
����������
�������

Citation: Henríquez-Vargas, L.;

Angel, F.; Lackey, L.; Donoso-García,

P. Evaluation of Interpolation Scheme

Alternatives and Variation of the

Number of Slave Cells in a Cut-Cell

Methodology. Mathematics 2022, 10,

895. https://doi.org/10.3390/

math10060895

Academic Editor: James M. Buick

Received: 10 February 2022

Accepted: 9 March 2022

Published: 11 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Evaluation of Interpolation Scheme Alternatives and Variation
of the Number of Slave Cells in a Cut-Cell Methodology
Luis Henríquez-Vargas * , Francisco Angel, Lawrence Lackey and Pablo Donoso-García

Departamento de Ingeniería Química, Universidad de Santiago de Chile, Santiago 9170022, Chile;
francisco.angel@usach.cl (F.A.); lawrence.lackey@usach.cl (L.L.); pablo.donosoga@usach.cl (P.D.-G.)
* Correspondence: luis.henriquez@usach.cl

Abstract: The present work determines numerical solutions applied to flow problems in a cut-
cell framework, introducing and evaluating two interpolation alternatives for the treatment of the
convective terms and the effect of the variation of the number of slave cells generated near the
solid interfaces. Using the upwind, QUICK and WAHYD (TVD) schemes, three benchmark cases
were studied in the laminar regime, namely, flow between concentric cylindrical walls, flow in an
inclined channel and flow around a cylinder. The numerical results obtained were favorable for the
proposed interpolation methodology that prevents velocity over/under-estimations on the finite
control volume faces, observing a tendency to produce smaller errors and mid-to-high computational
efficiencies when coupled with a smaller number of slave cells generated at the boundaries. Although
the magnitude of the errors found were small, improvements are of more significance for quantities
that depend on gradient estimations at surfaces.

Keywords: interpolation scheme; cut cell; immersed solid; Navier–Stokes; numerical solution
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1. Introduction

Within the framework of CFD, the use of structured grids to represent complex geome-
tries is a convenient approach to overcome computational accuracy problems and complex
grid-generation processes presented in unstructured and/or boundary-conforming grids [1–3].
Berger et al. [4] cite among the strengths of Cartesian embedded-boundary grid schemes
their accuracy, rapid turnaround time and level of automation.

Cartesian grid schemes can be classified based on their geometrical approximation
quality. For this, the lowest order method is the Voxel method, in which the boundary is
represented in a staircase fashion [3]. Higher order methods comprise the immersed bound-
ary and cut-cell methods, among others. In the former, the influence of solid boundaries is
modeled by the introduction of additional terms and/or velocity interpolations to force
the no-slip internal boundary condition. Consequently, the conforming grid cells maintain
their integrity, as special treatments make the presence of the interfaces felt at the boundary
cells [5–10]. For a discussion on the classification of immersed boundary methods, the
reader is referred to Mittal [1].

On the other hand, in the cut-cell approach, boundary conforming grid cells are
truncated to better approximate the immersed solid’s geometry. Special treatment is only
required for the boundary cells while the rest of the grid is treated with the usual Cartesian
methodology, achieving strict global and local conservation of transported properties.
As for weaknesses, these schemes present numerical issues of discretization, stiffness and
convergence for the small and irregular cells [4,11]. There has been extensive development
in cut-cell methods and their applications, ranging from the 2D Euler equations to viscous
compressible flow with conjugate heat transfer, using sophisticated adaptive and multigrid
schemes for fixed and moving boundaries [2,4,12,13].
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Three approaches can be found in the literature regarding the computation of the re-
sulting small cells: (i) merging small onto larger cells [11,13–15]; (ii) flux redistribution [16];
(iii) cell linking in a so-called master–slave relation [17–19].

As for the cell linking procedure proposed by Kirkpatrick et al [17], it addressed the
problem of numerical stiffness derived from the creation of small cells by introducing the
concept of master-slave cell linking. A slave cell can be identified by having only one
pressure node; this criteria limits the minimum cell length in the flow direction (must be
greater than half the uncut cell width), thus dealing with the problem of having abrupt
changes of the Courant number between regular cells and small (cut) cells. Moreover, main
grid cells that have less than 1% of the original face are discarded from computation and
the associated velocity cells are treated as slave cells. Fluid cells which are nearest to the
normal vector erected from the boundary are designated as master cells. Conveniently, this
cut-cell methodology largely unifies the computation process for all classes of cells and
avoids the problems generated by the merging of small cells onto larger cells that had been
the standard procedure. Among the problems related to the cell-merging procedure, the
authors cited the need to compute additional fluxes and the difficulties presented in 3D
geometry to formulate the algorithm in a systematic way. Results included 2D cavity-driven
flow with an immersed cylinder, channel-skewed flow, flow past cylinder (Re = 40) and
3D flow past a hemispherical body. With regard to the 2D flow past a cylinder results,
the authors informed the drag coefficient, separation angle and the pressure distribution
represented by the pressure coefficient as a function of the angle and the number of cells
alongside the cylinder diameter (grid resolution). Interpolation of variables on the cylinder
surface such as pressure and vorticity was carried out using fourth-order tension splines.
Comparison was favorable with experimental data of [20], and surpassed the Voxel method,
especially at lower grid resolutions.

