most curves used in DCA are derived from solving certain differential equations that
describe a hidden dynamic from production rate trajectory [109–114]. See [84,85,115,116]
for an overview of such curves. Ref. [31] studied Arps’ hyperbolic, stretched exponentiated
decline, Duong, and Weibull curves to fit the trajectories shown in the Figure 4. Particularly,
the Duong model was developed for unconventional reservoirs with very low permeability:

P(t) = q1t−m exp
{

a(t1−m − 1)
1−m

}
,

where P(t) is the production rate at time t for a single well following completion. q1 is
the initial rate coefficient, and m and a are additional model parameters. We note that the
parameters, q1, m and a, have their own meanings in terms of well-productivity: see [114]
for the interpretation. That being said, the well-productivity for a given well is summarized
by the 3-dimensional parameter vector, (q1, m, a). In a modeling perspective, the variation
of the well-productivity across different wells is attributable to the different values for
(q1, m, a). To explain this variability, one can regress the values (q1, m, a) on the well-design
parameters such as true vertical depth, measure depth, etc. The causal relationship inferred
by the covariate analysis will be used in a future drilling project. Geological information of
wells can also be incorporated to make a spatial prediction for the EUR at a new location,
as researched by [31].

https://www.sec.gov/rules/final/2008/33-8995.pdf
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Figure 4. Production rates for 360 shale oil wells after completion.

3.4. Example 3: Yield Curve Modeling

Macroeconomists, financial economists, and market participants all attempt to build
good models of the ‘yield curve’ [117]. The yield curve on a given day is a curve show-
ing the interest rates across different maturity spans (one month, one year, five years,
etc.) for a similar debt contract at a particular date. It determines the interest rate
pattern (i.e., cost of borrowing), which can be used to calculate a bond’s price [118].
Figure 5 shows daily treasury par yield curve rates spanning from 3 to 13 January 2022,
with maturities up to 30 years. The data source is from the U.S. Department of the trea-
sury (https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/
TextView.aspx?data=yield, accessed on 20 February 2022). As seen from the panel, the shape
of the yield curve displays a slightly delayed humped shape. Economists believe that such
a shape of the yield curve has an important implication on the economic growth [119].
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Figure 5. Daily Treasury par yield curve rates from 3 to 13 January 2022.

https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield
https://www.treasury.gov/resource-center/data-chart-center/interest-rates/Pages/TextView.aspx?data=yield
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The Nelson–Siegel model [86] is a very popular model in the literature to fit the term
structure:

Y(τ) = β0 + β1

{
1− exp(−λτ)

λτ

}
+ β2

{
1− exp(−λτ)

λτ
− exp(−λτ)

}
,

where Y(τ) denotes the (zero-coupon) yield evaluated at τ, and τ denotes the time to
maturity. The model parameters have a specific financial meaning: β0, β1, and β2 are
related long-term, short-term, and mid-term effects on the interest rate, respectively, and λ
is referred to as a decay factor [87]. Each of the yield curves is summarized by the 4-
dimensional parameter (β0, β1, β2, λ), and it is known that the model can capture a wide
range of possible shapes of the yield curve [86,87,120,121]. Therefore, the Nelson–Siegel
model is extensively used by central banks and monetary policymakers [122]. For example,
The Federal Reserve updates estimates of (β0, β1, β2, λ) once per week: visit the website
(https://www.federalreserve.gov/data/yield-curve-tables/feds200628_1.html, accessed
on 20 February 2022). In recent years, there has been a great deal of interest in the uncer-
tainty quantification of the Nelson–Siegel parameters over time, and their relationship with
macroeconomic variables such as inflation and real activity, etc, in financial applications:
refer to [121,123–125] for some of those works.

3.5. Example 4: Early Stage of Epidemic

Novel coronavirus disease 2019 (COVID-19) is a big threat to global health. The rapid
spread of the virus has created a pandemic, and countries all over the world are struggling
with a surge in COVID-19 infected cases. Figure 6 displays the daily infection trajectories
describing the cumulative numbers of infected cases for 40 countries, spanning from
22 January to 14 May 2020, studied by [30]. The data source is from COVID-19 Data
Repository by the Center for Systems Science and Engineering at Johns Hopkins University
(https://coronavirus.jhu.edu/map.html, accessed on 20 February 2022). Refer to Table S.1
in [30] for the list of 40 countries. The time frame of the authors’ research was the early
stage of the pandemic when there was no drug or other therapeutics approved by the
US FDA.
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Figure 6. Daily trajectories for cumulative numbers of COVID-19 infections for 40 countries from 22
January to 14 May 2020.

https://www.federalreserve.gov/data/yield-curve-tables/feds200628_1.html
https://coronavirus.jhu.edu/map.html
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In general, during an early phase of a pandemic, information regarding the disease is
very limited and scattered, even if it exists. In spite of that, it is crucial to predict future
cases of infection or death. In such a situation, one consideration is to use data integration
(also called ‘borrowing information’), combining data from diverse sources and eliciting
useful information with a unified view of them. Additionally, it is very important to find
risk factors relevant to the disease. Reliable and early risk assessment of a developing
infectious disease outbreak allow policymakers to make swift and well-informed decisions
that would be needed to ensure epidemic control. Quantifying uncertainty about the final
epidemic size is also very important.

Richards growth curve [126], so-called the generalized logistic curve [127], is a popu-
larly used growth curve for population studies in situations where growth is not symmet-
rical about the point of inflection [128,129]. There are variant reparamerized forms of the
Richards curve in the literature [130–133], and one of the frequently used form is

I(t) =
a

[1 + ξ exp{−b(t− c)}]1/ξ
,

where I(t) is the cumulative number of infected cases at time t. Here, epidemiological
meanings of the parameters, a, b, and c, are the final epidemic size, infection rate, and lag
phase of the trajectory, respectively. The parameter ξ is the shape parameter, and there
seems no clear epidemiological meaning [134]. Each infection trajectory in Figure 6 can be
characterized by the 4-dimensional parameters (a, b, c, ξ) if the Richards curve is used. Due
to its flexibility originating from the shape parameter ξ, Richards curve has been widely
used in epidemiology for real-time prediction of outbreak of diseases, possibly at an early
phase of the pandemic when there is no second wave. Examples include SARS [135,136],
dengue fever [137,138], pandemic influenza H1N1 [139], and COVID-19 outbreak [30,140].

3.6. Statistical Problem

In the previous subsections, we presented a range of examples in which nonlinear
mixed effects models can be exploited. They have their own challenges to solve the
problems that are representative of issues many researchers have to deal with in other areas:
for example, (1) how to describe a possible nonlinear clearance with a limited number of
patients; (2) how to handle an enormously large number of shale oil wells and make a
spatial prediction of EUR at a new location; (3) how to describe the dynamic of the financial
parameters over time; and (4) how to integrate data from different sources to produce more
accurate forecast on the epidemic size.

An emerging issue accompanied by these problems, requested from researchers,
government agencies, domain experts, etc., is how to quantify the uncertainty associated
with parameter estimation and prediction. Although the traditional nonlinear mixed effects
models, based on the maximum likelihood method, can provide confidence intervals
and statistical tests, calculations of those generally involve approximations that are most
accurate for large sample sizes, as discussed in Section 2.1. On the other hand, in the
Bayesian approach—in which the prior automatically imposes the parameter constraints—
inferences about parameter values based on the posterior distribution usually require
integration rather than maximization, and no further approximation is involved. For that
reason, the Bayesian approach is often suggested as a viable alternative to the frequentist
approach to solving the problems.

We now formulate these problems as a statistical problem. First, we summarize
common features of the dataset for the analysis.

(1) There exist repeated measures of a continuous response over time for each subject;
(2) There exists a variation of individual observations over time;
(3) There exists a variation from subject-to-subject in trajectories;
(4) There exist covariates measured at baseline for each subject.
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The subject of sampling units considered in the statistical analysis is quite compre-
hensive. We have seen that it can be a patient, a shale oil well, a particular date, and a
country. As the unique identifier, we assign the index i to each individual. By denoting
N as the number of individuals (i.e., the sample size), the index i will take an integer
from 1 to N. The sample size N available for the data analysis substantially varies across
different industrial problems as well as subfields within the same industry. For example,
the number of shale oil wells on Eagle Ford Shale Play can be as large as 6000 [31]. As for
the pharmaceutical industry, in phase I cancer clinical trials, the number of cancer patients
N may be strictly confined to 25 [141], but for phase III trials for non-oncology drug studies,
N can be as large as 2000 [142].

Here the term ‘time’ is meant in the broadest sense. It can be a calendar time, a nominal
time, a time after some event (e.g., the time after dose from Figure 3 and the time after well
completion from Figure 4), or a time to some event (e.g., the time to maturity from Figure 5).
Essentially, time can be defined as a physical quantity that can be indexed with consecutive
integers to produce a temporal record. Another important characteristic of the time is
that each subject may have different time points where observations are measured. In this
article, we use tij to represent the time point, where the integer j = 1, 2, · · · , Mi indexes
the time point from the earliest to the last observations. Thus, Mi represents the number
of repeated observations for the i-th individual. When Mi is relatively small (or large),
we say the repeated measures are sparsely observed (or densely observed). For example,
the theophylline and yield curve data shown in Figures 3 and 5 are sparse data, while the
oil production and COVID-19 data shown in Figures 4 and 6 are dense data.

As for the repeated measures, yij denotes the continuous response of the i-th subject at
the time point tij. We assume that yij has been already pre-processed so that it is ready to be
used for statistical modeling. For most applications, it may be necessary first to transform
the data into some new representation before training the model. For example, as seen
from Figure 4, oil productions vary substantially across different wells. For that reason,
the authors [31] take a logarithm on the productions to derive the response yij, followed by
appropriate statistical modeling on the log-scale. To some extent, data pre-processing may
enhance the performance of the model.

Suppose that researchers collected P number of covariates at the baseline from each
subject i (i = 1, · · · , N). Here, the baseline refers to the time point ti1 (or possibly right
before the time point ti1), where at the first response yi1 has not been observed yet. Let xib
denote the b-th covariate of the i-th subject (b = 1, · · · , P). In general, there are two types
of covariates: time-invariant and time-varying covariates. This article mainly concerns
the former type. As similar to N, the number of covariates P substantially varies across
industries and specific problems. For instance, in pharmacogenetics analysis, the number
of protein-coding genes P would be around 20,000 [143]. In the oil and gas industry, if we
consider most of the covariates obtained from the well completion procedure, P could be at
least 100 [31].

In conclusion, the dataset for the statistical analysis can be represented by the collection
of the N triplets {(yi, ti, xi)}N

i=1. Here, for each subject i (i = 1, · · · , N), we formulated
two Mi-dimensional vectors yi = (yi1, · · · , yij, · · · , yiMi )

> and ti = (ti1, · · · , tij, · · · , tiMi )
>,

and a P-dimensional vector xi = (xi1, · · · , xib, · · · , xiP)
>.

The data structures described up to this point are commonly encountered in longitudi-
nal data studies [7]. Essentially, the feature of dataset motivating the use of nonlinear mixed
effects models is that, for each subject i, the response vector yi displays some nonlinear
tendency over time ti, as seen in Figures 3–6. To explain this nonlinearity, a researcher
needs to theorize some nonlinear function, denoted as f , such as one compartment, Duong,
Nelson-Siegel, and Richards models, depending on the contexts. The construction of such
functions relies on human modelers’ abstraction of data into a suitable dynamical system,
which is often represented by a differential equation. Such a differential equation has a
finite number of parameters that control the dynamic of the solution of the system, the un-
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derstanding of which is vital for causal inference for the nature of the system by associating
with covariates xi.

Figure 7 displays a pictorial description about how a PK modeler would see the theo-
phylline concentration trajectory from the modeling perspective, where she theorized that
one compartment model (1) would be suitable to describe the trajectories yi over time ti
for each subject i (i = 1, · · · , N). Then the 10-dimensional vector yi is summarized by
a 4-dimensional PK parameter vector (Fi, kai, Vi, Cli); the dimension reduction is intrin-
sically embedded in this process. As each of the parameters Fi, kai, Vi, and Cli has an
important clinical meaning, it is very natural to ask how they are related with P covariates
xi to induce a causal relationship. For the purpose of modeling, it may be necessary to
transform the original PK parameters (Fi, kai, Vi, Cli) ∈ [0, 1]× (0, ∞)3 to model parameters
(θ1i, θ2i, θ3i, θ4i) ∈ RK (K = 4) so that elements θli (l = 1, · · · , K) are supported on the
real number by taking transformations θ1i = log{Fi/(1− Fi)}, θ2i = log kai, θ3i = log Vi,
and θ4i = log Cli. As these transformations were taken only for the modeling purpose, inter-
pretations on the PK parameter for the PK report should be carried out after transforming
back to the original scale.
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Figure 7. Pictorial illustration of PK modeling for the theophylline data.

