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Abstract: In this study, a multiscale monitoring method for nonlinear processes was developed. We
introduced a machine learning tool for fault detection and isolation based on the kernel principal
component analysis (PCA) and discrete wavelet transform. The principle of our proposal involved
decomposing multivariate data into wavelet coefficients by employing the discrete wavelet transform.
Then, the kernel PCA was applied on every matrix of coefficients to detect defects. Only those
scales that manifest overruns of the squared prediction errors in control limits were considered
in the data reconstruction phase. Thus, the kernel PCA was approached on the reconstructed
matrix for detecting defects and isolation. This approach exploits the kernel PCA performance
for nonlinear process monitoring in combination with multiscale analysis when processing time-
frequency scales. The proposed method was validated on a photovoltaic system related to a complex
industrial process. A data matrix was determined from the variables that characterize this process
corresponding to motor current, angular speed, convertor output voltage, and power voltage system
output. We tested the developed methodology on 1000 observations of photovoltaic variables.
A comparison with monitoring methods based on neural PCA was established, proving the efficiency
of the developed methodology.

Keywords: artificial intelligence; discrete wavelet transform; fault detection and isolation; kernel
method; principal component analysis

MSC: 68T05; 62H25; 30C40; 65T60

1. Introduction and Bibliographical Review

Machine learning and artificial intelligence algorithms, as well as big data tools, have
taken a prominent place in the determination of strategies and management of companies
that have understood their relevance [1–8]; particularly, a study on machine learning
methods for automatic defects detection was conducted in [1]. Some manufacturers have
seized the opportunity offered by these predictive algorithms to establish their leadership
in the market. Machine learning and statistical learning refer to a set of learning algorithms,
supervised or not, and/or by reinforcement, obtained from historical data, allowing the
solution of a problem. Also, these algorithms permit us to interpret data without explicit
or deterministic programming and to manage a strategy making operational decisions.
Modern production systems are gradually incorporating machine learning predictive
algorithms into all stages of the manufacturing process.
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The most common industrial applications of machine learning are anomaly detection,
inventory management, optimization of electricity consumption in production, and predic-
tive maintenance. Our study comes in the context of predictive maintenance related to fault
detection and isolation (FDI) by introducing machine learning methods. In the literature,
several works have addressed this issue. An investigation on automated FDI based on
deep learning was developed in [9]. The investigation was validated on data generated
by computerized manufacturing systems equipped with local and remote sensing devices.
Another vision of machine learning was presented by introducing a statistical tool for
the analysis of multidimensional processes in [10]. This tool is the principal component
analysis (PCA), which makes it possible to reduce the data dimension of a process and
subsequently to facilitate the analysis of the disturbances occurring on the system. Several
types of PCA have arisen for application in varied FDI schemes as: (i) linear PCA [11],
nonlinear PCA [12–14], multiblock PCA [15], multiscale PCA [16–18], dynamic PCA [19,20],
and combinations of them [21]. With the complexity of such industrial processes, nonlinear
PCA is utilized for detecting and isolating defects. Our review of the literature has estab-
lished dual types of nonlinear PCA. The first relies on neural networks to compensate for
data nonlinearity, while the second type is the kernel PCA [22–26].

Machine learning techniques are numerous in the literature [27,28], but we focus
on FDI methods, which combine statistical analysis and wavelet networks. These meth-
ods provide considerable advantages to improve the performance of FDI. This occurs
particularly in the treatment of complex system properties such as autocorrelation, station-
arity, nonlinearity, and determinism. Consequently, they have been often used in several
industrial applications.

