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Abstract: In the framework of integrated pest management, biological control through the use of
living organisms plays important roles in suppressing pest populations. In this paper, the complex
interaction between plants and pest insects is examined under the intervention of natural enemies
releases coupled with sterile insects technique. A set of nonlinear ordinary differential equations is
developed in terms of optimal control model considering characteristics of populations involved.
Optimal control measures are sought in such a way they minimize the pest density simultaneously
with the control efforts. Three different strategies relating to the release rate of sterile insects and
predators as natural enemies, namely, constant, proportional, and saturating proportional release
rates, are examined for the attainability of control objective. The necessary optimality conditions of
the control problem are derived by using Pontryagin maximum principle, and the forward–backward
sweep method is then implemented to numerically calculate the optimal solution. It is shown that,
in an environment consisting of rice plants and brown planthoppers as pests, the releases of sterile
planthoppers and ladybeetles as natural enemies can deteriorate the pest density and thus increase
the plant biomass. The release of sterile insects with proportional rate and the release of natural
enemies with constant rate are found to be the most cost-effective strategy in controlling pest insects.
This strategy successfully decreases the pest population about 35 percent, and thus increases the
plant density by 13 percent during control implementation.

Keywords: natural enemies; optimal control; pest control model; release rate; sterile insects

MSC: 34H05; 92D45

1. Introduction

Pests and diseases have been threatening our food security at all levels of life, causing
considerable economic losses for decades. An expert-based assessment by [1] presented
the estimate for the global yield losses due to pests and diseases on five major staple foods.
It was reported that the losses range between 17 and 23 percent for wheat, maize, potato
and soybean, and about 30 percent for rice. These losses are exacerbated by the threat
of climate change as rising temperatures and atmospheric CO2 level as well as changing
precipitation pattern affect pest insects population dynamics. Climate change bears yet
another challenges to sustainable crop production as it may alter plants-pests synchrony
and interspecific interaction, expand geographic distribution of pests, increase the number
of pest generations, enlarge risk of invasion by migratory pests, and multiply the incidence
of insect-transmitted plant diseases [2]. The rises of metabolic and food consumption rates
of pests due to warmer climate can also lead to an explosion of pest insects’ population and
thus declining crop production by 10–25 percent per degree C of global average temperature
warming [3]. A recent study by Food and Agriculture Organization of the United Nations
(FAO) [4] alerts that climate change will escalate the risk of pests invasion in agricultural
and forestry ecosystems, causing loss of 40 percent of crop production and annually costing
the global economy at least USD70 billion.

Mathematics 2022, 10, 883. https://doi.org/10.3390/math10060883 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10060883
https://doi.org/10.3390/math10060883
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-7426-1620
https://orcid.org/0000-0002-4115-5880
https://orcid.org/0000-0002-3340-789X
https://orcid.org/0000-0002-7180-4554
https://doi.org/10.3390/math10060883
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10060883?type=check_update&version=1


Mathematics 2022, 10, 883 2 of 18

A framework recommended by FAO on the issues of pests and diseases control
management is the use of environment-friendly approach [4]. This approach can be realized
by integrating the use of multiple pest control mechanisms such as mechanical/physical,
cultural, biological and chemical, i.e., Integrated Pest Management (IPM) [5]. To comply
with this framework, many researchers worldwide work on various research initiatives to
discover efficient and sustainable solutions to complex agricultural problems caused by
pests and diseases. The use of biological control is an example of these solutions in addition
to the use of green insecticides [6], mating disruption [7], mass trapping [8], sterile insect
technique [9,10], and removal of infected plants [11]. Biological control has long standing
as a traditionally and environmentally safe method of pest control. It involves the release of
natural enemies in the form of predators, parasites/parasitoids, or pathogens to reduce the
density of pests [12,13]. Predator and parasitoids are released in the forms of augmentation
and inundation, while pathogens are released using inoculative strategy. The release of
natural enemies has benefits over pesticides application because it is environment-friendly,
not causing resistance of target pest, and self-sustaining [14]. Successful implementation of
pests control using natural enemies is reported in Taiwan [15]. However, the effectiveness
of predator augmentation depends highly on the landscape composition [16,17].

Mathematical models are commonly utilized by scientists to describe the interaction
between plants and pests [18–20] and to assess the effectiveness of control measures [21].
The later enables us to intervene the dynamic interaction among populations in the model.
In pest control, many models have proven valuable in understanding the intervention
mechanism. In this direction, determining the optimal control measure with respect to a
certain performance index is often the research objective. In this current work, we develop
an optimal control model of plants-pests interaction with two control measures, namely,
the release of predators as natural enemies of pests and the release of sterile pest insects.
The sterile insect technique (SIT) is conducted by mass-rearing and periodically releasing
sexually sterile pest insects using radiation into the wild targeted pest population to disrupt
fecundity. SIT has been successfully implemented against a number of plant pests such as
fruit fly Drosophila suzukii [22] and red palm weevil Rynchophorus ferrugineus Olivier [23],
livestock pests such as sheep blow fly Lucilia cuprina [24], and human disease vectors such
as mosquitos [25,26].