The cut-cell methodology implementation of the open-source software MFIX, follows
closely the one of Kirkpatrick et al. [17], and is discussed in [21–23]. Treatment for small
pressure cells translates in their removal, considering slight alterations of the original ge-
ometry by snapping the intersection point of the curve and underlying grid. The snapping
procedure is applied when the ratio of the intersection to vertex length to cell edge is 1–5%
of the cell edge. A cell is considered small when its volume over the uncut volume is lower
than a user-defined tolerance of about 1%. Small pressure cells remaining after the snapping
procedure are removed from computation. Since MFIX is a multiphase simulation software,
extension of the cut-cell methodology included wall boundary conditions in the form of
no-slip, partial-slip and free-slip. Applications presented included 2D/3D simulations
of circulating fluidized beds, bubbling fluidized beds with horizontal tube bundle and
a cyclone.

Recently, Xie and Stoesser [24] used an implicit time integration procedure to numer-
ically solve an unsteady, turbulent, incompressible, two-phase flow configuration with
immersed moving bodies on a three-dimensional Cartesian grid. Their time integration
procedure allowed them to avoid the common instability problems found in small cut cells.
In other words, small cells found in the cut-cell procedure were not treated, which reported
supra linear convergences for the benchmark case of a 3D dam-break flow when using a
high-resolution scheme for the advection flow.

In the present work, we revisited the cut-cell approach that leaves the small cells
generated out of the computation, evaluating and presenting now two alternatives for the
face interpolations of the velocity components in the fluid cells near the solid boundary
within an implicit scheme. Moreover, we studied the numerical solution dependency on
the solid body-resolved geometry representation with the number of master and slave cells
generated for a given mesh size. Three benchmark cases for laminar incompressible flow
were studied: flow between concentric walls, flow on a inclined channel and flow around a
circular cylinder. We expected to empirically find the error and computational efficiency
trends associated with the number and distribution of untreated slave cells generated and
how these results may vary with the interpolation approaches studied for the upwind,
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QUICK and WAHYD numerical schemes. The paper is summarized as follows: Section 2
presents the mathematical model; Section 3 provides insight into the numerical technique
employed and illustrates the problematic cell cases and the interpolation schemes, and
criteria for defining small cells is given with the aid of a parameter definition; Section 4
presents results and their discussions. The paper is concluded in Section 5.

2. Mathematical Model

Total mass and momentum differential balances for a constant density and viscosity
fluid in the laminar regime give the Navier–Stokes equations, which can be written as

∇ · u = 0, (1)
∂

∂t
(ρu) +∇ · ρuu = −∇ · τ −∇p + ρg, (2)

τ = −µ
(
∇u + (∇u)†

)
, (3)

with t time, u = (u, v, w) velocity vector, τ viscous stress tensor, p pressure, ρ density, g
external force per unit of mass, µ dynamic molecular viscosity, (∇u)† transpose of the
velocity gradient tensor ∇u.

In Cartesian rectangular 2D coordinates, the convective and molecular contributions
of momentum take the form

ρuu =

{
ρuu ρuv
ρvu ρvv

}
, τ =


−2µ

∂u
∂x

−µ

(
∂v
∂x

+
∂u
∂y

)
−µ

(
∂u
∂y

+
∂v
∂x

)
−2µ

∂v
∂y

. (4)

The velocity at the solid–fluid interfaces is given by the no-slip boundary condition

u = ub, (5)

where ub is the wall velocity.

3. Numerical Method
3.1. Preliminaries

Figure 1 shows the fluid–solid 2D discretized space comprising the main and the
staggered grids on which conservation equations are solved. Continuity and other scalar
equations are solved on the main grid while momentum equations are discretized on a
backward-staggered grid for each component following the finite volume usual practice [25].
In what follows, 2D treatment of u-cells are considered. According to their proximity to
the solid body, cells can be classified as interior cells or cut cells, see u-cells (A) and (B) or
(C) and (D), respectively. As the name suggests, a cut cell has its area (volume) reduced
or cut when compared to a interior cell. For an interior u-cell, the discretized form of the
momentum balance in 2D considering steady state and no sources other than the pressure
term can be derived as

n∫
s

e∫
w

∂
∂x (ρuu)dxdy +

n∫
s

e∫
w

∂
∂y (ρvu)dxdy = −

n∫
s

e∫
w

∂p
∂x dxdy +

n∫
s

e∫
w

∂
∂x

(
µ ∂u

∂x

)
dxdy

+
n∫
s

e∫
w

∂
∂y

(
µ ∂u

∂y

)
dxdy,

(6)

Feue − Fwuw + Fnun − Fsus = DeuE + DwuW + DnuN + DsuS + Au
w pw − Au

e pe
− uP(De + Dw + Dn + Ds),

(7)

with uP center velocity component, uE, uW , uN , uS velocity neighbors, ue, uw, un, us ad-
vected velocities at cell faces, pe, pw, pn, ps pressure at cell faces, Au

e , Au
w, Au

n, Au
s east, west,

north and south faces of the backward-staggered u-cell.
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The strength of convection F, and diffusion conductance D are given by Equations (8)
and (9)

Fe = ρue Au
e , Fw = ρuw Au

w, Fn = ρvn Au
n, Fs = ρvs Au

s , (8)

De = µ
Au

e

∆E
P

, Dw = µ
Au

w

∆P
W

, Dn = µ
Au

n

∆N
P

, Ds = µ
Au

s

∆P
S

, (9)

where ue, uw, vn, vs are the advecting velocities, ∆E
P, ∆P

W , ∆N
P , ∆P

S are the distances to east,
west, north and south neighbors.