4. The Model
4.1. Basic Model

Assume that we have dataset for a statistical analysis {(yi, ti, xi)}N
i=1 from N subjects,

as explained in Section 3.6. We consider a basic version of the model here. Extensions are
discussed in Sections 7.3 and 9. The usual Bayesian nonlinear hierarchical model may then
be written as a three-stage hierarchical model as follows:

• Stage 1: Individual-Level Model

yij = f (tij; θi) + εij, εij ∼ N (0, σ2), (i = 1, · · · , N; j = 1, · · · , Mi). (2)

In (2), the conditional mean E[yij|θi, σ2] = f (tij; θi) is a known function govern-
ing within-individual temporal behavior dictated by a K-dimensional parameter
θi = (θ1i, θ2i, · · · , θli, · · · , θKi)

> ∈ RK specific to the subject i. We assume that the
residuals, εij, are normally distributed with mean zero and with an unknown vari-
ance, σ2.
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• Stage 2: Population Model

θli = αl + x>i βl + ηli, ηli ∼ N (0, ω2
l ), (i = 1, · · · , N; l = 1, · · · , K). (3)

In (3), the l-th model parameter θli is used as the response of an ordinary lin-
ear regression with predictor xi, with intercept αl ∈ R and coefficient vector
βl = (βl1, βl2, · · · , βlP) ∈ RP. By letting ηi = (η1i, η2i, · · · , ηli, · · · , ηKi) ∈ RK, we
assume that the ηi is distributed according a K-dimensional Gaussian distribution
N (0, Ω) with covariance matrix Ω = diag(ω2

1, ω2
2, · · · , ω2

l , · · · , ω2
K) ∈ RK×K. The di-

agonality in Ω implies that each model parameter are uncorrelated across l.
• Stage 3: Prior

σ2 ∼ π(σ2), αl ∼ π(αl), βl ∼ π(βl), ω2
l ∼ π(ω2

l ), (l = 1, · · · , K). (4)

Distributions in (4) are chosen to encapsulate any information or belief that have been
formulated about the parameters. We suggest some popularly used prior options in
Section 7.

Directed asymmetric graphical (DAG) model representation of the basic model (2)–(4) is
depicted in Figure 8. Following the grammar of the graphical model (Chapter 8 of [144]),
the circled variables indicate stochastic variables, while the observed ones are additionally
colored in gray. Non-stochastic quantities are uncircled. The arrows indicate the conditional
dependency between the variables.

Bayesian Framework of nonlinear mixed effect model

𝑙 = 1,⋯ , 𝐾

𝑗 = 1,⋯ ,𝑀𝑖

𝑦𝑖𝑗 𝜃𝑙𝑖𝜎2

𝑡𝑖𝑗 𝒙𝑖

𝛼𝑙

𝜷𝑙

𝜔𝑙
2

𝑖 = 1,⋯ ,𝑁

Figure 8. The basic model (2)–(4) as a graphical model.

4.2. Vectorized Form of the Basic Model

We will often wish to write the hierarchy (2)–(4) for the i-th individual’s entire response
vector and represent it with an equivalent vector-form. This turns out to be useful to
develop relevant computational algorithms. We first introduce a K× N dimensional matrix
frequently used throughout this article:

Θ =



θ11 · · · θ1i · · · θ1N
...

...
...

θl1 · · · θli · · · θlN
...

...
...

θK1 · · · θKi · · · θKN

 ∈ RK×N . (5)

The matrix (5) is referred to as model matrix because it comprises of scalar model
parameters {θli}K,N

l=1,i=1 from all subjects. Indeed, most of the computational techniques
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either via frequentist or Bayesian setting in the literature have been developed to overcome
an obstacle of a nonlinear association of the model matrix Θ into the mean function f .

In (5), the subject index i is stacked column-wisely, while model parameter index
l is stacked row-wisely, different from the conventional way adopted in most statistics.
The column indexing for the subjects (i.e., stacking individual-based vector horizontally)
shown in (5) is often adopted in modern computation theory of deep learning [145], and one
of the main advantages of using this indexing is that it may give some pedagogical insights
on the use of vectorization toward the entries {θli}K,N

l=1,i=1 to exploit parallel computations,
stochastic updating, etc., in optimization or sampling techniques.

The model matrix Θ (5) can be re-expressed as Θ = [θ1 · · · θi · · · θN ] ∈ RK×N , obtained
by stacking the individual model parameter vector in Stage 1 (2). Alternatively, we can
represent the matrix with Θ = [θ1 · · · θl · · · θK]

> ∈ RK×N by defining a N-dimensional
vector corresponding the l-th model parameter across all subjects θl = (θl1, θl2, · · · , θlN)

> ∈
RN (l = 1, · · · , K). Former and latter indexing method are referred to as i-indexing and
l-indexing, respectively.

We are now in a position to re-write the hierarchy (2)–(4) using the vector notations:

• Stage 1: Individual-Level Model

yi = fi(ti, θi) + εi, εi ∼ NMi (0, σ2I), (i = 1, · · · , N). (6)

In (6), fi(ti, θi) is a Mi-dimensional vector whose elements are temporally stacked:
fi(ti, θi) = ( f (ti1; θi), f (ti2; θi), · · · , f (tiMi ; θi))> for the subject i. The vector εi is
distributed according to the Mi-dimensional Gaussian distribution with mean 0 and
covariance matrix σ2I.

• Stage 2: Population Model (l-indexing)

θl = 1αl + Xβl + ηl , ηl ∼ NN(0, ω2
l I), (l = 1, · · · , K). (7)

In (7), for each l, the N-dimensional model parameter vector θl is used as the response
vector of an ordinary linear regression: (i) N-by-P design matrix X = [x1x2 · · · xN ]

>;
(ii) intercept αl ; (iii) coefficient vector βl , and (iv) isotropic Gaussian error vector
ηl = (ηl1, ηl2, · · · , ηlN)

> with variance ω2
l . (Notation 1 in (7) represents an all-ones

vector.).
• Stage 2′: Population Model (i-indexing)

θi = α + Bxi + ηi, ηi ∼ NK(0, Ω), (i = 1, · · · , N). (8)

Equation (8) is derived by incorporating each of the N columns of the model matrix
(5). Here, α represents a K-dimensional vector α = (α1, α2, · · · , αK)

>, and B represents
a K-by-P matrix with rows βl (l = 1, · · · , K). Here, the K-dimensional vector Bxi in
the right-hand side of (8) is the mathematically identical to Xiβ, where Xi = IK ⊗ x>i ∈
RK×KP and β = (β1, β2, · · · , βK) ∈ RKP (IK is the K-by-K identity matrix and ⊗
represents the Kronecker matrix product.). The error vector ηi = (η1i, η2i, · · · , ηKi)

>

is distributed according a K-dimensional Gaussian distribution with mean 0 and
covariance matrix Ω = diag(ω2

1, ω2
2, · · · , ω2

K).
• Stage 3: Prior

σ2 ∼ π(σ2), α ∼ π(α), B ∼ π(B), Ω ∼ π(Ω). (9)

Each of the parameter blocks in (σ2, α, B, Ω) is assumed to be independent a priori.
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To summarize, we derived two equivalent vectorized formulations representing the
basic model (2)–(4) according to how the model matrix Θ (5) is vectorized:

• Vector-form (a): Stage 1—(6), Stage 2—(7) (l-indexing), and Stage 3—(9);
• Vector-form (b): Stage 1—(6), Stage 2′—(8) (i-indexing), and Stage 3—(9).

Figure 9 displays the DAG representations of the two vector forms of the basic model.
In vector-form (a), K latent nodes {θl}K

l=1 are fully connected toward the N response
vectors {yi}N

i=1. On the other hand, in vector-form (b), N latent nodes {θi}N
i=1 are bijectively

connected to the N response vectors {yi}N
i=1 for each subject i. These two ways of looking

at the framework of the Bayesian nonlinear hierarchical models complement each other for
a more proper understanding of the modeling framework and provide modelers with a
statistical insight. For example, vector-form (a) is useful to understand some mathematics
underlying the linear regression using P regressors, while vector-form (b) makes it easy to
comprehend the role of the covariance matrix Ω.
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Figure 9. DAG representations of the basic model (2)–(4) in vector-form (a) (Stage 1—(6), Stage 2—(7)
(l-indexing), and Stage 3—(9)) (left) and vector-form (b) (Stage 1—(6), Stage 2′—(8) (i-indexing),
and Stage 3—(9)) (right). Two vector forms are equivalent, except for the way how the model matrix
Θ (5) is vectorized.

5. Likelihood
5.1. Outline

In this section, we investigate a likelihood function based on the basic model (2)–(4).
As illustrated in Bayesian workflow in Section 2.2, the likelihood theory is fundamental
of Bayesian inference (see Figure 2). Therefore, it is worth spending time to re-study the
formulation of the likelihood function. Here, one caveat is that, due to the hierarchical
nature of the nonlinear mixed effects model, a notion of the likelihood function depends on
what part of the model specification is considered to be part of the likelihood, and what
is not. Most papers directly consider the marginal likelihood that will be discussed in
Section 5.4. In this paper, before marching there, we study other two formulations of the
likelihood in Sections 5.2 and 5.3 to get some pedagogical insights. We will briefly discuss
popularly used frequentist computing strategies in Section 5.4.

5.2. Likelihood Based on Stage 1

As in most of the statistical models, a natural starting point for inference is maximum
likelihood estimation. We start with considering only Stage 1 from the basic model in
Section 4.1 and ignore Stages 2 and 3 for now. Then the likelihood function for the i-th
subject is

L(θi, σ2|yi) = p(yi|θi, σ2) = NMi (yi| fi(ti, θi), σ2I), (i = 1, · · · , N).
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Therefore, the likelihood function based on the N subjects y1:N = {yi}N
i=1 is

L(Θ, σ2|y1:N) =
N

∏
i=1
NMi (yi| fi(ti, θi), σ2I). (10)

Now, we maximize the likelihood (10) with respect to the model matrix Θ (5) given
σ2 fixed:

Θ̂ = argmaxΘ∈RK×N log L(Θ, σ2|y1:N)

= argminΘ∈RK×N

N

∑
i=1
‖yi − fi(ti, θi)‖2

2

= argminΘ∈RK×N

N

∑
i=1

Mi

∑
j=1

(
yit − f (tij; θi)

)2
, (11)

where ‖ · ‖2 is the Euclidean norm.
The estimator Θ̂ = [θ̂1 · · · θ̂i · · · θ̂N ] ∈ RK×N of the model matrix Θ (5) can be obtained

by various optimization techniques such as Newton-Raphson method or Gradient descent
method [146]. Noting from the summation across i in (11), N estimators {θ̂i}N

i=1 are
independent. We can obtain an estimator of the variance σ2 by plugging Θ̂ into the
likelihood (10), and then maximize with respect to the σ2. To investigate a denoised
temporal tendency for the trajectory yi, we can simply plug θ̂i into the function f (tij; θi)
(j = 1, · · · , Mi). To see a future pattern, we can extrapolate the function by extending the
time index beyond the last time point tiMi . Eventually, the illustrated approach is based on
traditional least squares estimation.

Unfortunately, there are three major drawbacks in this approach. First, it forfeits the
opportunity to use ‘information borrowing’ [30] to improve a predictive accuracy due
to the ignorance of Stage 2. What happens in Stage 2 (3) is to borrow strength across N
individuals to produce a better estimator for Θ (5) than an estimator simply based on
individual data. A similar issue can be found in the Clemente problem from [11] where
the James–Stein estimator [147] predicts better than an individual hitter-based estimator.
Another example applied to epidemic data can be found in [30]. Second, it is not well-
aligned with the generic motivation to use the mixed effects models, whose primary
purpose is to understand “typical” values for the model parameters in f , representing
whole subjects, which should be addressed by making an inference about the parameters α,
B, and Ω. Third, it only produces point estimates for the parameters, failing to describe the
underlying uncertainty.

A remedy of the first two drawbacks is the consideration of Stages 1 (2) and 2 (3)
hierarchically in a single model, leading to a frequentist version of nonlinear mixed effects
models, which will be discussed in Sections 5.3 and 5.4. To describe relevant uncertainty
within the frequentist framework one may have to resort to bootstrap methods [99] or
use a large-sample theory. Uncertainty quantification in frequentist analysis often needs
to be done step-wisely. Another solution resolving all the three drawbacks at once is
to incorporate Stage 1 (2), 2 (3), and 3 (4) into a single model in a fully Bayesian way,
resulting in a Bayesian version of nonlinear mixed effects models, which is the main topic
in this paper.

5.3. Likelihood Based on Stage 1 and 2 from Vector-Form (a)

A likehood function based on vector-form (a) is derived. More specifically, we ex-
amine the frequentist setting where the assumptions of Stage 1—(6) and Stage 2—(7)
are considered, while the parameters introduced in Stage 3—(9) are fixed (i.e., no prior
assumptions).

The individual model on Stage 1 (6) yields a conditional density p(yi|θi, σ2) =
NMi (yi| fi(ti, θi), σ2 I) for each subject i = 1, · · · , N. Under the population assumption
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on Stage 2 (7), we have the density p(θl |αl , βl , ω2
l ) = NN(θl |1αl +Xβl , ω2

l I) for each model
parameter index l = 1, · · · , K. The joint density of (y1:N , θ1:K) given parameters σ2, α, B
and Ω is a product-form distribution:

p(y1:N , θ1:K|σ2, α, B, Ω) =

{ N

∏
i=1
NMi (yi| fi(ti, θi), σ2I)

}
·
{ K

∏
l=1
NN(θl |1αl + Xβl , ω2

l I)
}

,

where y1:N = {y1, y2, · · · , yN} and θ1:K = {θ1, θ2, · · · , θK}. Now, the next step is to
integrate out the latent model parameters θ1:K (or equivalently, the model matrix Θ (5))
from the density above to get a likelihood for the (σ2, α, B, Ω):

L(σ2, α, B, Ω|y1:N) =
∫

p(y1:N , θ1:K|σ2, α, B, Ω)dθ1:K. (12)

In most cases, the integral (12) is not tractable due to the non-linearity of the function
fi(ti, θi) with respect to the θi. Although it may be possible to use numerical techniques for
the evaluation of the integral (12), this might require enormous computational effort, which
is not really appreciated in the literature due to the high-dimensionality of the integral
involving the KN dimensional model parameters θ1:K.