The potential combination of biological control agents with SIT was first introduced
by Knipling [27] and Barclay [28], who found that both methods should interact synergisti-
cally, with each method contributing a larger impact on the target pest than if they were
implemented separately. A novel approach of combination of biological control agents
and SIT, namely, the Kamikaze Wasp Technique (KWT), was then proposed by [14]. It
suggests the release of sterile parasitoids to avoid impacts on non-target organisms. Instead
of considering parasitoids, we here consider sterile conspecific male insects release to
disrupt mating process and then interfering reproduction. Our model thus consists of four
interacting populations: the plant, the fertile insects, the sterile insects, and the predators.
One additional issue we want to evaluate by the model is the release rates of predators and
sterile insects. The more predators and sterile insects are released, the higher the cost of
control will be. It is suggested by [29] that there is an optimal release rate in most cases that
provided more effective control of pest insects. Thus, a fewest number of predators and
sterile insects should be released as long as this improves control effectiveness.

In this paper, we develop a generic control model that describes the complex interac-
tion between plant and pest insects intervened by the release of sterile insects and natural
enemies as control instruments. We focus in comparing the basic advantage favoring the
control combinations to minimize the pest insect population jointly with the control cost. A
salient feature introduced in this study is the evaluation of three different release strategies
for sterile insects and natural enemies, namely, constant, proportional and saturating pro-
portional release rates. Our work extends [30] in two aspects. First, we include the class of
natural enemies in the model and employ more realistic assumption in determining the



Mathematics 2022, 10, 883 3 of 18

pest birth rate. Second, we formulate the model in optimal control framework, from which
we can evaluate the effectiveness of different intervention strategies.

The rest of the paper is structured as follows. Section 2 overviews some related
works carried-out by other researchers, particularly relating to the plant-pest interaction
modeling possibly with natural enemies or SIT control measures. In Section 3, we present
the proposed optimal control model. First, we declare the assumptions and then we
formulate the equations of motion of the model. The necessary conditions for the optimal
control obtained by Pontryagin maximum principle are provided in Section 4. An example
illustrating the attainability of control objective and the effectiveness of control action can
be found in Section 5, where the sweep method which consists of the forward–backward
fourth order Runge–Kutta algorithm is implemented for solving optimality conditions. The
best strategy is decided based on a cost-effectiveness analysis. We give concluding remarks
in Section 6.

2. Related Works

Pest control is a complex ecological process, entailing complicated interactions among
plants, pests, natural enemies, other organisms and environment. Many considerations
should be addressed before control actions may be implemented. Researchers in the field
commonly develop mathematical models to describe and, in some cases, simplify this
complexity and adopt the IPM as a framework of reference. These models are beneficial
in the sense that they improve our understanding on complex interplay and they assist in
assessing our intervention towards process using combination of available measures to
suppress pests density, see for instance [31,32].

There are plenty of models proposed. A predator-prey model with Allee effect, i.e.,
an association between absolute mean of individual fitness and species density over some
finite interval, was developed by [33] in the framework of IPM. The trade-off between
biological and chemical control applications was evaluated in analyzing the dynamical
properties of the system and determining the optimal pest control level. In [34], stochastic
effects due to natural and man-made disturbances were included in a pest-natural enemy
model to quantify the impact of such disturbances on the solvability and long-term behavior
of the system leaving the determination of optimal release period and spraying dosage as
future works. Interaction between pests and their natural enemies was also formulated
by [35] in term of a prey–predator model, where stability properties, Hopf bifurcation
analysis and the existence of periodic solution were the main results. This model was then
extended by incorporating plant population and by implementing an indirect Z-control
design to manage pest population [36], and then by considering interval state monitoring
and control [37]. In [38], impulsive controls in the form of pathogen and natural enemies
releases into two patchy habitat of pest population were evaluated. Since the introduction
of pathogen divides the pest population into susceptible and infected classes, the effect
of impulsive control strategy can then be quantified for the extinction of the pest and its
coexistence with other species at a desired state. Pest-natural enemy model with density
dependent instant killing and releasing rates was introduced by [39]. Beyond the stability
analysis, this study particularly explores the relation between the number of released
natural enemies and their current density. It is found that the attainability of biological
control depends on the pest and predator initial densities and the predators release rate
guided by the predator density is more sensitive to the pulse period and the number of
released predators. Similar study can be found in [40].

A pest control model which integrates SIT was provided in [30], where three classes
of population, namely, crop, fertile insects and sterile insects, were considered and the
introduction of sterile insects causes a decrease on the birth rate of fertile insect population.
One of main findings reported in this study is the derivation of threshold value for sterile
release rate, from which we can examine the extinction and coexistence of populations.
From optimal control framework perspective, study by [41] investigates the mutual effect
of using insecticide and sterile mosquitos release in reducing the incidence of mosquito-
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borne diseases. It is found that if the use of insecticide is allowed, then it should be
applied at a maximal level, and that a combination of insecticide and SIT provide a more
immediate effect on wild mosquito population elimination. Beyond these two studies,
various researches on the effects of sterile insects in pest control can still be carried-out
as SIT has rich features. A book chapter by Barclay in [42] constitutes a comprehensive
reference for SIT modeling. It covers a broad range of SIT factors such as mating patterns,
density-dependence, age structure, Allee effect, population aggregation and combination
of the SIT with other control measures.