Figure 2 presents a more general case involving a cut cell where the areas and distances
are truncated. Special procedures are needed in this case to evaluate the convection and
diffusion contributions. Refer to Kirkpatrick et al. [17] for more details on the methodology.

3.2. Advected Velocity Component Treatment for Interior Cells

This section develops three different methods that will be utilized to determine the
advected velocity component on the faces: upwind, QUICK and WAHYD (TVD). The
above methods consider all neighbors as interior cells but allow unequal distances with the
center P.

The general form corresponds to an upwinded deferred-correction scheme, which for
the east face results in

ue = χeuP + (1− χe)uE + S∗e , (10)

S∗e = χeS∗+e + (1− χe)S∗−e , (11)

χe =

{
1, Fe > 0,
0, Fe < 0.

(12)

Resulting source terms have the form Se = FeS∗e , Sw = FwS∗w, etc. Note that for the
upwind scheme one has Se = Sw = Sn = Ss = 0.

As in [17], the QUICK scheme can be derived considering flow direction and that the
second partial derivatives are constant ∂2u/∂x2 = const, ∂2u/∂y2 = const. When put in
the form of Equation (10), resulting source terms for the east face are

S∗+e = uE
∆e

P∆e
W

∆E
P∆E

W
+ uP

(
∆E

e ∆e
W

∆E
P∆P

W
− 1

)
− uW

∆e
P∆E

e

∆P
W∆E

W
, (13)

S∗−e = uP
∆E

e ∆EE
e

∆E
P∆EE

P
+ uE

(
∆e

P∆EE
e

∆E
P∆EE

E
− 1

)
− uEE

∆e
P∆E

e

∆EE
P ∆EE

E
, (14)

where as before, symbols ∆2
1 indicate distances between 2 and 1.

For the WAHYD scheme of [26], the source terms are computed in the following man-
ner

ψ(r, R) =


0, r < 0,
R
2

r + |r|
R− 1 + r

, 0 ≤ r ≤ 1,

min
(

r + Rr|r|
R + r2 , R

)
, r > 1,

(15)

S∗+e =
ψ(r+e , R+

e )

R+
e

, R+
e =

∆E
P

∆e
P

, r+e =
uP − uW

∆P
W

∆E
P

uE − uP
, (16)

S∗−e =
ψ(r−e , R−e )

R−e
, R−e =

∆E
P

∆E
e

, r−e =
uEE − uE

∆EE
E

∆E
P

uE − uP
. (17)
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3.3. Interpolation Details for the Convective Term

Following Kirkpatrick et al. [17], the velocity nodes on the main grid faces which are
cut by the solid boundary are displaced to the center of the face segment that remains in
the fluid, as shown in Figure 1. For an interior u-cell such as case (A), see Figure 1, there
are no displacements for its velocity components. However, for interior u-cell (B) and cut
u-cells (C) and (D), velocity components are displaced to the center of their cut faces and
special interpolation procedures are needed. Consider the cut u-cell Case (D), which is set
apart in Figure 3. Here, vne is displaced since the vertex lies within the solid body. In order
to estimate the advecting velocity component vn, a simple linear interpolation can be used

y

x
(A) (B) (C)

(D)

Figure 1. Main grid (solid gray lines) with immersed solid (gray area) showing displaced velocity
components and four u-cell types (dashed black lines): (A) and (B) interior cells, (C) and (D) cut cells.

Au
n

Au
w

Au
s

Au
e

uW uP ∆y

∆x

∆P
W

Figure 2. Cut u-cell showing areas and lengths used in the discretization.

y

x
(A) (B) (C)

(D)

vnw vn vne

uP

Au
n

∆ne
nw∆n

nw

Figure 3. Case (D) cut u-cell interpolation for vn at cut face Au
n, vnw, vne on fluid.
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vn = vnw

(
1− ∆n

nw
∆ne

nw

)
+ vne

∆n
nw

∆ne
nw

, (18)

where ∆n
nw and ∆ne

nw are the distances among velocities in the n face shown in Figure 3.
Note that this procedure can also be used in case of interior u-cells (A) and (B), and will
subsequently be referred as A-scheme.