5.4. Likelihood Based on Stage 1 and 2′ from Vector-Form (b)

A likehood function based on vector-form (b) adopting i-indexing is derived here.
Similar to Section 5.3, we preserve the assumption of Stage 1—(6) and Stage 2′—(8),
but work with fixing the parameters in Stage 3—(9). In these specifications, for each index
i = 1, · · · , N, the individual model on Stage 1 (6) and population model on Stage 2 (8) lead
to densities p(yi|θi, σ2) = NMi (yi| fi(ti, θi), σ2 I) and p(θi|α, B, Ω) = NK(θ

i|α + Bxi, Ω),
respectively. Thus, the joint density of (yi, θi) given parameters σ2, α, B and Ω is

p(yi, θi|σ2, α, B, Ω) = p(yi|θi, σ2) · p(θi|α, B, Ω)

= NMi (yi| fi(ti, θi), σ2I) · NK(θ
i|α + Bxi, Ω).

Given the parameters (σ2, α, B, Ω), the ordered pairs in the collection {(yi, θi)}N
i=1 are

conditionally independent across individuals. Therefore, a likelihood for the (σ2, α, B, Ω)
is based on the marginal density of y1:N = {y1, y2, · · · , yN}:

L(σ2, α, B, Ω|y1:N) =
N

∏
i=1

∫
NMi (yi| fi(ti, θi), σ2I) · NK(θ

i|α + Bxi, Ω)dθi (13)

=
N

∏
i=1

∫
NMi (yi| fi(ti, α + Bxi + ηi), σ2I) · NK(η

i|0, Ω)dηi, (14)

where the last equality is derived by using the change of variable (8). The last expression
(14) is a standard mathematical formulation that many frequentist computing strategies are
constructed with: see Equation (3.2) from [14]. Essentially, the part that makes the MLE
computation complicated is the mean vector fi(ti, α + Bxi + ηi) ∈ RMi .

As the model parameter θi in (13) (or similarly, ηi in (14) which is often called random
effect in the frequentist framework) participates to the function f in a non-linear fashion,
the integral generally cannot be obtained in a closed-form. Benefiting from a conditional
independence [148], dimensionality of the N integrals (13) is much lower than that of the
integral (12) based on vector-form (a). Analytically, the likelihood functions of the basic
model (2)–(4) based on vector-form (a) (12) and vector-form (b) (13) may be equivalent. That
being said, minimization of the two functions with respect to the parameters (σ2, α, B, Ω)

yields the same solution, (σ̂2, α̂, B̂, Ω̂), so-called maximum likelihood estimators (MLE).
We shall briefly discuss MLE computations. One approach would be to perform a

multivariate numerical integration (e.g., Gauss-Hermite quadrature [149]) to each of the
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N integrals (13), and then obtain the MLE by maximizing the product of the N numerical
integrals with respect to the parameters (σ2, α, B, Ω) [150]. This approach turns out to be
computationally expensive and may have poor converge properties due to the following
two reasons [151]. First, the numerical integration necessitates increasingly expensive
iterative procedures within a MLE algorithm as the correlation of the model parameters
(or equivalently, random effects) increases. Second, convergence property may be highly
deteriorated when the number of model parameters K is large (i.e., high-dimensional
integral) and the number of sampling times Mi is small (i.e., sparse data) due to the ‘curse
of dimensionality’ [152].

A class of common approaches for the MLE computations is based on analytical
approximation to each of the N integrals (14) [13,36,153–155], and some of them have been
successfully adopted to industrial software like NONMEM [47,101] and SAS [46]. Here,
we illustrate a key idea of the first-order method attributed to [36]. Let us define a mapping
gi(η

i) = fi(ti, α + Bxi + ηi) : A ⊂ RK → RMi for each subject i, where A is an open set
with 0 ∈ A. Suppose that gi(η

i) is smooth on the set A: then, by Taylor’s theorem (page
375 of [156]), we have the best linear approximation of the mapping gi(η

i) at the origin 0
given by gi(η

i) ≈ gi(0) + Dgi(0)ηi, where Dgi(0) ∈ RMi×K is the Jacobian matrix of gi(η
i)

at 0. Now, we shall replace the function gi(η
i) = fi(ti, α + Bxi + ηi) in integral (14) with the

resulting approximation gi(0) +Dgi(0)ηi for each i (i = 1, · · · , N), leading to a closed-form
expression

L̃(σ2, α, B, Ω|y1:N) =
N

∏
i=1

∫
NMi (yi|gi(0) + Dgi(0)ηi, σ2I) · NK(η

i|0, Ω)dηi (15)

=
N

∏
i=1
NMi (yi|gi(0), Dgi(0)ΩDgi(0)> + σ2I).

To summarize, a linearization was used to convert the nonlinear mixed effects model
to a linear mixed effects model, in some sense, equivalent to the Lindley–Smith form [157].
This enables us to integrate out the random vector ηi from the N integrals (15), deriv-
ing a marginal likelihood (15) to approximate the exact marginal likelihood (13). MLE
(σ̂2, α̂, B̂, Ω̂) can be obtained by jointly maximizing L̃(σ2, α, B, Ω|y1:N) (15) assuming the
approximation is exact.

Another way to compute the MLE is through the use of expectation-maximization
(EM) algorithm [158]. Borrowing terms from EM updating process [159], yi, θi, (yi, θi),
(σ2, α, B, Ω) and p(yi, θi|σ2, α, B, Ω) (i.e., the integrand in (13)) can be viewed as observ-
able incomplete data, missing data, complete data, unknown parameters, and density
of complete data, respectively, for the i-th subject. The goal is to maximize the exact
marginal likelihood L(σ2, α, B, Ω|y1:N) (13) by iterating E-step and M-step, leading to
the MLE (σ̂2, α̂, B̂, Ω̂). The E-step computes a conditional expected log-likelihood of
(σ2, α, B, Ω) based on the hierarchy (2)–(3), followed by the M-step that maximizes the
function with respect to (σ2, α, B, Ω). The nonlinearity associated with the model matrix
Θ (5) makes the E-step intractable. As a remedy, variant versions of the EM algorithm are
proposed; see [160–163] for a technical detail applied to a hierarchy similar to the basic
model. Among them, the scheme of stochastic approximation EM algorithm proposed
by [38], splitting the E-step into two steps, namely a simulation step and a stochastic
approximation step, is widely used in many applications for its numerical stability, fast
computation, and theoretical soundness [164,165], which has been successfully deployed
as industrial software including MONOLIX [48] as well as open source software such as R
package NLMIXR [18].
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6. Bayesian Inference and Implementation
6.1. Bayesian Inference

We briefly overview two contrasting workflows of Bayesian and frequentist ap-
proaches for nonlinear mixed effects models before moving to a technical detail. Both
settings allow the randomness in the model matrix Θ (5), but then, they diverge when
it comes to how parameters (σ2, α, B, Ω) are treated. Bayesians treat (σ2, α, B, Ω) as ran-
dom, while frequentists regard it as fixed. To conceptualize a subtlety arising from this
difference, let us recap frequentist computing strategies discussed in Section 5.4. There,
the model matrix Θ was eventually integrated out from the joint density of (y1:N , Θ), either
approximately or exactly, to derive a marginal likelihood of (σ2, α, B, Ω) from which the
MLE (σ̂2, α̂, B̂, Ω̂) is computed via various optimization methods. After that, frequentists
apply standard Bayesian formulas, such as posterior density, posterior mean, and so on,
to estimate Θ [7].

In contrast, to drive the Bayesian engine, one would need an appropriate prior
π(σ2, α, B, Ω). After that, the entire collection of parameters (Θ, σ2, α, B, Ω) will be up-
dated through the Bayes’ theorem post observing the data y1:N , leading to the posterior
density π(Θ, σ2, α, B, Ω|y1:N) [166] (See Figure 2). The essence of the Bayesian viewpoint
is that there is no logical distinction between Θ and (σ2, α, B, Ω), which are associated with
the random and fixed effects, respectively, from the frequentist perspective. In Bayesian
framework, both Θ and (σ2, α, B, Ω) are random quantities. It is important to point out that
the likelihood principle is naturally incorporated in the Bayes’ theorem [167]. Clearly, mod-
ern data complications such as enormous volume, large dimensionality, and multi-level
structures may necessitate a sophistication on the prior specifications.

We are now in a position to describe the Bayesian analysis for the basic model (2)–(4), that
assumed independence, a priori, for each parameter blocks σ2, α, B, and Ω, π(σ2, α, B, Ω) =
π(σ2) · π(α) · π(B) · π(Ω). (Our logic below can be generalized to a more complex prior
setting.) As discussed in Section 4, it is the discretion of the modeler of how she would
treat the model matrix Θ (5) with l-indexing θ1:K = {θl}K

l=1 or i-indexing θ1:N = {θi}N
i=1,

leading to vector forms (a) and (b), respectively. For the sake of readability, we illustrate the
Bayesian inference by using the vector-form (a), but we will sometimes use the vector-form
(b) when this seems more understandable.

A central task in the application of the Bayesian nonlinear mixed effects models is
to evaluate the posterior density, or indeed to compute expectation with respect to the
density:

π(Θ, σ2, α, B, Ω|y1:N) =
π(y1:N , Θ, σ2, α, B, Ω)

p(y1:N)

∝ π(y1:N , Θ, σ2, α, B, Ω)

= p(y1:N |Θ, σ2)︸ ︷︷ ︸
Stage 1

·π(Θ|α, B, Ω)︸ ︷︷ ︸
Stage 2

·π(σ2) · π(α) · π(B) · π(Ω)︸ ︷︷ ︸
Stage 3

,

where the last equation can be detailed as follows

{ N

∏
i=1
NMi (yi| fi(ti, θi), σ2I)

}
·
{ K

∏
l=1
NN(θl |1αl + Xβl , ω2

l I)π(αl)π(ω2
l )π(βl)

}
· π(σ2). (16)

From a Bayesian perspective, all inferential problems regarding the parameter (Θ, σ2,
α, B, Ω) may be addressed in terms of the posterior distribution π(Θ, σ2, α, B, Ω|y1:N) (16).
Unfortunately, for almost all problems, the distribution is intractable. In such situations,
we need to resort to approximation techniques, and these fall broadly into two classes,
according to whether they rely on stochastic [41,45,168,169] or deterministic [170–173]
approximations. See [174,175] for review papers of these techniques. In this article, we
mainly focused on the stochastic approximation. The basic idea behind the methodology



Mathematics 2022, 10, 898 22 of 51

is to construct a Markov chain whose stationary distribution is the posterior distribution
π(Θ, σ2, α, B, Ω|y1:N) (16).

6.2. Gibbs Sampling Algorithm

We resort to MCMC technique [174] to sample from the full joint density π(Θ, σ2, α, B,
Ω|y1:N) (16). Among many MCMC techniques, we use the Gibbs sampling algorithm [39,168]
to exploit the conditional independence [148] induced by the hierarchical formulation.
A generic Gibbs sampler would cycle in turn through each of the conditional distributions
for the parameter blocks Θ, σ2, α, B, and Ω as follows:

Step 1. Sample Θ from its full conditional distribution

π(Θ|σ2, α, B, Ω, y1:N) ∝
{ N

∏
i=1
NMi (yi| fi(ti, θi), σ2I)

}
·
{ K

∏
l=1
NN(θl |1αl + Xβl , ω2

l I)
}

; (17)

Step 2. Sample σ2 from its full conditional distribution

π(σ2|Θ, α, B, Ω, y1:N) ∝
{ N

∏
i=1
NMi (yi| fi(ti, θi), σ2I)

}
· π(σ2); (18)

Step 3. Sample α from its full conditional distribution

π(α|σ2, Θ, B, Ω, y1:N) ∝
K

∏
l=1
NN(θl |1αl + Xβl , ω2

l I) · π(αl); (19)

Step 4. Sample B from its full conditional distribution

π(B|Θ, σ2, α, Ω, y1:N) ∝
K

∏
l=1
NN(θl |1αl + Xβl , ω2

l I) · π(βl); (20)

Step 5. Sample Ω from its full conditional distribution

π(Ω|Θ, σ2, α, B, y1:N) ∝
K

∏
l=1
NN(θl |1αl + Xβl , ω2

l I) · π(ω2
l ). (21)

Sampling the model matrix Θ (5) at Step 1 is independent of the choice of the priors,
which we discuss shortly. On the other hand, sampling the parameters (σ2, α, B, Ω) at
Steps 2, 3, 4, and 5 depends on the prior choices for the parameters in Stage 3 (9); we discuss
this topic in Section 7.

6.3. Parallel Computation for Model Matrix

One of the most computer-intensive steps to implement the Gibbs sampler in Section 6.2
is Step 1 to sample the model matrix Θ ∈ RK×N (5), or equivalently its entries {θli}K,N

l=1,i=1,
from the full conditional distribution π(Θ|σ2, α, B, Ω, y1:N) (17). Clearly, the nonlinear
participation of the model parameters to the function f makes the conditional distribution
intractable, hence, non-conjugate sampling is unavoidable, which may suffer from a slow
convergence. At the same times, due to the Markovian nature of the Gibbs algorithm, it is
difficult to parallelize the whole steps of the Gibbs sampler, which creates difficulties in
slower languages like R [176]. Nevertheless, the increasing number of parallel cores that are
available at a very low price drives more and more interest in ‘parallel sampling algorithms’
that can benefit from the available parallel processing units on computers [177,178].