In this work we propose a model that applies different combinations of control mea-
sures in suppressing pests population. We combine the application of natural enemies
release and SIT under three different release strategies. We aim to characterize the most
cost-effective control combination in minimizing the pest density simultaneously with
control efforts.

3. Pest Control Model

The interactions of plant, pests and natural enemies are distributed into three classes
of populations but four state variables. We denote by P(t) the density of plants at time t, by
F(t) the population of fertile pest insects at time t, by S(t) the population of (male) sterile
pest insects at time t and by E(t) the population of natural enemies at time t. Male pest
insects’ population is not explicitly denoted by a variable but it is intrinsically represented
by mating process with fertile insects. In one sense, our model extends the pest control
model of [30] by incorporating the existence of natural enemies. Another extension is
obviously the optimal control formulation, which will be presented in the next subsection.

3.1. Assumptions

For the sake of simplicity, the complexity of pest control process may be sufficiently
adjusted. In model construction, we impose the following assumptions:

1. The plant grows logistically with intrinsic growth rate rp in an environment with
carrying capacity k.

2. Only pest consumes the plant with consumption rate a1 for fertile insects and a2 for
sterile insects. Similar to [39], the plant-pest interaction is following a predator-prey
Holling type II function with handling time c1 and c2, and constant of half-saturation
m. Thus, response functions of plants consumption by fertile and sterile insects are,
respectively, given by gF(P) and gS(P), where

gF(P) =
a1P

m + c1P
, (1)

gS(P) =
a2P

m + c2P
. (2)

3. Natural enemies consume both fertile and sterile pests with consumption rate bF and
bS, respectively, following a Holling type II response function.

4. Conversion efficiencies of plant consumption by fertile insects and sterile insects are,
respectively, given by e1 and e2. Since the number of sterile insects is small, then e2 is
also small. Here, we assume e2 ∈ [0, 1]. Conversion efficiencies of insect consumption
by natural enemies is e3. We also assume e3 ∈ [0, 1]. It means that consuming one
insect can produce at most one predator.

5. No migration activity for the population involved in the model. The recruitment
happens only from reproductive process or manual release.

6. Introduction of sterile pest insects reduces the birth rate of pest. The intrinsic birth rate
is rh, and by the release of sterile pest insects, it decreases to rhF/(F + S). As in [43,44],
we further assume that the growth of fertile insect depends on the availability of plant
as the food resource. Thus, the pest birth rate r is given by
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r =
e1a1P

m + c1P
rhF

1 + F + S
. (3)

7. Biological control agents have the same survivability as wild agents. However, there
are three causes of pest death: natural cause (dF, dS), self-interaction (αF, αS) and
fertile-sterile interaction (β). Those of natural enemy be denoted by dE and αE.

8. Sterile insects are released depending on the population of fertile insects with rate
R1(F), while natural enemies are introduced depending on the population of fertile
and sterile insects with rate R2(F, S).

A compartmental diagram, which classifies individuals into four different groups
of population, is then constructed based on aforementioned assumptions, as depicted in
Figure 1. The motions of the population transfer are represented by solid arched lines,
while interactions between population are illustrated by dashed lines.

natural
enemy
release

sterile
insect
release

death
death

death

consumption

self-interaction (mating, killing)

intrinsic
growth

effect to birth rate

consumption

E

S

P

F

predationpredation

Figure 1. Compartmental model of pest control with natural enemies and sterile insects releases.

3.2. Mathematical Model

The interdependence among plant, pest insects and natural enemies, as shown in
compartmental model in Figure 1, are then formulated in a set of nonlinear ordinary
differential equations. This system of equations constitutes as the equations of motion
which govern the dynamical transitions.

The plant P grows to provide a supply of certain commodities as well as become a
source of food for pests. Its dynamics obey the following equation:

dP
dt

= rpP
(

1− P
k

)
− a1P

m + c1P
F− a2P

m + c2P
S. (4)

The first term in the right-hand side of (4) denotes a logistic growth of plant with intrinsic
growth rate rp and under carrying capacity k. The last two terms represent the amount of
plant consumed by both fertile and sterile pests, respectively. The intake rates follow the
Holling type II functions provided in (1) and (2).

The dynamics of fertile pest insect population F are given by

dF
dt

=
e1a1P

m + c1P
rhF

1 + F + S
F− bFF

1 + F + S
E− (dF + αFF + βS)F, (5)

where the increase in population due to births is expressed by the first term of the right-
hand side of (5). Note that the existence of sterile insects S in the denominator provides
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a negative effect on the growth, i.e., it drops the birth rate. However, this lowering is
balanced by the effect of plant ingestion. The population reduction due to predation by
natural enemies with rate bF is stated by the second term, where the intake rate also adheres
a Holling type II function. The last terms account the death of fertile pest insects.