Depending on the interface position, vnw or vne can end up being located inside the
solid, see Figure 4. In this case, the A-scheme would over/under-estimate the velocity.
Instead, an interpolation alternative that uses a point on the interface (also referred as an
auxiliary point), can be considered. This interpolation scheme will be labeled B-scheme
and it is presented in Equation (19)

y

x
(A) (B) (C)

(D)

∆ne
nw

vnw vn vb vne

uP

Au
n

∆n
nw

∆b
nw

Figure 4. Case (C) cut u-cell interpolation for vn at cut face Au
n, vnw on fluid, vne on solid and vb

on interface.

vn = vnw

(
1− ∆n

nw
∆b

nw

)
+ vb

∆n
nw

∆b
nw

, (19)

with vb the y velocity component of the boundary.
The vicinity of the interface may result in a situation as depicted in Figure 5 in which

the (east) neighbor node is displaced due to the presence of the solid body. In this case,
Kirkpatrick calculates the advecting velocity ue using Equation (20). The correction is due
to the fact that the linear estimate u′e is not necessarily located at the center of the east face,
see the dashed line joining uP and uE in Figure 5.

y

x
(A) (B) (C)

(D)

h
h′

uP
u′e

ue

uE

∆e
P ∆E

P

Figure 5. Interpolation for ue near solid boundary. u′e is the resulting interpolation between uP and
uE, which is corrected to the face center with the distances to the solid boundary h and h′.
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ue =
(
u′e − ub

) h
h′

+ ub =

(
uP

(
1−

∆e
P

∆E
P

)
+ uE

∆e
P

∆E
P
− ub

)
h
h′

+ ub, (20)

where ub is the x velocity component of the boundary, h and h′ are the normal distances to
the solid boundary of ue and u′e respectively. In case uE ends up located inside the solid,
an auxiliary point on the solid surface is used for the interpolation. If the east face is cut,
the auxiliary point is located in the north or south face of the uE cell, depending on the solid
boundary orientation, as shown in Figure 6, and ue is calculated using Equation (20). If the
east face is uncut, the auxiliary point is located moving horizontally from uE, as shown in
Figure 7.

uP

(E)

h′

h

∆e
P ∆b

P

ub

uE

u′e

ue

Figure 6. Limit case of interpolation for ue near solid boundary in which Au
e is cut, uE is within the

solid and Ap
e = 0.

uP

(F)
∆e

P ∆b
P

ub

uE

ue

Figure 7. Interpolation for ue near solid boundary in which Au
e is uncut, uE is within the solid and

Ap
e = 0.

3.4. Interpolation Details for the Diffusive Term

Near a solid interface, as shown in Figure 8, the vector that goes from uP to uE is not
perpendicular to the east face, Kirkpatrick suggest the diffusive term to be calculated using
Equation (21). In case uE is located inside the solid, auxiliary points are used for calculation,
as explained previously for the determination of ue(

∂u
∂x

)
e
=

uE − uP

∆E
P
−
((

1−
∆e

P
∆E

P

)
uP +

∆e
P

∆E
P

uE

)
Sy

Sx
ny, (21)

with vector S defined from uP to uE, ny is the y component of the unit normal vector
n = N/|N|, and N is the normal vector from surface that intersects S in the e face.
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uP

(G)

SN

∆e
P ∆E

P

uE

e

Figure 8. Computation for diffusive contribution requires vector S defined from uP to uE and normal
vector from surface N which intersects with S in the e face.

3.5. Interpolation Details for the Source Term

Source terms that take into account the effect of pressure and shear due to the presence
of the solid must be added to the momentum equation [27]. With reference to Figure 9 and
for the cut-cell scheme, this gives Equation (22)

uP

(H)

N

l

∆n
w ∆e

w

pw pe

Figure 9. Computation for force requires normal vector from surface N which intersects with uP and
area l of solid body.

Fx = −µ

(
u− ub
|N|

)
l +
(

pw

(
1− ∆n

w
∆e

w

)
+ pe

∆n
w

∆e
w

)
lnx, (22)

where l is the (wet) area of the solid body within the cell, nx is the x component of the unit
normal vector n = N/|N|.

3.6. Classification of Small Cells

With reference to Figure 2 consider the following relations

Au < κ∆y, (23)

Av < κ∆x, (24)

(Ap
w < κ∆y) ∧ (Ap

e < κ∆y), (25)

(Ap
s < κ∆x) ∧ (Ap

n < κ∆x), (26)

where 0 < κ < 1 is an adjustable parameter to obtain different levels of refinement in
the (cut cell) geometrical representation. For a given grid and κ → 0 we obtain the most
refined geometric representation, while κ → 1 will give a more staircase shape similar to
the Voxel method.

If a determined main cell fulfills: (1) Equations (23) and (24) or; (2) Equations (23) and (26)
or; (3) Equations (24) and (25) or; (4) Equations (25) and (26); it is classified as a small cell
and removed from the computational domain.
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3.7. Numerical Solution

The SIMPLE algorithm of Patankar [25] was used to treat the pressure-velocity cou-
pling. Fully implicit discretized equations were solved using a parallel implementation of
the ADI/TDMA algorithm [28] in an in-house C/OMP code. All simulations were con-
ducted until the normalized residues were below 10−8 for the momentum and continuity
equations. For comparisons between results, the definition of computational efficiency
given in [29] was used

η =
K
etc

, (27)

where K is a constant arbitrarily fixed that depends on the machine used, e is some mea-
surement of the numerical prediction error, tc is the computation time.