We suggest a framework of parallel computations to efficiently update the model
matrix Θ ∈ RK×N . This framework can be particularly appreciated under the setting of
Bayesian nonlinear mixed effects models when the number of subjects N is a lot larger than
the number of model parameters K (N � K).
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The first version of parallel sampling algorithms is based on scalar updating. For the
derivation, we start with analyzing the full conditional posterior distribution of a single
element θli (l = 1, · · · , K; i = 1, · · · , N):

π(θli|−) = π(θli|θ−li, σ2, α, B, Ω, y1:N) ∝ π(Θ|σ2, α, B, Ω, y1:N)

∝
{ N

∏
i=1
NMi (yi| fi(ti, θ1i, · · · , θli, · · · , θKi), σ2I)

}
·
{ K

∏
l=1

N

∏
i=1
N (θli|αl + x>i βl , ω2

l )

}
∝ NMi (yi| fi(ti, θ1i, · · · , θli, · · · , θKi), σ2I) · N (θli|αl + x>i βl , ω2

l ), (22)

where the notation θ−li represents the all the entries of Θ except for θli, that is, θ−li =

{θli}K,N
l=1,i=1−{θli}. Here, we used a conventional notation in Bayesian computation: ‘π(θli|−)’

indicates the density π(θli|θ−li, σ2, α, B, Ω, y1:N), where the notation ‘−’ in π(θli|−) implies
all the parameters except for the θli in the basic model (2)–(4) along with N observations.

Note that the proportional part of the full conditional π(θli|−) (22) only involves the i-
th column vector of the model matrix Θ (5), that is, θi = (θ1i, · · · , θKi)

> ∈ RK in its analytic
expression. This implies that we can update the K entries of the vector θi (i = 1, · · · , N)
independently across subjects. Parallel sampling algorithm can be completed by assigning
a single CPU process to each of the subjects i. Within the step to sample the K entries from
the vector θi, it is required to use Gibbs iterative procedure to update the scalar components.
Authors [30,31] applied this technique to update the model matrix for a Bayesian nonlinear
mixed effects model to train the dataset explained in Sections 3.3 and 3.5. Figure 10 displays
the schematic idea of the parallel sampling algorithm.
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Figure 10. A pictorial description on the use of parallel computation to the basic model (2)–(4) to
update the model matrix Θ = [θ1 · · · θi · · · θN ] ∈ RK×N (5). In the parallel computation, a single
CPU is assigned to an individual subject i = 1, · · · , N.

The second version of parallel sampling algorithms is based on vector updating. We
analyze the full conditional posterior distribution of the vector θi (i = 1, · · · , N):

π(θi|−) = π(θi|θ−i, σ2, α, B, Ω, y1:N) ∝ π(Θ|σ2, α, B, Ω, y1:N)

∝
N

∏
i=1
NMi (yi| fi(ti, θi), σ2I) · NK(θ

i|α + Bxi, Ω)

∝ NMi (yi| fi(ti, θi), σ2I) · NK(θ
i|α + Bxi, Ω), (23)

where the notation θ−i represents the all the column vectors of Θ except for θi. Similar to
the first version, we can use the parallel computation to update the model matrix Θ by
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simultaneously sampling from the full-conditional density π(θi|−) (23) across subjects by
assigning one CPU to each individual.

6.4. Elliptical Slice Sampler

Due to the issue of non-conjugacy to sample from the univariate density π(θli|−) (22)
or K-dimensional density π(θi|−) (23), the choice of a suitable MCMC method and further
the choice of a proposal distribution is crucial for the fast convergence of the Markov
chain simulated from the Step 1 within the Gibbs sampler in Section 6.2. The Metropolis-
Hastings (MH) algorithm [179,180] is the first solution to consider in such intractable
situations: see the Algorithm 1 from [181]. In practice, the performances of the MH al-
gorithm are highly dependent on the choice of the proposal density [182]. In the past
decades, numerous MH-type algorithms to improve computational efficiency have been
developed, and these fall broadly into two classes, according to whether the proposal
density reflects a gradient information [41,43,44,183] or not [169,184]. In specific, the gra-
dient information, here, refers to the first-order derivative of the minus of the log of the
target density (i.e., ∇U(θli) = −∇ log π(θli|−) ∈ R or ∇U(θi) = −∇ log π(θi|−) ∈ RK,
where the notation ∇ represents the gradient operator). Typically, gradient-based sam-
plers are attractive in terms of rapid exploration of the state space, but the cost of the
gradient computation can be prohibitive when the sample size N or model dimension K is
extremely large [185,186]. Fortunately, this requirement can be made less burdensome by
using automatic differentiation [187].

In the present subsection, we introduce an efficient gradient-free sampling technique,
the elliptical slice sampler (ESS) proposed by [169], to simulate a Markov chain from
the density π(θli|−) (22). The sampling logic can be directly applied to the situation
to sample from the density π(θi|−) (23) by simply replacing θli by θi and changing the
dimension of relevant distributions, stochastic processes, etc, from 1 to K. Conceptually,
MH and ESS algorithms are similar in that both comprise two steps: a proposal step and
a criterion step. A difference between the two algorithms arises in the criterion step. If a
new candidate does not pass the criterion, then the MH algorithm takes the current state
as the next state: whereas ESS re-proposes a new candidate until rejection does not take
place, rendering the algorithm rejection-free. The utility of ESS can be appreciated when an
analytic expression of a target density can be factored to have a Gaussian prior distribution.
Unlike the traditional MH algorithm that requires the proposal variance or density, ESS is
fully automated, and no tuning is required.

To adapt the ESS to our example, we re-write the density π(θli|−) (22) as the following
form:

π(θli|−) =
1
Z
L(θli) · N (θli|αl + x>i βl , ω2

l ), (24)

where L(θli) = exp {−‖yi − fi(ti, θ1i, · · · , θli, · · · , θKi)‖2
2/(2σ2)}, and Z is the normaliza-

tion constant. By introducing the notation L(θli), it is our intention that we shall treat the
function as a likelihood part temporarily only when sampling from the density (24). Alter-
natively, one can proceed with the choice L2(θli) = NMi (yi| fi(ti, θ1i, · · · , θli, · · · , θKi), σ2I)
as a likelihood part to operate ESS, which then changes the normalization constant accord-
ingly. We recommend to use the simplest functional form for the likelihood part, if possible,
to reduce the computation cost.

Algorithm 1 summarizes the ESS in an algorithmic form, where the situation is at the
(s + 1)-th iteration of the Gibbs sampler. Therefore, the goal is to draw θ

(s+1)
li from the

target density π(θli|−) (l = 1, · · · , K; i = 1, · · · , N) (24), where we already have θ
(s)
li as the

current state for the target variable θli realized from the s-th iteration:
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Algorithm 1: ESS to sample from π(θli|−) (22)
Goal: Sampling from the full conditional posterior distribution

π(θli|−) ∝ L(θli) · N (θli|µli, ω2
l ),

where L(θli) = exp {−‖yi − fi(ti, θ1i, · · · , θli, · · · , θKi)‖2
2/(2σ2)} and

µli = αl + x>i βl .

Input: Current state θ
(s)
li .

Output: A new state θ
(s+1)
li .

a. Choose an ellipse centered at µli: ν ∼ N (µli, ω2
l ).

b. Define a criterion function:

α(θli, θ
(s)
li ) = min{L(θli)/L(θ

(s)
li ), 1} : R→ [0, 1].

c. Choose a threshold and fix: u ∼ Uni f [0, 1].
d. Draw an initial proposal θ∗li:

φ ∼ Uni f (−π, π];

θ∗li = (θ
(s)
li − µli) cos φ + (ν− µli) sin φ + µli.

e. if ( u < α(θ∗li, θ
(s)
li ) ) { θ

(s+1)
li = θ∗li } else {

Define a bracket : (φmin, φmax] = (−π, π].
while ( u ≥ α(θ∗li, θ

(s)
li ) ) {

Shrink the bracket and try a new point :
if ( φ > 0 ) φmax = φ else φmin = φ
φ ∼ Uni f (φmin, φmax]

θ∗li = (θ
(s)
li − µli) cos φ + (ν− µli) sin φ + µli.

}
θ
(s+1)
li = θ∗li

}

6.5. Metropolis Adjusted Langevin Algorithm

We introduce the Metropolis adjusted Langevin algorithm (MALA) [43,44] which
is popular for its use of problem-specific proposal distribution based on the gradient
information of the target density. The main idea of MALA is to use Langevin dynamics to
construct the Markov chain. To adapt the sampling technique to our example, we re-write
the density π(θli|−) (22) as the following form:

π(θli|−) =
exp(−U(θli))∫ ∞

−∞ exp(−U(θli))dθli
for all θli ∈ R, (25)

where U(θli) = (1/{2σ2}) · ‖yi − fi(ti; θ1i, · · · , θli, · · · , θKi)‖2
2 + (1/{2ω2

l }) · (θli − αl −
x>i βl)

2. Now, we consider a stochastic differential equation [188] that characterizes the
evolution of the Langevin diffusion with the drift term set by the gradient of the log of the
density (25):

dθli(t) = ∇ log π(θli(t)|−)dt +
√

2dW(t) = −∇U(θli(t))dt +
√

2dW(t), (26)

where {W(t) | t ≥ 0} is a standard 1-dimensional Wiener process, or Brownian motion [189].
In (26), t indexes a fictitious continuous time. ∇ represents the gradient operator with
respect to θli. Under fairly mild conditions on the function U(θli), Equation (26) has a
strong solution {θli(t) | t ≥ 0} that is a Markov process [190]. Furthermore, it can be shown
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that the distribution of {θli(t) | t ≥ 0} converges to the invariant distribution π(θli|−) (25)
as t→ ∞.

Since solving the Equation (26) is very difficult, a first-order Euler-Maruyama dis-
cretization [191] is used to approximate the solution to the equation:

θ
[s+1]
li ← θ

[s]
li − δ · ∇U(θ

[s]
li ) +

√
2δZ, Z ∼ N (0, 1), (27)

where δ is the step size of discretization, and [s] indexes the discrete time steps. This
recursive update defines the Langevin Monte Carlo algorithm. Typically, to handle the
discretization error and satisfy the detailed balance [192] to make Markov chain converge
to the target distribution π(θli|−) (25), the MH correction is needed. Algorithm 2 details
MALA to sample from the π(θli|−) (l = 1, · · · , K; i = 1, · · · , N) (25):

Algorithm 2: MALA to sample from π(θli|−) (22)
Goal: Sampling from the full conditional posterior distribution

π(θli|−) ∝ exp (−U(θ1i)),

where
U(θli) = ‖yi − fi(ti; θ1i, · · · , θli, · · · , θKi)‖2

2/(2σ2) + (θli − αl − x>i βl)
2/(2ω2

l ).

Input: Current state θ
(s)
li and step size δ.

Output: A new state θ
(s+1)
li .

a. Define a criterion function:

α(θli, θ
(s)
li ) = min

{
exp (−U(θli))

exp (−U(θ
(s)
li ))

·
J (θ

(s)
li |θli)

J (θli|θ
(s)
li )

, 1

}
: R→ [0, 1].

b. Choose a threshold u: u ∼ Uni f [0, 1].
c. Draw a proposal θ∗li:

θ∗li ∼ J (θli|θ
(s)
li ) = N (θli|θ

(s)
li − δ · ∇U(θ

(s)
li ), 2δ).

d. if ( u < α(θ∗li, θ
(s)
li ) ) { θ

(s+1)
li = θ∗li } else { θ

(s+1)
li = θ

(s)
li }

6.6. Hamiltonian Monte Carlo

We introduce the Hamiltonian Monte Carlo (HMC) algorithm that employs Hamilto-
nian dynamics to efficiently explore the parameter space [41,183]. Among many MH-type
sampling algorithms, HMC has been recognized as one of the most effective algorithms
due to its rapid mixing rate and small discretization error. By that reason, HMC has been
deployed as the default sampler in many open packages such as STAN [193] and TEN-
SORFLOW [194]. A key idea of HMC distinctive from ESS and MALA is the introduction
of an auxiliary momentum variable, which is typically assumed to follow as a Gaussian
distribution and independent of the target variable. By doing so, the HMC can produce
distant proposals for the target variable, thereby avoiding the slow exploration of the state
space that results from the diffusive behavior of simple random-walk proposals.

We adapt the HMC to our example. We shall first take a look at a joint density:

π(θli, φli|−) = π(θli|−) · π(φli)

=
exp(−U(θli))∫ ∞

−∞ exp(−U(θli))dθli
· 1√

2πmli
exp

(
−

φ2
li

2mli

)
∝ exp (−U(θli)− K(φli)) for all (θli, φli) ∈ R×R, (28)
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where U(θli) = (1/{2σ2}) · ‖yi − fi(ti; θ1i, · · · , θli, · · · , θKi)‖2
2 + (1/{2ω2

l }) · (θli − αl −
x>i βl)

2 and K(φli) = φ2
li/(2mli). The auxiliary variable φli is distributed according to

the univariate Gaussian distribution N (φli|0, mli) with variance mli. Note that it holds∫
π(θli, φli|−)dφli = π(θli|−) due to the independence between θli and φli. Therefore,

our ultimate goal is to sample from the joint density π(θli, φli|−) (28), and take only θli
by marginalization.

Noting from (28), the negative of joint log-posterior is

H(θli, φli) = U(θli) + K(φli), for all (θli, φli) ∈ R×R. (29)

The physical analogy of the bivariate function H(θli, φli) : R× R → R (29) is a Hamil-
tonian [183,195], which describes the sum of a potential energy U(θli), defined at the
position θli, and a kinetic energy K(φli) = φ2

li/(2mli), where the auxiliary variable φli can
be interpreted as a momentum variable and the variance mli denotes a mass.