The sterile pest insect population S grows by consuming plant and recedes due to
predation and death. Additional population is obtained by manually releasing sterile
insects into the wild. Thus, we have

dS
dt

=
e2a2P

m + c2P
S− (dS + αSS + βF)S− bSS

1 + F + S
E + ε1u1R1(F). (6)

In (6), u1 = u1(t) denotes the control measure of applying SIT. The release rate of sterile
pest insect is given by R1(F), i.e., it depends on the number of fertile counterparts. This
control action is implemented with degree of effectiveness ε1.

Similarly, a number of natural enemies can manually be released to prey on pest. The
release rate is R2(F, S), in which it depends on the number of fertile and sterile pest insects.
This control action is denoted by u2 = u2(t) with degree of effectiveness ε2. The state
transitions of natural enemies are then represented as

dE
dt

=
e3(bFF + bSS)

1 + F + S
E− (dE + αEE)E + ε2u2R2(F, S), (7)

where the first term of the right-hand side of (7) denotes the growth of natural enemy due
to food conversion and the second term records the death.

We call (4)–(7) the dynamical system, i.e., a set of equations that describes the dynamics
of state variables. We assume that the system satisfies the following initial conditions:

P(0) = P0, F(0) = F0, S(0) = S0, E(0) = E0, (8)

with initial values P0, F0, S0, E0 being all non-negative, and the following terminal time
conditions:

P(T) = PT , F(T) = FT , S(T) = ST , E(T) = ET , (9)

with terminal values PT , FT , ST , and ET being all free, and T > 0 is a fixed finite horizon of
control implementation. Conditions (9) will lead to transversality conditions to be satisfied
by associated adjoint variables. We also impose bounded control policies:

0 ≤ u1(t) ≤ ū1, (10)

0 ≤ u2(t) ≤ ū2, (11)

for all t ∈ [0, T]. Upper bounds ū1 in (10) and ū2 in (11) will be determined according to
release rates R1(F) and R2(F, S). The set of all admissible control functions is given by

U = {u(t) | u(t) ∈ L∞(0, T), 0 ≤ u(t) ≤ ū}, (12)

where u(t) = (u1(t), u2(t))T and L∞ be the set of all Lebesgue integrable functions.

3.3. Release Rates

The number of released agents is one factors that can influence the effectiveness of
control by augmentation. The release rate of biological control agents should be optimally
decided as increasing the number of agents released into a wild environment did increase
the control cost but did not always lead to effective control of pest insects [29]. To assess the
effect of natural enemy and sterile insect release rates on pest suppression mechanism, we
consider three different time independent release strategies, namely, constant, proportional
and saturating proportional release rates [45].

Constant control rates of sterile insect and natural enemy releases assign R1(F) = 1 and
R2(F, S) = 1. In this case, the control variables u1(t) and u2(t) are defined as the number
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of sterile insects and natural enemies released at time t, respectively, while ū1 and ū2 are
defined as the maximum availability of biological agents. By proportional control rates,
we consider release rates that proportional to the number of corresponding pest insects.
As sterile insects will interact with their fertile counterparts, then we specify R1(F) = F.
Consequently we define u1(t) as the portion of sterile insects to be released with respect
to the number of fertile insects in the environment, and thus ū1 = 1 is set. Similarly, since
natural enemies will prey on both fertile and sterile insects, then we define R2(F, S) = F + S
and u2(t) is the share of natural enemies to be released with respect to the number of whole
pest with ū2 = 1. Saturating proportional rates aim to have proportional rates for small
number of populations but become saturated for sufficiently large number of populations.
Thus, in this case, we assign R1(F) = F/(1 + F) and R2(F, S) = (F + S)/(1 + F + S) and
define ū1 and ū2 similar to the cases of constant release rate. We summarize the setting of
release rates in Table 1.

Table 1. The release rate strategies.

Release Rate Sterile Insect Natural Enemy Control Upper Bound

Constant R1(F) = 1 R2(F, S) = 1 ūi ≥ 1
Proportional R1(F) = F R2(F, S) = F + S ūi = 1

Saturating proportional R1(F) = F
1+F R2(F, S) = F+S

1+F+S ūi ≥ 1

3.4. Control Performance Index

Given the system (4)–(7), initial time conditions (8) and terminal time conditions (9),
we aim to find the bounded control variables u1(t) and u2(t) such that they minimize the
following performance index:

J(u1(t), u2(t)) =
∫ T

0

(
W0F(t) + W1u2

1(t) + W2u2
2(t)

)
dt (13)

under the choice of release rate strategies given in Table 1. It is stated in (13) that we
want to minimize the population of fertile pests while also keeping the costs of releasing
sterile insects and natural enemies low. Here, we assume a quadratic form of control
cost application. The coefficients W0, W1 and W2 are balancing weights due to size and
importance of the three parts of the control performance criterion. Therefore, the optimal
controls u∗1(t) and u∗2(t) must be sought such that

J(u∗1(t), u∗2(t)) = min
u1(t),u2(t)∈U

t∈[0,T]

J(u1(t), u2(t)), (14)

where the admissible control set U is given in (12).