4. Results
4.1. Flow between Concentric Cylindrical Walls

Figure 10 presents the schematic of a laminar flow driven by a momentum source
between concentric cylindrical walls. Similar to Sato et al. [3], we compared the numerical
results with the analytical solutions for the velocity field. Additionally, we give the pressure
field analytic solution in the present work.

ri = 3d

ro = 5d

Fθ

x

y

Figure 10. Geometry considered for the case of flow between concentric cylindrical walls.

Considering the r and θ components of Equation (2), and adding a volumetric force
Fθ/r as a source term for the θ equation results in

−
ρv2

θ

r
= −∂p

∂r
, (28)

0 = µ
∂

∂r

(
1
r

∂

∂r
(rvθ)

)
+

Fθ

r
, (29)

which upon integration using the no-slip requirement at the walls, provides the analytical
solutions for the velocity and stress
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v+θ = −
Reτ F+

θ r+

2(r2
o − r2

i )

(
r2

o ln (r/ro) + r2
i ln (ri/r)−

r2
or2

i
r2 ln (ri/ro)

)
, (30)

τrθ =
Fθ

2

(
1 +

2r2
or2

i ln (ri/ro)

(r2
o − r2

i )r
2

)
, (31)

uτ =

√
(uτiri)

2 + (uτoro)
2

2r2
c

, uτi =

√
τrθ |ri

ρ
, uτo =

√
τrθ |ro

ρ
,

r+ =
r
rc

, rc =
ri + ro

2
, v+θ =

vθ

uτ
, F+

θ =
Fθ

u2
τρ

, Reτ =
ρuτrc

µ
,

Solving for the pressure requires the determination of a constant at a position where
the pressure is known. Choosing p = 0 for r = rc, and defining ∆p+ = ∆p/(ρu2

τ),
the analytical dimensionless pressure profile is

∆p+ =

(
α

uτ

)2[ β2

2

(
(r ln r)2 − (rc ln rc)

2 − r2 ln r + r2
c ln rc +

r2 − r2
c

2

)
+

βγ

(
r2 ln r− r2

c ln rc +
r2

c − r2

2

)
+ βδ

(
(ln r)2 − (ln rc)

2
)
+

2γδ ln
(

r
rc

)
+ γ2

(
r2 − r2

c
2

)
+

δ2

2

(
1
r2

c
− 1

r2

)]
, (32)

α =
Fθ

2µβ
, β =

(
r2

o − r2
i

)
, γ = r2

i ln ri − r2
o ln ro, δ = (riro)

2 ln
(

ro

ri

)
,

Consider the L2 error norm for the velocity as

eu
L2 =

1
N

N

∑
i

(
v+n

θi − v+θi
)2, (33)

where v+n
θi is the numerical value of the theta component dimensionless velocity at i-cell

obtained with the n = A ∨ B interpolation scheme, N is the number of cells within the
region of interest ri ≤ r ≤ ro.

Numerical results were obtained using the three methods described in Section 3.2,
κ = 0.02, 0.20, 0.40 and grids 22× 22, 42× 42, 62× 62, 82× 82, 102× 102, 122× 122 for
physical parameters equivalent to a Re = 2.0. With these kappa values chosen, and as
stated in Section 3.6, small u ∨ v-cells will be designated as those which areas of their cut
flow faces (Au

e , Au
w, Au

n, Au
s ) and/or the corresponding areas of the main cells cut flow faces

(Ap
e , Ap

w, Ap
n, Ap

s ) are under 2, 20 and 40% of their respective uncut areas (∆x, ∆y).
Table 1 presents the number and percentage of slave cells generated as function of κ

and the grid size. These numbers correspond to either the u or v cut cells since, given the
geometry studied, their numbers turned out the same. As expected, the proportion of slave
cells increases with the value of κ, being more cut cells classified as slave cells with this
rise in tolerance. Moreover, the percentage of slave cells increases when the grid is coarser
due to the resulting lower geometry resolution for the immersed solid body representation.
Figure 11 presents the distribution of fluid, slave and solid cells near the solid boundaries.
Notice that for κ = 0.40 the distribution of slave cells mimics an enlargement of the solid
body’s dimensions. The amount of slave cells generated with κ = 0.20 reduces the apparent
dimension of the solid body but produces less smoothness on the body surface. Lastly,
with κ = 0.02 the solid body is represented more accurately with a smoother surface since
less slave cells are produced.
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Table 1. Number of u or v slave cells generated and their percentage (in parenthesis) over total u or v
cut cells for the flow between concentric cylindrical walls case as function of κ and the grid size.