Now, we construct a Hamiltonian system by taking a derivative of H (29) with respect
to θli and φli, and by introducing a continuous fictitious time t:

dθli(t)
dt

=
∂H(θli, φli)

∂φli
=

∂K(φli)

∂φli
=

φli(t)
mli

, (30)

dφli(t)
dt

= −∂H(θli, φli)

∂θli
= −∂U(θli)

∂θli
= −∇U(θli(t)), (31)

where ∇ represents the gradient operator with respect to θli.
The Hamiltonian systems (30) and (31) have three nice properties. Assume that (θli(t), φli(t)) :

[a, b]→ R×R is a solution curve of the system, where a, b ∈ R∪ {±∞}. Then, the follow-
ing relationships hold:

(a) Preservation of total energy : H(θli(t), φli(t)) = H(θli(0), φli(0)) for all t ∈ [a, b];
(b) Preservation of volume: dθli(t)dφli(t) = dθli(0)dφli(0) for all t ∈ [a, b];
(c) Time reversibility: The mapping Ts from state at t, (θli(t), φli(t)), to the state at time

t + s, (θli(t + s), φli(t + s)), is one-to-one, and hence has an inverse T−s.

Three properties are eventually related with the following nice properties of the HMC:
(a) a high probability of acceptance of proposals; (b) a simple analytic form of acceptance
ratio (no need to consider a hard-to-compute Jacobian factor); and (c) a detailed balance
with respect to the target density π(θli|−). For a detailed description and extensive review,
see [41].

For practical applications, the differential equation system (30) and (31) cannot be
solved analytically and numerical methods are required. As the Hamiltonian H in the
system is separable (or equivalently, the joint density π(θli, φli|−) is factorizable), to tra-
verse the state space more efficiently, the leapfrog integrator method is typically used,
which involves a discretized step of the dynamics. As similar to the construction of
MALA, the discretization errors arising from the leapfrog integration are addressed by
MH correction step. Algorithm 3 details the HMC to sample from the target density
π(θli|−) =

∫
π(θli, φli|−)dφli (22). In the algorithm, (s) indexes the sampling itera-

tion within the Gibbs sampler, while [d] represents the index introduced due to the
discretization.

One caveat in the HMC is that no matter whether we accept or reject the proposal,
we draw a new momentum from the kinetic energy at every iteration. To check this, see
the Step a in Algorithm 3, where φ

[0]
li is drawn from the kinetic density K(φli) ∝ N (0, mli).

The momentum φ
[0]
li is only used to formulate the initial pair (θ[0]li , φ

[0]
li ), where θ

[0]
li is the

current target state θ
(s)
li , that will be guided by Hamiltonian dynamics (30) and (31) via

leapfrog integrator, eventually reaching the last pair (θ[L]li φ
[L]
li ) which is used as the proposal

(θ∗li, φ∗li). The momentum φ
[0]
li is deleted and we will draw a new momentum in the next
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iteration. This independent drawing of the momentum is the engine that enables HMC to
produce distant proposals, but nevertheless maintains a high probability of acceptance.

Algorithm 3: HMC to sample from π(θli|−) =
∫

π(θli, φli|−)dφli (22)
Goal: Sampling from the full conditional posterior distribution

π(θli|−) =
∫

π(θli, φli|−)dφli ∝ exp (−U(θli)),

where π(θli, φli|−) ∝ exp (−H(θli, φli)) = exp (−U(θli)− K(φli)) with
U(θli) = ‖yi − fi( ti; θ1i, · · · , θli, · · · , θKi)‖2

2/(2σ2) + (θli − αl − x>i βl)
2/(2ω2

l )

and K(φli) = φ2
li/(2mli).

Input: Current state θ
(s)
li , step size δ, number of steps L, and mass mli.

Output: A new state θ
(s+1)
li .

a. Generate the initial momentum with mass mli: φ
[0]
li ∼ N (0, mli).

b. Define a criterion function:

α((θli, φli), (θ
(s)
li φ

[0]
li )) = min

{
exp (−H(θli, φli))

exp (−H(θ
(s)
li , φ

[0]
li ))

, 1

}
: R×R→ [0, 1].

c. Simulate discretization of Hamiltonian dynamics (30) and (31):

i. Set the initial pair of the solution curve: (θ[0]li , φ
[0]
li ) = (θ

(s)
li φ

[0]
li ).

ii. Make a half step for the momentum: φ
[0]
li ← φ

[0]
li − (δ/2)∇U(θ

[0]
li ).

iii. Alternate full steps for position and momentum:
for ( d = 1, · · · , L) {
Update position: θ

[d]
li ← θ

[d−1]
li + (δ/mli)φ

[d−1]
li .

Update momentum: if ( d! = L ) { φ
[d]
li ← φ

[d−1]
li − δ∇U(θ

[d]
li ). }

}
iv. Make a half step for momentum: φ

[L]
li ← φ

[L−1]
li − (δ/2)∇U(θ

[L]
li ).

v. Negate the last momentum: φ
[L]
li ← −φ

[L]
li .

vi. Set the last pair of the solution curve as the proposal: (θ∗li, φ∗li) = (θ
[L]
li φ

[L]
li ).

d. Choose a threshold u: u ∼ Uni f [0, 1].

e. if ( u < α((θ∗li, φ∗li), (θ
(s)
li φ

[0]
li )) ) { θ

(s+1)
li = θ∗li } else { θ

(s+1)
li = θ

(s)
li }

The naive HMC (Algorithm 3) requires the users to specify at least three parameters: a
step size δ, a number of steps L, and a mass mli, for which to run a simulated Hamiltonian
system. A poor choice of either of these parameters will result in a dramatic drop in the
efficiency HMC. No-U-Turn Sampler (NUTS) developed by [42] is an extension of HMC,
which is designed to automatically turn the parameters (δ, L) while fixing mli = 1, making
it possible to run NUTS with no hand-tuning at all. HMC and NUTS are general-purpose
inference engines deployed in STAN.

We would like to highlight a difference between MALA (Algorithm 2) and HMC
(Algorithm 3). Although both algorithms utilizes the gradient information (that is,∇U(θli) =
−∇ log π(θli|−)), the former is based on stochastic differential Equation (26) and the
latter is based on ordinary differential Equations (30) and (31). From the algorithmic
perspective, MALA exhibits a single loop structure and is designed to directly employ the
discretization of the underlying Langevin dynamics: see that the index [s] resulting from
the discretization in (27) is directly used as the sampling index (s) in Algorithm 2. On the
other hand, HMC has a double loop structure: the inner loop (i.e., Step c in Algorithm 3)
solves the Hamiltonian dynamics (30) and (31) to make a proposal, while the outer loop
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judges the proposals. The index [d] in the inner loop, resulting from the leapfrog integrator,
and the sampling index (s) of the outer loop in Algorithm 3 are not related [196]. Therefore,
one can set the number of steps L for the leapfrog integrator by an arbitrary integer.

7. Prior Options
7.1. Priors for Variance

Provided the assumption of the basic form (2)–(4), the random error terms {εij}
N,Mi
i=1,j=1

in Stage 1 and {ηli}K,N
l=1,i=1 in Stage 2 are the stochastic sources of (remaining) intra-

individual and inter-individual variabilities, respectively [8]. Both terms are assumed
to follow univariate Gaussian distributions in the basic model. This assumption can be
generalized to multivariate Gaussian distribution, t-distribution, mixture of Gaussian dis-
tributions, etc., depending on the exhibition of the data or prior guess of perturbation
associated with model matrix Θ (5) [197].

Recall that the basic model assumes that data-level errors εij are distributed according
to N (0, σ2) with variance σ2, independently across times j = 1, · · · , Mi and subjects
i = 1, · · · , N. We discuss about the η-term in Section 7.3. Therefore, the standard deviation
σ describes a vertical difference (i.e., measurement error) between the observation yij and
theory f (tij; θi) across time and individuals. We can generalize the basic setting by replacing
σ2 with (a) σ2

i (i = 1, · · · , N) or (b) σ2
ij (i = 1, · · · , N; j = 1, · · · , Mi) to accommodate the

heterogeneity the measurement error (a) across subjects and (b) across subjects and time,
respectively, provided sufficiently large sampling times Mi [28].

For any prior π(σ2), the full conditional posterior distribution of σ2 (18) is given as

π(σ2|Θ, α, B, Ω, y1:N) ∝ (σ2)−∑N
i=1 Mi/2 exp

(
− 1

2σ2

N

∑
i=1
‖yi − fi(ti, θi)‖2

2

)
· π(σ2), (32)

where ‖a‖2
2 represents the Euclidean norm of the vector a.

Popularly used priors π(σ2) (or π(σ)) are (i) the Jeffreys prior π(σ2) ∝ 1/σ2 [198];
(ii) inverse-gamma prior π(σ2) = IG(aσ2 , bσ2) with shape aω2

l
> 0 and scale bω2

l
> 0;

and (iii) half-Cauchy prior π(σ) = C+(0, bσ) = {2/(πbσ)} · 1/{1 + (σ/bσ)2} with scale
bσ > 0. Note that half-Cauchy distribution should be given to the standard deviation σ,
not variance σ2. The first two prior options lead to the conjugate update to sample from
the density π(σ2|−) (32). Although the third one induces non-conjugate update to sample
from the density π(σ|−), computationally efficient sampling can be constructed by using
parameter expansion technique [199] or slice sampler [45].

7.2. Priors for Intercept and Coefficient Vector

One of the central goals of using nonlinear mixed effects models is to identify signifi-
cant covariates among the P covariates x = (x1, · · · , xP)

>, explaining each of the model
parameters θl (l = 1, · · · , K). This is because the function f in Stage 1 (2) is typically derived
from a differential equation system. Such a differential equation has model parameters
{θl}K

l=1 that control the dynamic of the solution of the system, and how the parameters are
related with covariates is vital to understand causality. For example, in PK analysis, under-
standing whether and to what extent weight, renal status, disease status, etc., are associated
with drug clearance may dictate how these factors can be considered in a dosing schedule.

We explain popularly used priors for the intercept and coefficient vector by taking the
vector-form (a) (Stage 1—(6), Stage 2—(7), and Stage 3—(9)) because it directly embeds the
framework of linear regression. For each model parameter index l = 1, · · · , K, we re-write
the Equation (7) for the purpose of illustration:
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θl1
...

θli
...

θlN

 =



αl
...

αl
...

αl

+



x11 · · · x1b · · · x1P
...

...
...

xi1 · · · xib · · · xiP
...

...
...

xN1 · · · xNb · · · xNP





βl1
...

βlb
...

βlP

+



ηl1
...

ηli
...

ηlN

 (33)

where ηl = (ηl1, · · · , ηli, · · · , ηlN)
> ∼ NN(0, ω2

l I). By the assumption (9), we have priors
αl ∼ π(αl) and βlb ∼ π(βlb) (b = 1, · · · , P). Note that the Equation (33) is a Bayesian
multivariate linear regression (page 149 of [60]), and the only difference from the usual
context is that the response vector in (33) is latent. Therefore, almost all Bayesian regression
techniques [200,201] can be used to the latent regression (33) provided that the model
matrix Θ (5) is efficiently realized in Step 1 within the Gibbs sampler.

The default choice for the prior π(αl) is the flat prior π(αl) ∝ 1, also called a uniform
prior. Alternatively, a diffuse Gaussian prior π(αl) = N (al , b2

l ) is also often used by fixing
bl to be sufficiently large (saying bl = 10 or 100) and al = 0. In either case, the full
conditional density (19) enjoys the conjugate update, hence, Step 3 in the Gibbs sampler
in Section 6.2 seldom imposes computational burden. The idea behind the use of (nearly)
non-informative priors for the intercept is that such priors induce almost minimal degree
of Bayesian shrinkage, and hence allow the data to have (nearly) maximum effect on the
posterior estimate for the intercept [199].

Now, we discuss the Bayesian analysis for the coefficients. There are numerous choices
for the prior of the coefficient vector βl = (βl1, · · · , βlb, · · · , βlP) ∼ π(βl), which is not
surprising because the linear regression is arguably one of the most researched topics
in statistics. Here, we suggest some popular priors whose main utility fall broadly into
two settings, according to whether the design matrix X ∈ RN×P in (33) is tall (N ≥ P)
or fat (N < P). In regression theory, the former setting is referred to as low-dimensional
regression, and the latter one is called high-dimensional regression [202–204].

Under the tall design (N ≥ P), particularly when the number of subjects N is much
larger than the number of covariates P (N � P), one important theoretical consideration is
that it is expected to see Bernstein–von Mises type results [205–207] on the posterior infer-
ence for coefficients βl . Roughly speaking, the theorem, sometimes called the “Bayesian
Central Limit Theorem”, states that the posterior distribution of βl is approximately a
normal distribution following a likelihood theory as sample size N goes to infinity for
any prior choice π(βl) under certain regularity conditions. In reality, it is possible that
due to an ill-conditioned design matrix X, a misspecification of the error distribution for
ηli, a small sample size N, an inappropriate choice of prior π(βl), etc., the Bernstein–von
Mises Phenomenon (page 151 from [208]) may not be empirically observed. However, even
in such cases, it is known that the influence of the prior distribution diminishes as N
grows, which means that using different priors for βl may not sensitively change the re-
sulting Bayesian inferences about βl , and furthermore, the inference outcomes obtained by
Bayesian and frequentist methods agree in most instances under the tall design. For exam-
ple, see results of [209] and [28] for pharmacokinetic applications. Some possible options
for prior π(βl) are (i) flat prior π(βl) ∝ 1; (ii) Gaussian diffuse prior π(βl) = NP(0, σ2

βl
I)

with a large variance σ2
βl

[210], and (iii) g-prior π(βl) = NP(0, g · ω2
l [X
>X]−1) for some

positive value g [211]. The suggested priors yield the conjugate update for Step 4 within
the Gibbs sampler.