4. Analysis of Optimal Control

An optimal control pair (u∗1(t), u∗2(t)) must satisfy the necessary conditions derived
from Pontryagin’s maximum principle [46]. First we have to ensure the existence such a
control pair.

4.1. Existence

The existence, nonnegativity and boundedness of solution to model (4)–(7) are pre-
sented in the following theorem.

Theorem 1. Given model (4)–(7) with initial conditions (8). The solutions to this model are positive
and bounded.

Proof of Theorem 1. Let define the total ’population’ N as N(t) = P(t) + F(t) + S(t) +
E(t), from which we have dN

dt = dP
dt + dF

dt +
dS
dt +

dE
dt . Terms in the right-hand side are then
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substituted by those of model (4)–(7). After dropping some terms with negative value, by
considering that some positive terms are less than one, and by noticing that u1, u2, R1, R2
are all bounded, we may write

dN
dt
≤ rpP

(
1− P

k

)
+ r̄F− (dF + αFF)F− dSS− dEE + R̄,

where R̄ = supt∈[0,T]{ε1u1R1 + ε2u2R2} and r̄ = max{ e1a1P
m+c1P

rh F
1+F+S} is the maximum

saturation. To strengthen the expression, let us define the following quantities:

d = min{dF, dS, dE}, (15)

θ1 =
rp

4k

(
k +

dk
rp

)2
, (16)

θ2 =
r̄2

4αF
. (17)

Then we obtain

dN
dt
≤ −dN −

rp

k

(
P− 1

2

(
k +

dk
rp

))2
+ θ1 − αF

(
F− r̄

2αF

)2
+ θ2 + R̄.

Again, by dropping terms with negative value and by assigning θ = θ1 + θ2 + R̄, we have
dN
dt + dN ≤ θ. This differential inequality has the solution

0 ≤ N(t) ≤ θ

d
+

(
N0 −

θ

d

)
e−dt.

This solution is bounded by the steady-state value N̄ = θ
d as time t becomes infinite,

meaning that the model is mathematically and ecologically well-posed with bounded state
variables. The invariant region S is then given by

S =

{
(P, F, S, E)T ∈ R4

+ | 0 ≤ P + F + S + E ≤ θ

d

}
.

This completes the proof.

4.2. Necessary Conditions

Pontryagin’s maximum principle transforms the model (4)–(7), performance index (13)
and its optimal value (14) into a problem of pointwisely minimizing a Hamiltonian H with
respect to control variables u1 and u2. The Hamiltonian is defined as follows:

H(X, p, u) = W0F + W1u2
1 + W2u2

2 + p1 f1 + p2 f2 + p3 f3 + p4 f4, (18)

where X = (P, F, S, E)T is the vector of state variables, pi = pi(t), for i = 1, 2, 3, 4, are the
adjoint variables, p = (p1, p2, p3, p4)

T is the vector of adjoint variables, and fi = fi(X, u),
for i = 1, 2, 3, 4, are the right-hand side of model (4)–(7).

Pontryagin’s maximum principle consists of the following requirements:

dXi
dt

=
∂H
∂pi

, i = 1, 2, 3, 4, (19)

∂H
∂uj

= 0, j = 1, 2, (20)

dpi
dt

= − ∂H
∂Xi

, i = 1, 2, 3, 4. (21)
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Conditions (19) obviously produce the model (4)–(7), conditions (20) give the optimal
controls, and conditions (21) provide the so-called adjoint system. The second and third
requirements are presented in the following theorems.

Theorem 2. The optimal control pair (u∗1 , u∗2) that satisfies (14) is provided by:

u∗1(t) = min
{

ū1, max
{

0,− ε1

2W1
p3(t)R1(F)

}}
, (22)

u∗2(t) = min
{

ū2, max
{

0,− ε2

2W2
p4(t)R2(F, S)

}}
, (23)

where R1(F) and R2(F, S) are provided by Table 1.

Proof of Theorem 2. Application of (20) gives 2W1u1 + ε1 p3R1 = 0 and 2W2u2 + ε2 p4R2 = 0,
from which we then obtain

u1(t) = −
ε1

2W1
p3(t)R1(F), (24)

u2(t) = −
ε2

2W2
p4(t)R2(F, S). (25)

By considering u1 and u2 are bounded as stated, respectively, in (10) and (11), we can
rewrite (24) and (25) in the forms of (22) and (23).

Theorem 2 shows that the optimal controls, i.e., the optimal number of sterile insects
and natural enemies should be released, depend explicitly on their release rates.