A multiscale method based on the tracking of reconstructed signals after filtering
wavelet coefficients has been presented in [29]. It consists in associating the major element
analysis with wavelets. This method allows us to detect errors in each of the scales and
then to reconstruct the signals by keeping the significant scales (where the detection took
place). A comparative analysis was performed between different approaches [30], which
are: dissimilarity measure [31], multi-scale PCA [32], and moving PCA [33]. Implemented
on the Tennessee Eastman process, the work showed that the multiscale PCA is supe-
rior to conventional methods in some cases and equivalent to them in others. Another
FDI approach was developed combining multidirectional PCA and wavelets to demon-
strate the value of multiscale analysis by improving defect detection ladders from mono
techniques [34]. The advantage of the time-scale analysis has been shown in [35–37] for
detecting defects affecting gears. In addition, the interest of using wavelets to increase
monitoring performance is shown in several works.

Summarizing, the combination of wavelets and machine learning techniques, com-
monly referred to as multiscale monitoring approaches, has contributed to the development
of new FDI methods. This is especially valid for efficiently considering the characteristics
of complex systems, such as defects at different scales of time and frequency.

In this context, the objective of the present investigation is to propose a new multiscale
monitoring approach based on a discrete wavelet transform (DWT) and a machine learning
technique corresponding to the kernel PCA. Our contribution aims at ensuring the detection
of defects that cannot be detected by various FDI schemes, as presented in the literature.
The selected and combined tools used for the designed FDI in this work promote efficient
data analysis for complex industrial processes.

The rest of this paper is organized as follows. In Section 2, we describe the kernel
PCA. Then, Section 3 provides the tools for multiscale monitoring using the kernel PCA. In
Section 4, the experimental results are described employing a photovoltaic system for FDI
and compared with other monitoring techniques as an industrial application. Finally, the
conclusion, limitations, and future research are presented in Section 5.
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2. Kernel Principal Component Analysis
2.1. Notations and Symbols

Table 1 shows the nomenclature and acronyms that are employed in this work.

Table 1. Acronyms and notations used in the present work.

Symbol Description

KPCA Kernel principal components analysis
F Feature space

CF Covariance matrix in the feature space
∅ Nonlinear mapping function
λ Eigen-value
V Eigen-vector

SPE Square predictive error
N Number of observations
M Number of variables
x Data matrix of the normal system
t Vector for measures of variables
δ2 SPE threshold

hSPE Degrees of freedom
α Confidence threshold

k(., .) Kernel function

2.2. Principle

The kernel PCA introduces a nonlinear PCA approach for the input space [26]. If a
PCA is utilized to decouple nonlinear correlations of a given data set xn, namely, for
n ∈ {1, . . . , N}, with their covariance matrix diagonalized, then the covariance may be
expressed in terms of a linear feature space F in place of such nonlinear input space.
Thus, the covariance matrix can be formulated as

CF =
1
N

N

∑
j=1

∅
(
xj
)
∅
(
xj
)T, (1)

where
N
∑

j=1
∅
(
xj
)
= 0 and ∅ expresses a nonlinear mapping function that projects the input

vectors from the input space into F. Note that the dimension of this feature space can be
possibly infinite or else arbitrarily large [26]. To diagonalize the covariance matrix, the
eigen-value problem in this feature space needs to be solved as:

λV = CFV =: CF
V , (2)

where λ ≥ 0 are the eigen-values and V ∈ F/{0} are the corresponding eigen-vectors.
Hence, V along the largest λ is confirmed by the equation given in (2) and develops as
the initial principal component in F, whereas V along the smallest λ develops as the last
principal component. Observe from (1) and (2) that:

CF
V =

(
1
N

N

∑
j=1

∅
(
xj
)
∅
(
xj
)T
)

V =
1
N

N

∑
j=1
〈∅
(
xj
)
, V〉∅

(
xj
)
, (3)

with 〈x, y〉 denoting the dot product between x and y. Such a representation implies that
all solutions V for λ 6= 0 lie in the range of ∅(x1), . . . ,∅(xN), with λV = CF

V as stated in (2).
Observe that λV = CF

V is equivalent to the expression given by:

λ〈∅(xn), V〉 = 〈∅(xn), CF
V〉, n ∈ {1, . . . , N}. (4)
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Furthermore, there exist coefficients αi, for i ∈ {1, . . . , N}, to be formulated by means of:

V =
N

∑
i=1

αi∅(xi). (5)

By combining (3), (4) and (5), we get:

λ
N

∑
i=1

αi〈∅(xn),∅(xi)〉 =
1
N

N

∑
i=1

N

∑
j=1

αi〈∅(xn),∅
(
xj
)
〉〈∅

(
xj
)
,∅(xi)〉, (6)

for n ∈ {1 . . . , N}. Note that the eigen-value problem expressed in (6) relates to the dot
products of certain mapped shape vectors found in the feature space. Generally, the
mapping function ∅ might not be always computationally tractable, even though it does
exist. Nevertheless, it does not need to be derived explicitly. Indeed, only the dot products
of the two vectors involved in this feature space are required. Hence, to avoid eigen-
decomposing of the covariance matrix CF

V directly, the kernel N × N matrix K may be
defined with elements given by:

Kij = 〈∅(xi),∅
(
xj
)
〉 = k

(
xi, xj

)
; i, j {1, . . . , N}, (7)

where k(., .) is a kernel function. Observe from (7) that the left-hand side of (6) can be
established as:

λ
N

∑
i=1

αi〈∅(xn),∅(xi)〉 = λ
N

∑
i=1

αiKni, (8)

for n ∈ {1, . . . , N}. Thus, from (6) and (8), we have that:

λ
N

∑
i=1

αiKni =
1
N

N

∑
i=1

N

∑
j=1

αi〈∅(xn),∅
(
xj
)
〉〈∅

(
xj
)
,∅(xi)〉. (9)

Therefore, we get that:

1
N

N

∑
i=1

N

∑
j=1

αi〈∅(xn),∅
(
xj
)
〉〈∅

(
xj
)
,∅(xi)〉 =

1
N

N

∑
i=1

N

∑
j=1

αiKnjKji, (10)

for n ∈ {1, . . . , N}. Notice that the expressions given in (8) and (10) become λKα and
(1/N) K2α, respectively. Thus, by combining (8) and (10), we reach:

λNKα = K2α, (11)

where α = [α1, . . . , αN ]
T . To determine solutions of the equation given in (9), we solve the

eigen-values problem formulated in terms of the system defined as:

Nλα = Kα. (12)

For non-zero eigen-values, a reasoning of this process is mentioned in [32]. Hence, by
conducting a PCA in F, it is equivalent to solving the eigen-values problem given in (12),
which yields the eigen-vectors α1, . . . , αN with the eigen-values λ1 ≥ ··· ≥ λN of K. The
dimensionality of this problem may be reduced by retaining only the initial P eigen-vectors.
We normalize α1, . . . , αP by using the corresponding vectors in F, that is, for n ∈ {1, . . . , P},
we obtain:

〈Vn
T, Vn〉 = 1, (13)
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for n ∈ {1, . . . , N}, with Vn = αn
i ∅(xi), so that the expression given in (13) becomes

1 =
N

∑
i=1

N

∑
j=1

αn
i αn

j 〈∅(xi),∅
(
xj
)
〉 =

N

∑
i=1

N

∑
j=1

αn
i αn

j Kij = λ〈αn, αn〉. (14)

Observe that the principal component of the test vector x are then obtained by project-
ing φ(x) onto eigen-vectors Vn in F, where, for n ∈ {1, . . . , P}, we have that:

tn = 〈Vn,∅(x)〉 =
N

∑
i=1

αn
i 〈∅(xi),∅(x)〉. (15)

To solve the eigen-value problem given in (10), as well as projecting the input space
towards the kernel PCA space by employing (13), performing the nonlinear mappings can
be evaded. In addition, both dot products can be computed in the feature space by bringing
a kernel function as k(x, y) = 〈∅(xi),∅

(
xj
)
〉 [31,32].