Now, we discuss some priors for π(βl) in the linear regression (33) under the fat
design setting (N � P). This setting can be applied to pharmacogenetics where one
of the main interests is to find important genes that may influence pharmacokinetics
or pharmacodynamics [212–214], where the number of genes P is allowed to be a few
thousand, while the number of patients N is confined to a few hundred. A fundamental
assumption in this setting is sparsity assumption on the coefficients βl . This means that
many of the coefficients of βl = (βl1, · · · , βlP)

> are (close to) zero. The true non-zero
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coefficients in the βl are referred to as signal coefficients, while the remaining ones are
called noise coefficients.

Statisticians have devised a number of penalized regression techniques for estimating
βl under the sparsity assumption [215]. From a Bayesian point of view, sparsity favor-
ing mixture priors with separate control on the signal and noise coefficients have been
proposed [216–219], which is called the ‘spike-and-slab priors’. Although these priors often
lead to attractive theoretical properties [200,220], computational issues and considerations
that many of the βlb’s (b = 1, · · · , P) may be small but not exactly zero has led to a wide
variety of ‘continuous shrinkage priors’ [221–225], which can be unified through a global-
local scale mixture representation [226]. The following hierarchies describe the sparse
favoring priors:

• Spike-and-slab priors. Each component of the coefficients βl is assumed to be drawn
from

βlb|τl ∼ (1− τl) · δ0(βlb) + τl · f (βlb), (l = 1, · · · , K; b = 1, · · · , P),

where τl = Pr[βlb 6= 0]. The function δ0(βlb) is the Direc-delta function and f (βlb) is a
density supported on R, called the spike and slab densities, respectively. The spike
density shrinks noise coefficients to the exact zero, while the slab density captures
signal coefficients by allowing a positive mass on the tail region [200,227,228];

• Continuous shrinkage priors. Each component of the coefficients βl is assumed to
be drawn from

βlb|λlb, τl , ω2
l ∼ N (0, λ2

lbτ2
l ω2

l ), (l = 1, · · · , K; b = 1, · · · , P),

λlb ∼ f (λlb), τl ∼ g(τl), ω2
l ∼ h(ω2

l ), (l = 1, · · · , K; b = 1, · · · , P),

where f , g, and h are priors for λlb, τl , and ω2
l , respectively, supported on (0, ∞).

Here, λlb and τl are referred to as local-scale and global-scale parameters, respec-
tively. The choices of f and g play a key role in controlling the effective sparsity and
concentration of the prior and posterior distributions [226,229–233].

Roughly speaking, the roles of the τl in both prior frameworks are similar in the sense
that they control the degree of the sparsity [226]. Slab density and local-scale prior density
are expected to put a sufficient mass on the tail regions of the densities to detect signal coef-
ficients and produce a robust Bayes estimator for βl [201,224]. For that reason, heavy-tailed
densities (e.g., double generalized Pareto distribution, Cauchy distributions [234,235])
are preferably used. Refer to [236,237] for comprehensive surveys on Bayesian variable
selection.

7.3. Priors for Covariance Matrix

Consider a nonlinear function f (t; θ) indexed by a K-dimensional model parameter
θ = (θ1, · · · , θl , · · · , θK)

> to describe an individual trajectory. A basic assumption is that all
the components θl are unrelated across l (l = 1, · · · , K), which is referred to as uncorrelated
design setting. In many practical problems, this setting is reasonably accepted since one of
the fundamental assumptions on f is that each component θl has its own role in modify-
ing a functional shape of f . A central goal of a researcher when using nonlinear mixed
models is to examine these roles mathematically, endowed with interpretations by domain
experts in terms of physiology, epidemiology, or pharmacology, etc. The basic model (2)–(4)
that we illustrated so far is designed under this assumption; recall that the covariance
matrix Ω ∈ RK×K on Stage 2 was assumed to be diagonal, Ω = diag(ω2

1 , · · · , ω2
l , · · · , ω2

K).
Under this uncorrelated design setting, the possible options for priors for the scale com-
ponents ω2

l (or ωl) are (i) Jeffreys prior π(ω2
l ) ∝ 1/ω2

l [198]; (ii) inverse-gamma prior
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π(ω2
l ) = IG(aω2

l
, bω2

l
) with shape aω2

l
> 0 and scale bω2

l
> 0; and (iii) half-Cauchy prior

π(ωl) = C+(0, bωl ) = {2/(πbωl )} · 1/{1 + (ωl/bωl )
2} with scale bωl > 0. See discussion

by [238] for the prior options implemented on 8-schools example.
We discuss Bayesian inference about a population covariance matrix Ω under a corre-

lated design setting, where the off-diagonal entries of Ω (34) are allowed to be non-zeros:

Ω =



ω11 · · · ω1l · · · ω1K
...

...
...

ωl1 · · · ωll · · · ωKl
...

...
...

ωK1 · · · ωKl · · · ωKK

 ∈ RK×K. (34)

In (34), the (l1, l2)-th entry is denoted by Ω[l1, l2] = ωl1l2 = cov(ηl1i, ηl2i) (l1, l2 = 1, · · · , K; i =
1, · · · , N). With l1 = l2, we have ωl1l2 = ω2

l1
(l1 = 1, · · · , K).

Researchers often wish to work with the correlated design setting to examine whether
any pair of model parameters, θl1 and θl2 , are physiologically (or epidemiology, pharmacol-
ogy, financially, etc.) associated or not. Taking the term structure modeling discussed in
Section 3.4 as an example, it is a valid question whether the Nelson–Siegel parameters are
correlated or not as they are all associated with the interest rate [87]. Statistically, having a
well-designed covariance structure can also improve the model fitting and produce reliable
estimators for the model parameters compared to uncorrelated designs. To make a fully
Bayesian inference about the Ω (34), we need to specify an appropriate prior π(Ω) which
we will discuss shortly. After that, we operate the Gibbs sampler in Section 6.2, with some
modifications, if necessary. For instance, to implement the parallel computation in Step 1,
we recommend to sample from the joint density π(θi|−) across i, instead of sampling from
the individual π(θli|−). Especially, among the five steps of the Gibbs sampler, implementa-
tion of Step 5 needs special care in sampling from the full-conditional posterior density Ω.
This step can be highly complicated depending on the chosen prior.

A challenge in choosing a workable prior π(Ω) is briefly mentioned. Research re-
garding this subject are vast, growing, and deep. Similar to the obstacles encountered in
classical covariance estimation [239–243], there are three major aspects, among many others,
in the consideration of a thoughtful prior π(Ω) to produce a reliable Bayes estimator of Ω:
(1) sample size N; (2) the number of model parameters K; and (3) positive-definiteness of
Ω [244]. The first two aspects are related to theoretical constraints. In general, it is known
that the estimation of the covariance Ω can be distorted unless the ratio K/N is sufficiently
small (see, e.g., [245–247]). The third one is germane to the modeling consideration and
computation strategies to estimate Ω, typically resolved via principal component analysis,
Cholesky decomposition, and Gaussian graphical models, etc. [248,249].

For any prior π(Ω), the full conditional density of Ω is analytically expressed as
follows (see [250] for a similar derivation):

π(Ω|Θ, σ2, α, B, y1:N) ∝ π(Θ|α, B, Ω) · π(Ω) ∝
{ N

∏
i=1
NK(θ

i|α + Bxi, Ω)

}
· π(Ω) (35)

∝ (detΩ)−N/2 exp
(
−1

2
tr
[
Ω−1

{
(N − 1)G + N(φ̄− α)(φ̄− α)>

}])
· π(Ω),

where φi = θi − Bxi (i = 1, · · · , N) , φ̄ ∈ RK, and G ∈ RK×K are defined by

φ̄ = N−1
N

∑
i=1

φi = N−1
N

∑
i=1

(θi − Bxi), G = (N − 1)−1
N

∑
i=1

(φi − φ̄)(φi − φ̄)>;

N

∑
i=1

(φi − α)(φi − α)> = (N − 1)G + N(φ̄− α)(φ̄− α)>.
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In (35), we used the vector-form (b) (i.e., i-indexing) to express the prior for Θ. Notations
det(A) and tr(A) denote the determinant and trace of a square matrix A, respectively.
Matrix G is the ‘latent’ covariance matrix based on the model matrix Θ ∈ RK×K (5) and
coefficient matrix G ∈ RK×P, whose form resembles sample covariance matrix assuming
φi are observed [247].

Traditionally used priors for the covariance matrix Ω (34) are the Jefferys prior and
the conjugate inverse Wishart prior (see [251,252] for the reviews of the earlier works):

• Jeffreys prior. The common non-informative prior has been the Jeffreys improper
prior

π(Ω) ∝ (detΩ)−(K+1)/2.

This prior was originally derived from an invariance argument by [253] for the case
K = 1, 2; and it was considered for arbitrary K by [250,254,255] to develop Bayesian
multivariate theory.

• Inverse-Wishart prior. The common informative prior is the inverse-Wishart prior [256]

π(Ω) = IW(V, d) =
(detV)d/2

2dK/2ΓK(d/2)
(detΩ)−(d+K+1)/2 exp

(
−1

2
tr
[
Ω−1V

])
,

where Ω and V are K-by-K positive definite matrices, and ΓK(·) is the multivariate
gamma function [257]. V is a scale matrix, and d(> K− 1) is the number of degrees of
freedom. Conventionally, d is chosen to be as small as possible to reflect vague prior
knowledge. A univariate specialization (K = 1) is the inverse-gamma distribution.

The success of Bayesian computation and MCMC in the late 1980s opened up the
potential of using more flexible non-conjugate priors for covariance matrices [258–260].
Limitations of the traditional priors studied by many statisticians also motivated them to
develop a new prior. For example, some of them argued that the Jeffreys prior may not
be really non-informative, particularly in high dimensional setting [249,261], and inverse
Wishart prior is very restrictive and lacks flexibility [262]. Among many new priors
developed for particular applications [263], a combination of separation strategy developed
by [249] and LKJ prior [264] has been successful, heavily used in a variety of industrial
problems, and relevant software has been developed, including R package STAN [17,193].

We illustrate a central idea of using the separation strategy [249] to estimate the
population covariance matrix Ω ∈ RK×K. First, we decompose the matrix Ω (34) into two
components, K standard deviations ωl =

√
ωll =

√
Ω[l, l] (l = 1, · · · , K) and correlation

matrix R ∈ RK×K:

Ω = diag(ω)R diag(ω) ∈ RK×K, (36)

where ω = (ω1, · · · , ωK)
> is the K-dimensional vector of standard deviations, diag(ω) is

the diagonal matrix with diagonal elements ω, and R is the K-by-K correlation matrix. Sec-
ond, we specify priors independently for ω and R, denoted as π(ω) and π(R), respectively,
so that we have the joint prior for (ω, R), π(ω, R) = π(ω) · π(R). Following notation
from [249], let RK denote the correlation matrix space. Then, the priors π(ω) and π(R)
are supported on (0, ∞)K andRK, respectively. Finally, draw sample from each of the full
conditional posterior distributions π(ω|R,−) and π(R|ω,−) at time in Step 5 within the
Gibbs sampler in Section 6.2. This means that, we are not directly sampling the covariance
matrix Ω from π(Ω|−) (35) as we would do when Jeffreys or inverse-Wishart prior were
used for the prior.

Normally used prior options for the scale vector ω = (ω1, · · · , ωl , · · · , ωK)
> are

(i) log(ω) ∼ NK(aω, Bω), where log(ω) = (log ω1, · · · , log ωl , · · · , log ωK)
>, with hyper-

parameters, mean aω ∈ RK and covariance Bω ∈ RK×K which is often diagonal [249]; and
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(ii) ωl ∼ C+(0, bωl ) with the scale hyperparameter bωl > 0 [17]. As for the prior distribution
for the correlation R ∈ RK×K, the LKJ prior proposed by [264] is popularly used:

• LKJ prior. LKJ prior is supported over the correlation matrix space RK, or equiv-
alently over the set of K × K Cholesky factors of real symmetric positive definite
matrces

π(R) =

[
2∑Q−1

q=1 (2γ−2+Q−q)(Q−q)
Q−1

∏
q=1
B
(

γ +
Q− q− 1

2
, γ +

Q− q− 1
2

)Q−q
]
(det R)γ−1, (37)

with the shape parameter γ > 0. The function B(α, β) is the beta function. If γ = 1,
the density is uniform over the spaceRK; for γ > 1, the density increasingly concen-
trates mass around the identity matrix I ∈ RK×K (i.e., favoring less correlation); for
γ < 1, the density increasingly concentrates mass in the other direction, and has a
trough at the identity matrix (i.e., favoring more correlation).

Note that the normalizing constant of the LKJ prior (37) is constant with respect to γ,
therefore, we have π(R) ∝ (det R)γ−1, with the shape hyperparameter γ > 0. The behavior
of LKJ prior with γ = 1 (i.e., π(R) ∝ 1) was studied by [249], where the author found that
as K increases, the marginal correlations tend to concentrate around zeros (see Figure 1
from [249]), hence, model matrix Θ (5) are more likely to be treated as in the uncorrelated
design setting.

As for the hyperparameter specification for the LKJ prior, Stan Development Team [17]
recommends to use γ ≥ 1. This suggestion is also well-aligned with the original intention
of using the separation strategy to make a variance-correlation structure by [249] in that:
(1) the authors intend to choose a diffuse prior for π(R) to reflect weak knowledge about
the correlation R, while (2) prior knowledge, possibly informative, shall be put on the
scale parameters by specifying π(ω), as most statisticians are normally trained to do.
Computational algorithm and theory concerning the LKJ prior can be found in [264–266].

8. Model Selection
8.1. Setting

The recent development of MCMC methods has made it possible to fit enormously
large classes of models with the aim of exploring real world complexities of data [267]. This
ability naturally led us to wish to compare several candidate models that vary substantially
in the model complexities and choose the best model out of them. For example, authors [31]
tried to compare four different rate decline curves to fit the production data from the
360 wells in Figure 4. Indeed, upstream petroleum engineers endeavor to find a rate decline
curve describing the production trajectories as accurately as possible so that EUR can be
accurately estimated. Another application of model selection can be found in PK analysis.
Taking the theophylline data in Figure 3 as an example, PK modelers may debate whether
they need to use a two- or three-compartment model with a nonlinear clearance to describe
the PK exposure, or if just one-compartment model with a linear clearance is sufficient.