Theorem 3. Given the optimal state solution X∗ = (P∗, F∗, S∗, E∗)T associated with the optimal
control pair u∗ = (u∗1 , u∗2)

T in (22) and (23), the adjoint variables pi (i = 1, 2, 3, 4) satisfy the
following system of differential equations:

dp1

dt
=

(
p1F− e1rh p2F2

1 + F + S

)
a1m

(m + c1P)2 +
a2m(p1 − e2 p3)S

(m + c2P)2 − rp p1

(
1− 2P

k

)
, (26)

dp2

dt
= −W0 +

a1 p1P
m + c1P

+
bF(p2 − e3 p4)E(1 + S)

1 + F + S
+

bS(e3 p4 − p3)SE
(1 + F + S)2

+ (p2 + p3)βS + p2

(
dF + 2αFF− e1a1rhP

m + c1P
2F(1 + S) + F2

(1 + F + S)2

)
− p3ε1u1

∂R1

∂F
− p4ε2u2

∂R2

∂F
, (27)

dp3

dt
=

a2(p1 − e2 p3)P
m + c2P

+
bF(e3 p4 − p2)FE
(1 + F + S)2 +

bS(p3 − e3 p4)E(1 + F)
(1 + F + S)2

+ (p2 − p3)βF +
e1a1 p2P
m + c1P

rhF2

(1 + F + S)2 + p3(dS + 2αSS)− p4ε2u2
∂R2

∂S
, (28)

dp4

dt
=

bF(p2 − e3 p4)F + bS(p3 − e3 p4)S
1 + F + S

+ p4(dE + 2αEE), (29)

with transversality conditions
pi(T) = 0, i = 1, 2, 3, 4. (30)

Proof of Theorem 3. Adjoint system (26)–(29) can be obtained by applying (21). The
transversality conditions (30) are consequences of having free terminal time conditions
given in (9).
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As in the case of dynamical system and optimal controls, differential Equations (27)
and (28) in adjoint system of Theorem 3 will also switch according to the selected release
strategy. In these equations, the following switching functions are employed:

∂R1

∂F
=


0 ; for constant release rate
1 ; for proportional release rate

1
(1+F)2 ; for saturating proportional release rate,

(31)

∂R2

∂F
=

∂R2

∂S
=


0 ; for constant release rate
1 ; for proportional release rate

1
(1+F+S)2 ; for saturating proportional release rate.

(32)

5. Illustrative Example

In this section, we present an illustrative example to clarify the modeling approach.
We consider an interaction between rice plant (Oryza sativa) and brown planthopper (Nila-
parvata lugens) as pest insect. To control the pest population, in this growing environment
we also release a number of (male) sterile brown planthoppers (SIT) and Asian ladybeetles
(Harmonia axyridis) as natural enemy.

As mentioned previously, there are three release strategies available for sterile insects
and natural enemies, namely, constant (C), proportional (P) and saturating proportional (S).
We compare control combinations with the case where no single control implemented, i.e.,
u1(t) = u2(t) = 0 for all t ∈ [0, T]. Thus, we have nine control combinations: C-C, C-P, C-S,
P-C, P-P, P-S, S-C, S-P, and S-S, where C-C means constant release rate for SIT and constant
release rate for natural enemies, etc. For constant and saturating proportional release
strategies we set ū1 = ū2 = 10 and for proportional release strategies we set ū1 = ū2 = 1.
Initially, we consider an environment with plenty of pests but few number of natural
enemies, i.e., we specify P0 = 300, F0 = 50, S0 = 3, and E0 = 2. In the control objective,
we emphasize on the pest density suppression. Thus, we set the weights W0 = 100 and
W1 = W2 = 1. The value of other parameters can be found in Table 2. Most of parameters
values used in the simulation are taken from [47–51].

5.1. Numerical Methods

The optimality conditions of a control problem come from Pontryagin’s maximum
principle and consist of state system (4)–(7), optimal controls (22) and (23), and adjoint
system (26)–(29). From numerical computation point of view, this control problem is
challenging since the state system X has initial values (8) but the adjoint system p possesses
terminal values (30). One advantage we have is that the determination of optimal solution
X∗ is independent of p. We thus use sweep method [52], which consists of forward and
backward fourth order Runge–Kutta algorithms, to concurrently solve this mixed boundary
values problem. The outline of this approach is as follows. Let the vector approximations
for state variable X, adjoint variable p, and control variable u be denoted by X̃, p̃, and
ũ, respectively.

1. Set the initial values of state variable X̃0, adjoint variable p̃0, and control variable ũ0
as well as tolerance level of convergence ε.

2. Using initial value X(0) = X0, solve X forwardly according to (4)–(7) and make
updating X̃(i + 1) = X̃(i) + hn, where h is step-size and n is the weighted average
slope of the fourth order Runge–Kutta algorithm.

3. Using terminal value p(T) = 0 and state variable X̃ obtained from previous step,
solve p backwardly according to (26)–(29) and make updating p̃(j) = p̃(j + 1)− hn.

4. Using X and p obtained from previous steps, calculate ũ according to control laws
(22) and (23). Update the value of control variables as the average between current
and updated values.