Note that different kernel functions are available. For example, we have:

• [Polynomial kernel]
k(x, y) = 〈x, y〉d. (16)

• [Sigmoid kernel]
k(x, y) = tan h(β0〈x, y〉+ β1). (17)

• [Radial kernel]

k(x, y) = exp

(
−‖x− y‖2

c

)
. (18)

2.3. Fault Detection and Control Limits

The squared prediction error (SPE) was introduced for fault detection and defined by:

SPE =
N

∑
j=1

t2
j −

P

∑
j=1

t2
j . (19)

A defect is detected on the observation j if SPE > δ2 The calculation of the threshold δ2

can be done experimentally or by a theoretical method. This threshold may be calculated as:

δ2 = gSPEχ2
hSPE ,γ

, (20)

where the values stated in (20) are defined as gSPE = Θ1/Θ2, hSPE = Θ1
2/Θ2, and

Θr = ∑j λr
j , with λj being the jth eigen-value of the covariance matrix, and r ∈ {1,2}.

The value χ2
hSPE ,γ

corresponds to percentile of a chi-square distribution with hSPE degrees of

freedom and a confidence threshold γ. For the experimental threshold, it can be calculated
by taking a percentage of the SPE index applied to normal distributed data (it being 95%
or 99%).

To ensure fault isolation, a method that was proposed in [21] and considers the
calculated contributions of each of the variables was used in this work. Variables that
accounted for high contributions were deemed defective.

2.4. Kernel PCA Algorithm

The kernel PCA algorithm is described using the eight steps defined in Figure 1.
Note that the test system of Step 3 is used to validate the developed approach on a simple
example to highlight the main steps of the designed technique in a simple and straight way.
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3. Multiscale Monitoring Using Kernel PCA
3.1. Principle

The multiscale monitoring using the kernel PCA is aimed at in-depth analysis of the
data by employing multiscale analysis to isolate and identify time-frequency scales, as
presented in Figure 2.
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Figure 2. Multiscale kernel PCA: xi are the original data, x̂i are the reconstructed data, and IDWT is
the inverse of DWT.

The steps of the algorithm are as follows:

Step 1: Decompose multivariate data into wavelet coefficients with the help of the DWT.
We introduce “haar” as a mother wavelet and use DWT on five scales.
Step 2: Apply the kernel PCA to coefficients of approximation. At that level (scale), the SPE
is employed for identifying defects, while the coefficients displaying an overrun pertaining
to the control thresholds are reserved for data reconstruction.
Step 3: Reconstruct with the inverse of DWT.
Step 4: Use the kernel PCA to the reconstructed data to identify and isolate defects. Note
that bulleted lists look as in Figure 1.

3.2. Numerical Example

Next, a numerical example of simulation is provided. Consider a nonlinear system
described as:

X1(k) = sin(k) + ε1(k),

X2(k) = 2 X1 + ε2(k),

X3(k) = 3 X2 + ε3(k),

X4(k) =
X3

2
+ ε4(k),

X5(k) = X4 + ε5(k),

X6(k) = 3 X5 + ε6(k)

where Xj denotes the system outputs. The noise ε j(k) is uniformly and arbitrary ranged
from−0.05 to + 0.05. Note that 1000 samples are employed for the simulation of the model.
By using DWT, decomposition of the data is done into wavelet coefficients on three different
resolution levels by utilizing the haar wavelet function. Simulation of a defect is done at
the level pertaining to the approximation coefficients about the variable X4, as well as at
the level of the detail coefficients considering the variable X2 at scale 2; see Figures 3 and 4.
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Figure 4. Fault simulation of detail coefficient at scale 3 of X2.

The reconstruction of the data is done via the inverse of DWT as follows. At this
stage, we compare the traditional PCA (Figure 5), neural PCA (Figure 6), and put forward
an approach (Figure 7) for determining their performance regarding defect detection in
time-frequency scales.
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By interpreting the fault detection results by the SPE shown in Figures 5–7, we note
the following:

- The traditional PCA does not detect fault at the time-frequency scales.
- The neural PCA slightly assesses the stimulated defect, that is, the defect is identified

only at the variable X2.
- The proposed method identifies the stimulated defects at the level of wavelet coeffi-

cients, that is, the defect is identified in variables X2 and X4.