In the current section, our primary focus is to illustrate a Bayesian approach to com-
pare multiple Bayesian nonlinear mixed effects models explaining the data {(yi, ti, xi)}N

i=1
introduced in Section 3.6. To that end, we want to lay out the set-up that underlies our
model selection procedure. Consider Stages 1 and 2 of the basic model (i.e., the hierarchy
(2)–(3)), endowed with a joint prior π(σ2, α, B, Ω). Very importantly, we do not assume
the independent prior assumption as we did in Stage 3 (4): any prior assumption on the
parameters (σ2, α, B, Ω) works fine in our framework for the model comparison. Therefore,
the basic model (2)–(4) is considered as a subclass of candidate models that we want to
compare. In our framework, we can also consider the correlated design setting discussed
in Section 7.3, where the covariance matrix Ω (34) is allowed to be any positive-definite
matrix (i.e., does not need to be a diagonal matrix), as one of candidates. Eventually, in our
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framework, modelers have the freedom to choose (i) the nonlinear function f to describe
the temporal profile yi and (ii) prior distribution π(σ2, α, B, Ω).

Assume that a researcher wants to consider H functions, denoted as f (t; θ[M1]
),

f (t; θ[M2]
), · · · , f (t; θ[MH ]), as a possible option for the use of f in Stage 1. Here, the sub-

script ‘[Mh]’ on the model parameter θ is noted to indicate for the model index (h =
1, · · · , H). Obviously, the candidate functions f (t; θ[Mh ]

) (h = 1, · · · , H) can have differ-
ent functional forms dictated by different dimensions for the model parameters θ[Mh ]

∈
RK[Mh ] . This will consecutively change the dimensions of the parameter blocks, α[Mh ]

∈
RK[Mh ] , B[Mh ]

∈ RK[Mh ]
×P, and Ω[Mh ]

∈ RK[Mh ]
×K[Mh ] , accordingly, yet the support of the σ2

remains the same with (0, ∞) because we still consider the additive error model. After that,
she now has the freedom to choose a prior π(σ2, α[Mh ]

, B[Mh ]
, Ω[Mh ]

) (h = 1, · · · , H). There
are infinitely many choices for the prior, and one can use priors discussed in Section 7.

Now, the fundamental question naturally arising at this point is “what is the best model
among the H candidate models?” To illustrate, we write the situation more technically.
With the above specifications, Stage 1 of each of the H candidate models is given as

M1 : yij = f (tij; (θ[M1]
)i) + εij, εij ∼ N (0, σ2), (i = 1, · · · , N; j = 1, · · · , Mi);

...

Mh : yij = f (tij; (θ[Mh ]
)i) + εij, εij ∼ N (0, σ2), (i = 1, · · · , N; j = 1, · · · , Mi);

...

MH : yij = f (tij; (θ[MH ])
i) + εij, εij ∼ N (0, σ2), (i = 1, · · · , N; j = 1, · · · , Mi),

where each of the models has the corresponding model matrix

M1 : Θ[M1]
=
[
(θ[M1]

)1 · · · (θ[M1]
)i · · · (θ[M1]

)N
]
∈ RK[M1 ]

×N ;

...

Mh : Θ[Mh ]
=
[
(θ[Mh ]

)1 · · · (θ[Mh ]
)i · · · (θ[Mh ]

)N
]
∈ RK[Mh ]

×N ;

...

MH : Θ[MH ] =
[
(θ[MH ])

1 · · · (θ[MH ])
i · · · (θ[MH ])

N
]
∈ RK[MH ]×N ,

obtained by stacking individual-based vector horizontally as we did to obtain Θ (5). Again,
the number of rows of the matrix Θ[Mh ]

, that is, K[Mh ]
, depends on the choice of the

function f . Stage 2 of each of the H models will then be

M1 : (θ[M1]
)i = α[M1]

+ B[M1]
xi + (η[M1]

)i, (η[M1]
)i ∼ NK(0, Ω[M1]

), (i = 1, · · · , N);

...

Mh : (θ[Mh ]
)i = α[Mh ]

+ B[Mh ]
xi + (η[Mh ]

)i, (η[Mh ]
)i ∼ NK(0, Ω[Mh ]

), (i = 1, · · · , N);

...

MH : (θ[MH ])
i = α[MH ] + B[MH ]xi + (η[MH ])

i, (η[MH ])
i ∼ NK(0, Ω[MH ]), (i = 1, · · · , N).
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Finally, Stage 3 of each of the H models is comprised of the prior:

M1 : (σ2, α[M1]
, B[M1]

, Ω[M1]
) ∼ π(σ2, α[M1]

, B[M1]
, Ω[M1]

);

...

Mh : (σ2, α[Mh ]
, B[Mh ]

, Ω[Mh ]
) ∼ π(σ2, α[Mh ]

, B[Mh ]
, Ω[Mh ]

);

...

MH : (σ2, α[MH ], B[MH ], Ω[MH ]) ∼ π(σ2, α[MH ], B[MH ], Ω[MH ]).

We describe three model comparison criteria that are popularly used in the litera-
ture: deviance information criterion (DIC) [55,268], widely applicable information criterion
(WAIC) [269], and posterior predictive loss criterion (PPLC) [270]. As in frequentist infor-
mation criteria [271–273], formulation of the DIC, WAIC, and PPLC also takes the two terms
into a consideration: goodness-of-fit and penalty for model complexity. Because increasing (or
decreasing) model complexity is accompanied by the risk of over-fitting (or under-fitting),
models should be compared by trading-off these two terms. Particularly, as we are currently
discussing about a Bayesian hierarchical model, these criteria are obviously depending on
what part of the model specification is considered to be part of the likelihood, and what is
not. Ref. [268] refer to this as the focus issue. For example, in the general form of a Bayesian
hierarchical model consisting of a top-level likelihood p(y|Ψ) for data y, a prior model
π(Ψ|η), and a hyperprior π(η), one might choose as the likelihood either the conditional
density p(y|Ψ), or the marginal density p(y|η) =

∫
p(y|Ψ)π(Ψ|η)dΨ. Based on [268],

the former situation is referred to as “focus on Ψ”, while the latter situation is referred to as
“focus on η”, respectively.

In our case, we shall “focus on parameters (Θ[Mh ]
, σ2)” (h = 1, · · · , H) used in the

conditional density in Stage 1. For notational simplicity, we denote Ψ[Mh ]
= (Θ[Mh ]

, σ2).
Then, likelihood of each of the H models based on N observations {(yi, ti, xi)}N

i=1 is

M1 : L(Ψ[M1]
|y1:N) =

N

∏
i=1
L((Ψ[M1]

)i|yi) =
N

∏
i=1
NMi (yi| fi(ti, (θ[M1]

)i), σ2I);

...

Mh : L(Ψ[Mh ]
|y1:N) =

N

∏
i=1
L((Ψ[Mh ]

)i|yi) =
N

∏
i=1
NMi (yi| fi(ti, (θ[Mh ]

)i), σ2I);

...

MH : L(Ψ[MH ]|y1:N) =
N

∏
i=1
L((Ψ[MH ])

i|yi) =
N

∏
i=1
NMi (yi| fi(ti, (θ[MH ])

i), σ2I),

where L((Ψ[Mh ]
)i|yi) is the likelihood (i.e., data distribution) based on an individual

data with parameter (Ψ[Mh ]
)i = ((θ[Mh ]

)i, σ2) (i = 1, · · · , N). One caveat of the practical
calculation to obtain the three criteria is that, we mainly need the posterior samples of Ψ[Mh ]

drawn from the joint posterior density π(Ψ[Mh ]
, α[Mh ]

, B[Mh ]
, Ω[Mh ]

|y1:N) and the explicit
form the likelihood function L(Ψ[Mh ]

|y1:N) from each of the modelsMh (h = 1, · · · , H)
due to our assumption of the focus.

In the next subsections, we provide some brief summaries of the criteria and then adapt
them to our context. In what follows, to simplify the notation, we suppress the arguments
[Mh] in the parameters. For a detailed explanation of the criteria, refer to [274,275].
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8.2. Deviance Information Criterion

Ref. [55] suggested DIC, a generalized version of Akaike information criterion [271]
for a Bayesian hierarchical model, given by

DIC = D(Ψ) + 2 · pD. (38)

In (38), the function D(Ψ) = −2 log L(Ψ|y1:N) is referred to as deviance. Deviance is
a goodness-of-fit statistics whose lower value indicates a better fitting [276]. Goodness-
of-fit term of DIC (i.e., D(Ψ)) is the value of deviance evaluated at the posterior mean
of Ψ, denoted by Ψ = E[Ψ|y1:N ] =

∫
Ψπ(Ψ|y1:N)Ψ, where π(Ψ|y1:N) represents the

posterior distribution of Ψ = (Θ, σ2). The effective number of parameters (i.e., penalty
term for model complexity) of DIC in (38) is obtained by pD = Var[D(Ψ)|y1:N ]/2 =
2 · Var[log L(Ψ|y1:N)|y1:N ]. A model with a smaller value for DIC indicates a better
predictive performance among considered models.

Some intuition behind having two competing additive terms in (38) is as follows. Typ-
ically, complex models get rewards in terms of the deviance than simple models: therefore,
over-fitted models normally have a preference over under-fitted models when only the
deviance is considered in model comparison, which is undesirable. By adding a penalty
term for the model complexity to the deviance term, we hope that the resulting criterion
produces a reasonable value based on fair comparison regardless of model complexity.
Roughly speaking, this principle (i.e., a trade-off between the goodness-of-fit and penalty
terms) is commonly manifested in the three criteria DIC, WAIC, and PPLC.

Going back to our examples, we can obtain the DIC corresponding to each of the H
candidate modelsMh (h = 1, · · · , H):

D(Ψ) = −2
N

∑
i=1

log NMi (yi| fi(ti, θi), σ2I),

where only mean function fi(ti, θi) differs across H modelsMh, h = 1, · · · , H. In practice,
posterior mean Ψ and effective number of parameters pD are not expressed in closed-forms,
hence, the DIC (38) is stochastically approximated though MCMC techniques [277].

8.3. Widely Applicable Information Criterion

Ref. [269] introduced WAIC, which is regarded as a fully Bayesian version of the
DIC (38) in the sense that a goodness-of-fit term exploits the entire posterior distribution.
Note that the goodness-of-fit term of the DIC (38) is obtained by plugging the posterior
mean Ψ into the deviance D(Ψ), which lacks a fully Bayesian sense. It is known that
WAIC is asymptotically equivalent to Bayesian cross-validation [278], and also applicable
to singular models.

WAIC is defined by

WAIC = −2 · LPPD + 2 · pW, (39)

where the goodness-of-fit term is called the log posterior predictive density (LPPD), which
is defined as LPPD = ∑N

i=1 log E[L(Ψi|yi)|y1:N ], and the effective number of parameter in
the penalty term is defined by pW = ∑N

i=1 Var[log L(Ψi|yi)|y1:N ].
In practice, as similar to DIC (38), WAIC (39) is obtained by stochastic approxima-

tions. Given posterior samples {(Ψ)(s)}S
s=1 ∼ π(Ψ|y1:N), the LPPD and pW terms may be

approximated by

L̂PPD =
N

∑
i=1

log
(

1
S

S

∑
s=1
L((Ψi)(s)|yi)

)
, (40)

p̂W =
N

∑
i=1

{
1

S− 1

S

∑
s=1

(
log L((Ψi)(s)|yi)−

1
S

S

∑
s=1

log L((Ψi)(s)|yi)

)2}
. (41)
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Returning to our examples, we can approximate the value of WAIC corresponding to
each of the H models as follows. First, replace L(Ψi|yi) in (40) and (41) with the individual-
based data distribution p(yi|Ψi) = NMi (yi| fi(ti, θi), σ2I) (i = 1, · · · , N), where only the
mean function fi(ti, θi) differs across the H candidate models, and second, approximate
L̂PPD and p̂W by using a MCMC method, and finally, obtain an approximation of WAIC
(39) corresponding to each model.

8.4. Posterior Predictive Loss Criterion

Ref. [270] introduced PPLC as an alternative to DIC (38) or WAIC (39). A notable
feature of PPLC different from DIC and WAIC is its use of replicated observations, denoted
by yrep

i = (yrep
i1 , yrep

i2 , · · · , yrep
iMi

)> ∈ RMi , corresponding to the actual observations yi = (yi1,

yi2, · · · , yiMi )
> ∈ RMi , for each i = 1, · · · , N. Here, the replicate yrep

i for the subject i is
drawn from its posterior predictive density

f (yrep
i |y1:N) =

∫
p(yrep

i |Ψ
i) · π(Ψ|y1:N)dΨ, (i = 1, · · · , N), (42)

where p(yrep
i |Ψ

i) is the data density for the i-th subject and π(Ψ|y1:N) is posterior distri-
bution. The idea of using replicates {yrep

i }
N
i=1 for a criticism of the model in light of the

observed data {yi}N
i=1 is also purported by [279].