κ 20 × 20 42 × 42 62 × 62 82 × 82 102 × 102 122 × 122

0.02 12 (20.0) 8 (6.8) 32 (16.7) 32 (13.3) 52 (17.1) 36 (9.8)
0.20 18 (30.0) 32 (27.1) 40 (20.8) 64 (26.7) 60 (19.7) 84 (22.8)
0.40 26 (43.3) 54 (45.8) 68 (35.4) 104 (43.3) 92 (30.3) 120 (32.5)

u−cells

κ = 0.02

u−cells

κ = 0.20

u−cells

κ = 0.40

v−cells

κ = 0.02

v−cells

κ = 0.20

v−cells

κ = 0.40

Figure 11. Fluid (white), solid (black) and slave (red) cells distribution around the immersed solids
for the flow between cylindrical walls case with the 122× 122 grid.

Figures 12–14 present the L2 errors plotted against the grid spacing where it can be
seen that, for the upwind method, a less than first order tendency was obtained, whereas
the QUICK and WAHYD schemes, supra linear behavior was achieved. These degradations
in the order of accuracy for cut-cell methodologies had been observed in the literature [17],
and explained as the possible result of irregularities of the mesh near the solid boundaries
affecting the local error. In the three methods studied, a big difference in magnitude in
the errors was observed when using κ = 0.40 compared to κ = 0.02, 0.20, where no major
differences were detected.

Figures 15 and 16 illustrate the dependency observed for the computational efficiency
with the κ values. In the present case, the solid bodies are represented by circumferences
and the results indicate that, regardless of the grid used, the lower values of κ favor the
computational efficiency. The QUICK and WAHYD schemes gave higher efficiency values
than the upwind scheme. Although small, generally the B interpolation scheme produced a
more efficient algorithm than the A alternative for each method at the smallest values of κ.
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Figure 12. Velocity L2 error norm as function of the interpolation schemes and κ parameter for the
flow between concentric cylinders case using the upwind method.

Figure 13. Velocity L2 error norm as function of the interpolation schemes and κ parameter for the
flow between concentric cylinders case using the QUICK method.
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Figure 14. Velocity L2 error norm as function of the interpolation schemes and κ parameter for the
flow between concentric cylinders case using the WAHYD method.
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Figure 15. Cont.
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Figure 15. Computational efficiency as function of κ for the flow between concentric cylinders case
and grids: (a) 22 × 22, (b) 42 × 42.
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Figure 16. Cont.
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Figure 16. Computational efficiency as function of κ for the flow between concentric cylinders case
and grids: (a) 62 × 62, (b) 82 × 82.

Figure 17 presents the dimensionless velocity and pressure profiles for the cases with
the lowest numerical error obtained. A good agreement of the higher-order methods in the
dimensionless velocity profile can be observed, whereas the upwind scheme underpredicts
the velocity peak due to its diffusive nature. Following the same argument, the sigmoidal-
like dimensionless pressure profile is better represented by the QUICK and WAHYD
numerical solutions than the upwind scheme, at least in a shape-preserving manner for the
relatively coarse grids used.

(a)

Figure 17. Cont.
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(b)

Figure 17. Analytical and best numerical solutions found for the flow between concentric cylindrical
walls case, (θ = 1.5π). (a) dimensionless velocity; (b) dimensionless pressure.

4.2. Flow on a Inclined Channel

Figure 18 depicts the flow on an inclined channel situation. For the Ox′y′ coordinate
system, making a y′ momentum balance gives

0 = − ∂p
∂y′

+ µ
∂2v
∂x′2

. (34)

ψ

H

dp
/d

y
′

x

y

x′

y′

Figure 18. Geometry considered for the case of flow on a inclined channel.

Considering ∂p/∂y′ = (pL − p0)/L, one has as analytical solution for the y′ velocity
component

v∗ = 4x∗(1− x∗), (35)



Mathematics 2022, 10, 895 17 of 30

x∗ =
x′

H
, v∗ =

v
vmax

, vmax =

(
p0 − pL

L

)(
H2

8µ

)
, v̄ =

2
3

vmax, ReH =
ρv̄H
2µ

.

A velocity L2 error difference between the A and B interpolation schemes can be
defined as

∆eu
L2 = e∗BL2 − e∗A

L2 , e∗nL2 =
1
N

N

∑
i
(v∗ni − v∗i )

2, n = A, B. (36)

Simulations were performed for κ ∈ [0.05, 0.40], angles ψ = 10, 20, grid sizes 22× 22
and 62× 62. Parameters were adjusted to give ReH = 0.1.

Tables 2 and 3 display cut-cell details obtained as function of κ and Figures 19 and 20
present their distribution for the 22 × 22 grid and ψ = 10, 20 and three values of κ. Similar
tendencies to those of Table 1 are observed, but in the present situation there is some
asymmetry in the origination of cut cells and slave cells which increases with ψ, since
no symmetry plane can be found parallel to x or y coordinates. Figure 21 presents the
errors ∆eu

L2 for all cases considered. Similar error profiles are found for both grids, with the
coarser one having its magnitudes larger for the angles studied. For values of κ ≤ 0.25,
and for both grids, the B interpolation scheme performed better than A (i.e., ∆e∗L2 < 0).
For other values of the geometrical refinement parameter κ, positive values of the error
difference can be seen. Nevertheless, the magnitudes of the negative errors are bigger
than the positive ones, and these bigger negative values are found in the region of more
geometrical refinement. These trends are more pronounced in the cases with greater slope.
Figure 22 presents the dimensionless velocity profiles, where it can be seen that the three
methods employed, i.e., upwind, QUICK and WAHYD, produced similar solutions.