In summary, according to the simulation example, we proved the performance of the
multiscale kernel PCA approach in FDI at time-frequency scales as compared to traditional
and neural PCA-based approaches. In the sequel, we validate the developed approach on
a photovoltaic process, and a comparative study with the above-mentioned monitoring
approaches is provided.

4. Experimental Results
4.1. Power Voltage System Parameters

Figure 8 presents the block diagram of a photovoltaic system. This system is composed
by a photovoltaic generator, direct current (DC) reducing the converter, and a DC pump
motor [34].
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In a 20SIM environment, the power voltage (PV) system was simulated. The employed
numerical parameters are listed in Table 2.

Table 2. Photovoltaic system parameters.

Parameter Value

Iph 4.4 A
IS 52.75 × 10−6 A
VT 6.73 V
C 4000 × 10−6 F

Un 24 V
Ia 12 A

KB 45 × 10−6

4.2. Power Voltage System Data Matrix

Consider the variables:

- X1 = ia: motor current.
- X2 = Ω: the angular speed.
- X3 = νp: converter output voltage.
- X4: photovoltaic system output.
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The PV system data matrix is described as:

x =

 X1K1 X2K1
. . . . . .

X1KN X2KN

X3K1 X4K1
. . . . . .

X3KN X4KN

, (21)

with N being the observation time for every parameter. In our case, this is equal to
500 microseconds. To better evaluate our monitoring algorithm, we stimulate a fault at
variable X1.

4.3. Power Voltage System Monitoring Using the Developed Approach

Our developed methodology is presented in the following step-by-step algorithm
using a MATLAB code:

- Step 1: Use the DWT (mother wavelet:db5).
- Step 2: Apply the kernel PCA algorithm to wavelet coefficients.
- Step 3: Utilize the SPE for fault detection.
- Step 4: Reconstruct data matrix using only defected coefficients.
- Step 5: Employ the kernel PCA into a new matrix.
- Step 6: Detect faults considering the SPE.
- Step 7: Assess fault isolation by computing contributions.

4.4. Results

After applying the algorithm presented in Section 4.3 to a PV system, we obtain the
following results:

(i) The data matrix x—see expression given in (21)—is decomposed to wavelet coeffi-
cients using the DWT (with the haar wavelet).

(ii) To better evaluate our monitoring algorithm, we stimulate a fault at variable X1.
Figure 9 presents the wavelet coefficients of the defected variable.

(iii) The data matrix is then reconstructed using a defected scale (scale 4).
(iv) We apply the SPE for fault detection to the reconstructed matrix as shown in Figure 10.

Note that there is an exceeding of limits which proves the existence of defects.
(v) For identifying the location of the defect, we calculate the contribution of different

variables of the data matrix. From Figure 11, we observe that the highest contribution
corresponds to the variable X1 (current motor). As a result, this variable is the origin
of the defect.
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tecting the default is hence clear, as shown in Figure 12a.  

Figure 10. Fault detection and isolation using the proposed approach.

Mathematics 2022, 10, x 12 of 16 
 

 

 
Figure 10. Fault detection and isolation using the proposed approach. 

 

Figure 11. Fault isolation using the proposed approach. 

4.5. Comparative Analysis with Other Monitoring Methods  
Now, we conduct a comparative analysis with other machine learning methods, such 

as monoscale kernel PCA, neural PCA, and traditional PCA to a FDI of the simulated 
defect (in the variable 𝑋  at scale 4 of wavelet coefficient). Fault isolation is established by 
calculating contributions, where the highest contribution shows the defected variables in 
the system. The result of simulation of these methods are presented in Figure 12a–c. It 
describes the fault isolation by calculating the contributions on terms of the SPE. 