A general rule of the PPLC is principled on a balanced loss function [280]. Given any
loss function l(·) and a positive real number k, a balanced loss function is defined by

l(yrep
i , ai; y1:N) = l(yrep

i , ai) + k · l(yi, ai), k > 0, i = 1, · · · , N, (43)

where ai is a non-stochastic action vector, k is a weight, and yrep
i is a replicate for its

observed counterpart yi. Conceptually, the role of action vector ai is to accommodate
both yi, and what we predict for yrep

i . Note that the loss function on the left-hand side
of (43) penalizes actions ai both for departure from the corresponding observed value
(fit) as well as for departure from what we expect the replicate to be (smoothness) [274].
A generic version of PPLC is defined by Dk = ∑N

i=1 minai E[l(y
rep
i , ai; y1:N)|y1:N ], where

the expectation E[·|y1:N ] is taken with respect to the predictive density f (yrep
i |y1:N) (42)

for some specified k ≥ 0. Note that the resulting value Dk does not depend on the action
vector ai and replicates {yrep

i }
N
i=1 as they are marginalized out by the minimization and

expectation, respectively, but is dependent on the constant k > 0.
By choosing the quadratic loss l(y, a) = ‖y− a‖2

2 in (43), the generic PPLC Dk may be
simplified as

Dk =
k

k + 1
G + P, k ≥ 0, (44)

where G = ∑N
i=1 ‖νi − yi‖2

2 and P = ∑N
i=1 ς2

i represent the goodness-of-fit and penalty
terms, respectively, with νi = E[yrep

i |y1:N ] and ς2
i = E[‖yrep

i − νi‖2
2|y1:N ], i = 1, · · · , N.

Eventually, a model with a smaller value for the Dk (44) is preferable. It is known that
ordering of models is insensitive to the particular choice of k [274].

Finally, we adapt the PPLC (44) to our examples. Due to the definition of notation
Ψi = (θi, σ2) (i = 1, · · · , N), the posterior predictive distribution of yrep

i (42) can be detailed
as follows

f (yrep
i |y1:N) =

∫
NMi (y

rep
i | fi(ti, θi), σ2I) · π(Ψi|y1:N)dΨi, (i = 1, · · · , N).

To approximate Dk (44) for each model, first, choose a number k, saying k = 1, and sec-
ond, approximate νi and ς2

i through replicates yrep
i drawn from the predictive density

f (yrep
i |y1:N) (42) for each i = 1, · · · , N, and finally, complete the G and P to get an approxi-

mation to the Dk (44).
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9. Extensions and Recent Developments
9.1. Residual Error Models

In the basic version of the Bayesian nonlinear mixed effects model (2)–(4), we assume
that residual errors in the individual-level model are additive to the mean function f across
all subjects and times. Under this assumption, the (conditional) variance of the i-th subject’s
trajectory V[yij|θi] is constant with σ2 over time tij (j = 1, · · · , Mi). The additive error
model is the most standard assumption used in a variety of problems arising from many
industrial and academic researches [28,30,31,281,282]. However, when there exist some sys-
tematic temporal trend in the volatility of individual trajectories, for instance, the variance
V[yij|θi] seems to decrease over times tij as shown in Figures 3 and 4, the additive residual
assumption may not be adequate to fully account for the reality of the data.

The list in Table 3 shows popularly used residual error models that can be used in
Stage 1 (2). Some of them are deployed as options for the user to choose in industrial
software such as MONOLIX [48] and NONMEM [47,101], and open source R package such
as NLMIXR [18]. If we assume εij = εij = 0, then all the error models leads to the same
deterministic equation yij = f (tij; θi). That being said, if the variances of the residuals
εij ∼ N (0, σ2) and εij ∼ N (0, ς2), that is, σ2 and ς2, are quite small, then the inference
outcome based on each of the error models will be similar each other.

Table 3. List of residual error models that can be used in Stage 1 (2).

Residual Error Type Individual-Level Model Mean E[yij|θi] Variance V[yij|θi]

Additive yij = f (tij; θi) + εij f (tij; θi) σ2

Proportional yij = f (tij; θi) · (1 + εij) f (tij; θi) { f (tij; θi)}2 · σ2

Exponential yij = f (tij; θi) · exp(εij) f (tij; θi) · exp(σ2/2) { f (tij; θi)}2 · (exp(σ2)− 1) · exp(σ2)

Additive and proportional yij = f (tij; θi) · (1 + εij) + εij f (tij; θi) { f (tij; θi)}2 · σ2 + ς2

Additive and exponential yij = f (tij; θi) · exp(εij) + εij f (tij; θi) · exp(σ2/2) { f (tij; θi)}2 · (exp(σ2)− 1) · exp(σ2) + ς2

Random errors are assumed to be distributed according to εij ∼ N (0, σ2) and εij ∼ N (0, ς2) (i = 1, · · · , N; j =
1, · · · , Mi), with independence between εij and εij.

The exponential error model (i.e., yij = f (tij; θi) · exp(εij)) is a routine option, which
is used when the ranges of the response yij and mean function f are positive real num-
bers, while we want to systematically describe the temporal volatility. In the practical
implementation, we take the natural logarithm on both sides of the equation of the er-
ror model so that the model is converted to an additive error model in log-scale (i.e.,
log yij = log( f (tij; θi)) + εij). That way, relevant Bayesian computation becomes much
straightforward. Ref. [31] analyzed the shale oil data shown in Figure 4 in this formulation.

9.2. Bayesian Nonparametric Methods

Recently, the use of the Bayesian nonparametric (BNP) statistical models has received
increasing attention in the statistical literature because they allow modelers to gain model
flexibility and robustness compared to its parametric counterpart [283,284]. BNP methods
can be applied to the formulation of the basic model (2)–(4), when the parametric specifica-
tion for the error distributions is too restrictive to achieve a certain purpose of the analysis,
or inference results lead to poor performance due to the inappropriate parametric form.
Typically, BNP methods are applied to the population-level model, by extending or relaxing
the parametric assumption on the random errors ηli, while retaining the individual-level
model as fully parametric [285]. A Gaussian process prior [286,287] or a Dirichlet process
prior [288–290] is popularly used for such extension and relaxation. Mathematical concepts
of the processes are explained in [287,288].

To illustrate some motivation behind the application of BNP methods, we take the
shale oil production data in Figure 4 researched by [31] as an example. Their goal was to
predict EUR at a new location before the actual drilling takes place. Because the geological



Mathematics 2022, 10, 898 40 of 51

location is not stochastically incorporated into the basic model (2)–(4), authors extended
the linear regression in Stage 2 into a spatial linear regression as follows

θli = θl(si) = αl + x>i βl + υl(si) + ηl(si), (i = 1, · · · , N; l = 1, · · · , K),

where ηl(·) ∼ GP(0, ω2
l I(·, ·)) represents a Gaussian white noise process with the indicator

function I(·, ·) with variance ω2
l . The stochastic process υl(·) ∼ GP(0,K(·, ·)) is the

newly introduced Gaussian process with a radial basis function kernel K(si1 , si2)) =
γ2

l exp[−‖si1 − si2‖2
2/{2ρ2

l }] with variance γ2
l and range parameter ρ2

l , and si represents
the (longitude, latitude) of the i-th shale oil well. The existence of υl(·) enables spatial
prediction of EUR at a new location, taking an advantage of the geological proximity
information, which is called the latent kriging technique.

An another motivation on the use BNP methods is the situation where there exists
multimodality in the distribution P of model parameter vector {θi}N

i=1 ∼ P . Note that,
in the basic model (2)–(4), the distribution P is assumed to be a single multivariate normal
distribution NK(α + Bxi, Ω). In the multimodality case, the population may consist of
disparate subpopulations, and the single multivariate normal distribution of the basic
model can produce a poor model performance due to the lack of flexibility. A natural
generalization to accommodate such multimodality is an extension to a finite mixture of
multivariate normal distributions [291], or furthermore, to a countably infinite number
of mixtures of multivariate normal distributions [292]. Particularly, in the latter case, if a
Dirichlet process prior [288] is placed on the mixture components, then the resulting infinite
mixture models are generally called Dirichlet process mixture (DPM) model [293,294]. The
DPM model is one of the most studied topics in BNP methods in recent years [284]. See [295]
for a survey of the posterior computations of using DPM models.

A number of authors have studied DPM models under the basic model (2)–(4) or
similar forms with their own specifications [24,282,285,296]. For example, ref. [285] placed
a DPM model only for the model parameter vector θi (i = 1, · · · , N), while the covariates xi
are incorporated into the base measure of Dirichlet process. In contrast, refs. [282,296] used
a DPM model jointly for the model parameter vector and covariates, (θi, xi) (i = 1, · · · , N),
to induce a nonparametric regression function E[θi|xi]. Ref. [24] used a Dirichlet process
prior only for a certain component θli (i = 1, · · · , N) corresponding to a block indicator
in an analysis-of-variance setup. Refer to the [297] for a review and references therein for
more specifications.

9.3. Software Development

Recent years have seen the great success of Bayesian nonlinear mixed effects models,
or more generally, Bayesian hierarchical models (BHM), in a variety of disciplines such as
biology, medical research, physics, social, and educational sciences [30,31,141,298,299]. This
was partly due to the widespread introduction of non-commercial software packages that
enabled applied researchers to answer substantive research questions through applications
of BHM [17,34,35,47,50,77]. Most of the Bayesian software such as JAGS [34], BUGS [35],
and STAN [17] are designed to require a reasonable understanding of the MCMC sampling
scheme. From the perspective of implementation, spirits of most Bayesian software are
similar in that researchers only need to designate a DAG structure [300,301] of a BHM. Such
a DAG structure can be abstractly represented as the collection {data y, likelihood p(y|θ),
prior π(θ|η), hyperprior π(η)} that should be programmed by textually or graphically,
after which Bayesian software prints out simulated Markov chains from the posterior
distribution π(θ, η|y). See [35,49] for an overall idea about how Bayesian software operates.

From the algorithmic perspective, the performance of Bayesian software may highly
depend on two aspects: (i) whether the program has been designed to exploit a conditional
independence structure arising from the hierarchy; and (ii) what sampling algorithms have
been deployed to simulate Markov chains from a non-closed form distribution, possibly
high-dimensional. As discussed in Section 6.3, conditional independence is inherent in the
formulation of BHM, of which proper exploitation can greatly improve the computational
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efficiency [39,302]. This can be mostly done by constructing a Gibbs sampling algorithm
with a blocking strategy into the consideration [303]. A general rule is that the convergence
of the Gibbs sampler can be improved by grouping correlated latent variables as a single
parameter block to sample from as a whole [304]. On the other hand, in the task of
sampling from a non-closed form distribution, we know that a naive MH algorithm [180]
requires the specification of proposal density, which can be problematic in developing
software. Therefore, fully automated sampling algorithms such as ESS (Algorithm 1) [169],
NUTS [42], and slice sampler [45] are appreciated as general-purpose inference engines in
the development of Bayesian software when conjugate-update is infeasible.

Most of the Bayesian software packages, for instance, WINBUGS [49,305], OPEN-
BUGS [306], and JAGS [34], use three family of MCMC algorithms: Gibbs [302], MH [180],
and slice sampling [45]. In contrast, STAN [17] implements HMC [41,183] and its extension,
NUTS [42]. Perhaps, STAN is one of the most extensively used Bayesian software packages
in recent years due to the fast converge of the inference engines regardless of whether the
priors are conjugate or not. By that reason, and its great modeling flexibility, STAN has been
used as a basic platform for other high-level packages like BRMS [50] and TORSTEN [77].

9.4. Future Research Topics

We briefly mention two topics that have generated great recent interest in the Bayesian
statistical community. The first topic we want to bring out is the use of Bayesian op-
timization techniques, namely variational inference [173,175] and expectation propaga-
tion [172,307], for the Bayesian nonlinear mixed effects models. These methods have
received significant attention in the recent past because of their scalability to large-scale
problems, enabling ‘Big Bayesian Learning’ [308,309]. Essentially, the main goal of these
methods is to approximate the joint posterior density (16) via optimization, rather than
via sampling such as MCMC sampling, which may cause scalability problems. The basic
idea behind them is to first posit a family of densities and then to find a member of that
family which is close to the target density, where the closeness is often measured by Kull-
back–Leibler divergence [310]. See Chapter 10 in [144] for a general idea for the methods.
Although there were published research works for a new algorithmic development of the
methods for the application to (generalized) linear mixed effect models [311–313], to our
knowledge, there is no relevant published research for the application to nonlinear linear
mixed effect models.

Another topic untapped in the literature is the development of the Bayesian version
of mixed effects machine learning models [314–317]. This is a relatively new branch in
statistics and machine learning community, where most research works were published in
the past five years. The central idea of the models is to estimate the nonlinear function f
in the individual-level model (2) nonparametrically by using a variety of machine learn-
ing methods, rather than specifying a parametric function, while maintaining the mixed
effects modeling framework. Therefore, the modeling framework will be similar to a non-
parametric regression of which the primary purpose is to estimate the unknown function
f [287,318,319]. However, the main difference is that, in mixed effects machine learning
models, (1) there exist some random variables to describe inter-subject variability, and (2)
curve fitting mechanism (i.e., estimation of f ) is mostly done by machine learning models,
including deep learning [145], random forest [320], gradient boosted machine [321], etc.

10. Discussion

This review of Bayesian nonlinear mixed effects models is of necessity incomplete,
as the literature is too vast to attempt even a moderate review. We have chosen to focus
much of our attention on providing some of the most recent literature on the Bayesian
analysis of the underlying basic model, with an emphasis on implementation of the model
and introduction of recently developed prior distributions. We hope that this review can be
read as a guideline to develop computational algorithms for complex and realistic Bayesian
hierarchical nonlinear models. We wish that this review will offer readers familiar with
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frequentist analysis some pedagogical insight into the Bayesian approach, and provide
those new to nonlinear mixed effects modeling a foundation of the implementation of
Bayesian and frequentist computations for appreciating its idea and utility. We look
forward to continuing methodological developments, software developments, and new
applications of this rich class of models in industrial and academic research.
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