u−cells

κ = 0.05

u−cells

κ = 0.20

u−cells

κ = 0.40

v−cells

κ = 0.05

v−cells

κ = 0.20

v−cells

κ = 0.40

Figure 19. Fluid (white), solid (black) and slave (red) cells distribution around the immersed solids
for the inclined channel flow case with the 22× 22 grid and ψ = 10º.
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Table 2. Number of u slave cells generated and their percentage (in parenthesis) over total u cut cells
for the inclined channel flow case as function of κ, ψ and grid size.

22 × 22 62 × 62
κ ψ = 10◦ ψ = 20◦ ψ = 10◦ ψ = 20◦

0.05 7 (15.9) 10 (19.2) 19 (13.7) 20 (12.4)
0.10 9 (20.5) 12 (23.1) 26 (18.7) 32 (19.9)
0.20 12 (27.3) 15 (28.9) 32 (23.0) 43 (26.7)
0.30 16 (36.4) 20 (38.5) 47 (33.8) 53 (32.9)
0.40 20 (45.5) 24 (46.2) 61 (43.9) 64 (39.8)

Table 3. Number of v slave cells generated and their percentage (in parenthesis) over total v cut cells
for the inclined channel flow case as function of κ, ψ and grid size.

22 × 22 62 × 62
κ ψ = 10◦ ψ = 20◦ ψ = 10◦ ψ = 20◦

0.05 7 (15.6) 9 (17.7) 19 (13.8) 20 (12.4)
0.10 9 (20.0) 11 (21.6) 26 (18.8) 32 (19.9)
0.20 11 (24.4) 14 (27.5) 32 (23.2) 42 (26.1)
0.30 15 (33.3) 19 (37.3) 47 (34.1) 52 (32.3)
0.40 19 (42.2) 23 (45.1) 61 (44.2) 63 (39.1)

u−cells

κ = 0.05

u−cells

κ = 0.20

u−cells

κ = 0.40

v−cells

κ = 0.05

v−cells

κ = 0.20

v−cells

κ = 0.40

Figure 20. Fluid (white), solid (black) and slave (red) cells distribution around the immersed solids
for the inclined channel flow case with the 22× 22 grid and ψ = 20º.
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(a)

(b)

Figure 21. Velocity L2 error norm difference as function of κ parameter and ψ, for the flow on inclined
channel case. (a) 22× 22 grid; (b) 62× 62.
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(a)

(b)

Figure 22. Dimensionless velocity profile for the flow on inclined channel case. (a) ψ = 10; (b) ψ = 20.

Figures 23 and 24 present the computational efficiency obtained for the cases studied
as a function of κ. Different from the tendency shown in the flow between concentric
cylinders case, the higher efficiency values are obtained with the mid-to-high values of
κ. This difference may be due to the type of curve that represents the immersed solid
body, which in the present case are two straight lines, whereas in the former case they were
circumferences. Nevertheless, the maximum-to-minimum computational efficiency ratio is
higher for the flow between concentric cylinders case than in the present one, suggesting a
greater effect of κ on the computational efficiency when the streamlines are curved.
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(a)

(b)

Figure 23. Computational efficiency as function of κ for the flow on a skewed-channel case using
grid 22 × 22 and ψ: (a) 10º, (b) 20º.
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(a)

(b)

Figure 24. Computational efficiency as function of κ for the flow on a skewed-channel case using
grid 62 × 62 and ψ: (a) 10º, (b) 20º.

4.3. Flow around a Circular Cylinder

Two-dimensional flow around a single cylinder was simulated for Reynolds numbers
7, 10 and 20. Domain size was 40D in the transverse direction and 60D in the streamwise
direction. The cylinder center was located at the coordinates (20D, 20D), see Figure 25.
Boundary conditions of the complete domain were established as uniform velocity profile
at the left boundary, outlet at right boundary. Bottom and top boundaries were set as
symmetry. No-slip at the cylinder surface. Results of the contributions to the drag coefficient
and the pressure coefficient are considered as in [30]

C f =
1

0.5ρu2
∞D

∫ 2π

0
τ · nrdθ, Cp =

−1
0.5ρu2

∞D

∫ 2π

0
p cos θrdθ, (37)
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and the dimensionless pressure

p̂(θ) =
p(θ)− p∞

0.5ρu2
∞

, (38)

with n normal vector at cylinder surface, τ viscous stress tensor, D cylinder diameter, r
cylinder radius, u∞, p∞ upstream velocity and pressure.

20D 40D

20
D

20
D

D

u∞

x

y

θ

Figure 25. Geometry considered for the case of flow around a cylinder.