The monoscale kernel PCA presented in Figure 12a provides a false detection at the 
variable 𝑋 . This method is based on the same principle of the developed approach, but 
it does not have the property of multiscale monitoring. The failure of this method in de-
tecting the default is hence clear, as shown in Figure 12a.  

Figure 11. Fault isolation using the proposed approach.

4.5. Comparative Analysis with Other Monitoring Methods

Now, we conduct a comparative analysis with other machine learning methods, such
as monoscale kernel PCA, neural PCA, and traditional PCA to a FDI of the simulated
defect (in the variable X1 at scale 4 of wavelet coefficient). Fault isolation is established
by calculating contributions, where the highest contribution shows the defected variables
in the system. The result of simulation of these methods are presented in Figure 12a–c.
It describes the fault isolation by calculating the contributions on terms of the SPE.

The monoscale kernel PCA presented in Figure 12a provides a false detection at the
variable X3. This method is based on the same principle of the developed approach, but it
does not have the property of multiscale monitoring. The failure of this method in detecting
the default is hence clear, as shown in Figure 12a.

A second method which introduces a neural network for determining the number
principal components [33] is then applied. Figure 12b shows two defected variables X1 and
X3, which have approximately the same SPE contributions. This proves the limits of this
method in fault isolation.

Then, we test the traditional PCA. This method is not efficient in nonlinear process
monitoring because it cannot analyze the nonlinearity of the data matrix; see Figure 12c.
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5. Conclusions, Limitations, and Future Research

In this study, we have addressed the problem of fault detection and isolation for
monitoring nonlinear processes. Our study is based on two fundamental pillars: (i) multi-
scale analysis and (ii) machine learning tools. In the literature, several works have used
techniques based on machine learning, which are in fact data science tools for multivariate
data. In this work, we have used the kernel principal component analysis, which has
proven its good performance in the analysis of fault detection and isolation for industrial
systems. The developed approach allowed us to present faults’ multi-scale analysis in a
nonlinear process.

We have implemented the discrete wavelet analysis as well as the kernel principal
component analysis. Our approach was applied to a photovoltaic system with the help of a
data matrix that included four variables and 500 simulations. After data decomposition
into discrete wavelet coefficients, we have simulated a few problems at wavelet coefficients
pertaining to a variable. Then, the kernel principal component analysis was employed to
identify that fault accurately. A comparative study with neural-based principal component
analysis has shown the efficiency of the proposed method. In summary, this method is
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helpful to apply deep analysis of fault detection as well as isolation regarding nonlinear
processes. Its ability to detect low amplitude faults versus other monitoring methods
is beneficial in identifying various scales of wavelet coefficients. As a fault detection
and isolation method, the kernel principal component analysis has proved its capability
of reducing the system characteristic dimension, while preserving the physical related
information. It is a mathematical modeling tool, which is straightforward in terms of
process features. The kernel principal component analysis offers better performance with
an important number of variables and observations (there is no fixed dimension of the
data matrix a priori). In its actual form, the developed algorithm is dedicated for offline
process operation with a running time 0.5 to 1.5 s. With some modification, it is possible to
include online system capabilities for the designed algorithm, which will be considered for
future work. However, the identification of faults for isolation purposes can sometimes
be limited and does not lead to efficient results. More precisely, in the case where two or
more variables have very comparable contributions, it can be difficult to identify the faulty
variable. Then, it is possible to investigate other more relevant methods of defect isolation,
as techniques based on residual reconstruction.

More ideas for future research are related to other types of techniques. For example,
using disjoint and functional principal component analysis can be considered [38–40].
Moreover, deep and convolutional neural networks, which are neural networks with
multiple hidden layers, have shown interesting results in many applications, such as image
recognition. It would be very useful to create a detailed database in terms of simple and
combined defects in order to train the above-mentioned networks in defect isolation and
detection methods.
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