5. Return to step 2 until convergence is reached: maxi ‖ũnew
i − ũold

i ‖ ≤ ε.
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Table 2. The value of parameters.

Parameter Description Value Unit

P0 initial plant density 300 g/unit area
F0 initial population of fertile insects 50 individual
S0 initial population of sterile insects 3 individual
E0 initial population of natural enemies 2 individual
rp intrinsic growth rate of plant 0.15 g/unit area/day
k environment carrying capacity 1000 g/unit area
rh intrinsic birth rate of fertile insects 1.25 insect/day
a1 plant consumption rate by fertile insects 0.4515 g/day
a2 plant consumption rate by sterile insects 0.7 g/day
c1 handling time by fertile insects 1 day
c2 handling time by sterile insects 1 day
m constant of half saturation 0.8 per unit area
bF fertile insect consumption rate by predator 0.75 insect/day
bS sterile insect consumption rate by predator 0.75 insect/day
dF death rate of fertile insect 0.0238 insect/day
dS death rate of sterile insect 0.0238 insect/day
dE death rate of natural enemy 0.0140 insect/day
αF death rate of fertile insect due to fertile-fertile interaction 0.0714 insect/day
αS death rate of fertile insect due to sterile-sterile interaction 0.0714 insect/day
β death rate of fertile insect due to fertile-sterile interaction 0.0714 insect/day

αE death rate of natural enemy due to self-interaction 0.0704 insect/day
e1 plant-to-fertile insect conversion factor 9.272 insect/unit area/day
e2 plant-to-sterile insect conversion factor 0.0029 insect/unit area/day
e3 insect-to-natural enemy conversion factor 1 insect/day
ε1 effectiveness of control using SIT 70% -
ε2 effectiveness of control using natural enemy release 85% -
W0 weight showing the importance of pest density suppression 100 -
W1 weight showing the importance of control effort by SIT 1 -
W2 weight showing the importance of control effort by natural enemy 1 -
T control period 15 day

5.2. Simulation Results

Our preliminary analysis reveals that some control combinations, i.e., some release
rate strategies, show identical simulation results. We found that strategies C-C, C-S, S-C,
and S-S perform identical control behaviors. Likewise with P-C and P-S, and S-P and C-P.
It can be understood that strategy of saturating proportional release rate (S) mimics the
control behavior of constant release rate, particulary for larger population size, as F

1 + F and
F + S

1 + F + S tend to 1 for sufficiently large F and/or S. Therefore, in this part we only present
simulation results with different control dynamics, i.e., C-C, C-P, P-C, and P-P.

Figures 2 and 3 depict the fertile pest insect population (brown planthopper) and the
plant density (rice) dynamics under all control scenarios. It can be seen in Figure 2 that,
without control action, the number of fertile planthoppers will increase from 50 to 55 and it
becomes in steady state from t = 2. Under control actions, the planthopper population is
successfully suppressed with strategy P-P provides the most effect as it reduces to about
33, followed by strategy P-C (35), strategy C-P (about 47), and strategy C-C provides the
least (about 49). Even though the rice plant is being attacked by pests and we perform no
control strategy, the rice plant biomass can still grow. However, the growth is accelerated
when a control action is imposed, with strategy P-P contributes the most effect and strategy
C-C the least (see Figure 3).
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Figure 2. Fertile pest insect population.
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Figure 3. Plant density.

In Figures 4 and 5, we present the dynamics of sterile brown planthopper and Asian
ladybeetle as natural enemies. Initially, the number of sterile planthoppers is 3 and that
of ladybeetles is 2. Without intervention, the sterile planthoppers and ladybeetles are
extinct, causing an increase in fertile planthoppers as confirmed in Figure 2. However,
control actions in the form of SIT and ladybeetle augmentation can prevent these two
populations from extinction. It is shown in Figure 4 that strategies P-C and P-P increase
steadily the population of sterile planthoppers to around 6–7, but strategies C-C and C-P
can also steadily preserve the population even though the size is below the initial value.
Figure 5 shows that strategies C-P and P-P can steadily raise the population of ladybeetles
to about 22 and 20, respectively. While strategies C-C and P-C can steadily increase the
population of natural enemies to about 9. These facts confirm that the release of sterile
brown planthoppers and Asian ladybeetles can effectively hamper the growth of pests.
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Figure 4. Sterile pest insect population.
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Figures 6–9 illustrate the optimal implementation of control actions. It can be seen
immediately that under both constant and proportional rates, brown planthoppers must
be released at the maximum level. While the Asian ladybeetles are released at maximum
capacity only when proportional rates are applied. This means control measure in the form
of SIT is considered more forceful in controlling pests.
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Figure 6. Optimal control under C-C strategy.
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Figure 7. Optimal control under C-P strategy.
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Figure 9. Optimal control under P-P strategy.