Three values of κ and five nonuniform structured grids were used with a finer section
of size 5D × 5D centered around the cylinder. Table 4 presents the cases considered
and the percentage of slave cells generated. Figure 26 presents part of their distribution
on the vicinity of the solid body. To evaluate surface derived quantities, interpolation
for missing surface points was performed using piecewise cubic Hermite interpolating
polynomials. Considering the treatment of slave cells, the higher value of κ value (0.40)
gives the impression of a cylinder with an effective diameter greater than the original
body. The intermediate value of κ (0.20) produces a less smooth surface but with better
approximation of the true solid dimension. Finally, the lower value of κ better approximates
the solid body shape both on smoothness and its real dimension.

Table 4. Grid sizes used for the flow around a cylinder case.

Grid Cells Along Total Cells Slave Cells
Cylinder
Diameter κ = 0.05 κ = 0.20 κ = 0.40

A 8 44,772 10 (33.3) 13 (43.3) 21 (70.0)
B 12 100,096 6 (12.5) 21 (43.8) 25 (52.1)
C 15 154,923 10 (16.7) 18 (30.0) 20 (33.3)
D 20 276,624 14 (17.5) 25 (31.1) 37 (46.3)
E 30 395,064 18 (15.0) 37 (30.8) 53 (44.2)

Numerical computation of magnitudes C f , Cp, p̂(0), p̂(θ) was performed for each
case of Table 4 and their deviation with respect to reference values taken from [30] was
computed as

eφ =

∣∣∣∣φ− φr

φr

∣∣∣∣, φ = C f , Cp, p̂(0), p̂(θ), (39)

eT =
eC f + eCp + e p̂(0) + e p̂(π)

4
, (40)
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where φr denotes the references, eφ absolute error of numerical estimation of φ, eT combined
error of numerical predictions.

u−cells

κ = 0.05

u−cells

κ = 0.20

u−cells

κ = 0.40

v−cells

κ = 0.05

v−cells

κ = 0.20

v−cells

κ = 0.40

Figure 26. Fluid (white), solid (black) and slave (red) cells distribution around the immersed solid for
the flow around a cylinder case with the E grid.

Figures 27–30 present the absolute error of C f , Cp, p̂(0), p̂(θ) as function of the grid
size and the extremes values of κ used for Re = 20 and both interpolation approaches. It
can be seen that smaller errors are obtained with κ = 0.05 and the B interpolation scheme,
although influence of the interpolation is more modest on the profiles. Results for g20 and
g30 grids are almost the same, implying that convergence of the numerical procedure is
achieved with these grid sizes. Similar profiles were obtained for Re = 7, 10 but their figures
are not presented to avoid extending the manuscript. Figure 31 presents the combined
errors of the four previously studied quantities as function of the Reynolds number for each
interpolation scheme and method used. As expected, on account of its greater numerical
diffusion, the upwind method presented larger combined error compared to the higher-
order alternatives. Regardless of the method and the Reynolds number, the difference
observed in the combined error is about 1% in favor of the B interpolation scheme.

Figure 27. Drag coefficient error as function of grid size for the flow around a cylinder case with
Re = 20.
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Figure 28. Pressure coefficient error as function of grid size for the flow around a cylinder case with
Re = 20.

Figure 29. Dimensionless pressure error at θ = 0 as function of grid size for the flow around a
cylinder case with Re = 20.
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Figure 30. Dimensionless pressure error at θ = π as function of grid size for the flow around a
cylinder case with Re = 20.

Figure 31. Total error as function of Re for the flow around a cylinder case using κ = 0.05 and the
E grid.

Figures 32–34 show the computational efficiency as function of κ for each Reynolds
number used. Similar to the flow between concentric cylindrical walls case, which used
curves instead of lines to represent the solid body, the bigger values of η are shifted towards
the smaller values of κ.
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Figure 32. Computational efficiency as function of κ for the flow around a cylinder case with Re = 7
using the E grid.

Figure 33. Computational efficiency as function of κ for the flow around a cylinder case with Re = 10
using the E grid.
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Figure 34. Computational efficiency as function of κ for the flow around a cylinder case with Re = 20
using the E grid.

5. Conclusions

The number of slave cells generated increases with the κ value resulting in an apparent
enlargement of the solid body dimensions accompanied by an erosion of the smoothness of
its interfacial surface. This interpretation is bounded to the treatment given to the generated
slave cells but, nonetheless, a higher number of slave cells around the body representation
are likely to introduce more errors to the numerical solution.

It was empirically found that smaller values of κ favor the computational efficiency of
the numerical solution of problems that include an immersed solid represented by circum-
ferences. Conversely, larger values of κ are paired with larger computational efficiency for
problems characterized by solids represented by straight lines.

The B interpolation scheme produces less error and higher computational efficiencies
than the A scheme, regardless of the quadric shape used to represent the solid body, when
it is paired with low values of κ. The effect is generally small in the error comparison
but higher in the computational efficiency. The improvement of the B scheme over the A
scheme is of more significance when evaluating magnitudes which depend on gradient
estimations at surfaces.

The effects described for choices of κ and interpolation scheme are valid for all the
advected velocity component treatments tested, namely, upwind, QUICK and WAHYD
(TVD).
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