5.3. The Most Cost-Effective Strategy

If the evaluation of control actions is carried out based on the reduction of the pest
population, then strategy P-P is the best. In addition, if the assessment is undertaken based
on increasing plant biomass, then again strategy P-P is the most successful. However,
there are control costs must be paid in its implementation. Recall that the application
of SIT with proportional release rate is given by ε1u1(t)F(t), where 0 ≤ u(t) ≤ 1 for all
t ∈ [0, T]. If SIT is implemented at maximum capacity, i.e., u(t) = 1, then the number of
sterile planthoppers released is exactly the same as the number of fertile planthoppers.
In the case of constant release rate, the number of sterile planthoppers released does not
exceed 10 all the time.

To fairly compare all four strategies, we perform a cost effectiveness analysis (CEA)
by considering two metrics relating to cost-effectiveness, namely, the incremental cost-
effectiveness ratio (ICER) and the average cost effectiveness ratio (ACER). ICER measures
the incremental cost per incremental benefit [53], while ACER calculates the ratio between
cost and benefit. The benefit of strategy i, denoted by Bi is defined as the difference in the
total number of averted pests through this strategy:

Bi =
∫ T

0
(F0(t)− Fi(t)) dt, (33)

where Fi(t) is the number of fertile pest insects at time t using strategy i, where i ∈
{C-C, C-P, P-C, P-P}, and F0(t) is the number of fertile pest insects with no control appli-
cation. The cost of strategy i, denoted by Ci, is defined as the total operational cost of
releasing sterile insects and natural enemies using this strategy:
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Ci =
∫ T

0
(u1(t)Ri

1(F) + u2(t)Ri
2(F, S)) dt, (34)

where Ri
1(F) and Ri

2(F, S), respectively, are release rates of sterile insects and natural
enemies using strategy i. In calculating Ci, we assume the costs of releasing one sterile
insect or one natural enemy are unity. The ACER and ICER are then formulated as

ACERi =
Ci
Bi

, (35)

ICERi =
Ci − Ci−1

Bi − Bi−1
. (36)

Table 3, which is arranged in ascending order with respect to benefit, presents the
calculation of ACER and ICER using (35) and (36). From this table we can see that strategy
C-C provides the smallest benefit and lowest cost, while strategy P-P gives the largest
benefit and highest cost. Based on ACER, strategy P-C is the most cost effective strategy as
it has the smallest score. In the first step of ICER calculation, strategy C-P is immediately
dominated by strategy P-C as it produces smaller benefit but higher cost. In the second
step, strategy C-C is extendedly dominated by strategy P-C as it has bigger ICER score,
and thus ruled out. The remaining two strategies P-C and P-P are compared by calculating
their ICERs with respect to no control strategy, i.e., their ACERs. It can be concluded from
its smaller ACER/ICER score that strategy P-C is the most cost-effective strategy.

The implementation of strategy P-C as the most cost-effective strategy in controlling
brown planthopper is as follows. Firstly, sterile planthoppers should be proportionally
released with respect to the number of fertile brown planthoppers. This control action
should be maintained at maximum intensity until the end of the control period. In other
words, sterile planthoppers should be released as many as fertile planthoppers in the
field for fifteen days as illustrated in Figure 8. Secondly, ladybeetles as natural enemies
of planthoppers should be released at constant rate of ten per day. This rate should be
continued until day thirteen and then quickly reduced to the end of control period. From
Figures 2 and 3, it can be calculated that strategy P-C can suppress the pest population by
35 percent and thus improve the plant density by 13 percent.

Table 3. The cost effectiveness analysis.

i Strategy Benefit Cost ACER ICER ICER

0 No control 0 0 - - -
1 C-C 82.6622 286.7953 3.4695 3.4695 ed
2 C-P 128.6366 867.0948 6.7407 d d
3 P-C 293.3255 671.7646 2.2902 −1.1861 2.2902
4 P-P 331.6253 1076.0697 3.2448 10.5563 3.2448

d: dominated, ed: extendedly dominated.

6. Conclusions

We have proposed a simple analytical model of pest control formulated in a system of
ordinary nonlinear differential equations, which governs the dynamical interaction between
plant and pest populations. This model is furnished with two control instruments, namely,
the release of sterile pest insects (SIT) and the release of predators as natural enemies. Thus,
the model consists of four classes of population: plant, fertile insect, sterile insect, and
natural enemy. The model is also featured in such a way it allows the use of different
release rates of sterile insects and natural enemies.

We have examined the effects of constant, proportional, and saturating proportional
release rates on the control performance, where the objective functional of the control
problem is to minimize the size of fertile pest insect population jointly with the control
efforts. Pontryagin maximum principle has been employed in derivation of necessary opti-
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mality conditions, and forward–backward sweep method has been utilized in presenting
the numerical solution. In an environment populated by rice plant, brown planthopper as
pest, and Asian ladybeetle as predator, it has been revealed that the rate of release plays
a significant role in achieving control objectives. It has also been proved that a control
strategy consisting of releasing sterile insects with proportional rate and simultaneously
natural enemies with constant rate is the most cost effective. Compared to the release of
natural enemies, SIT is proved to be the more powerful control measure as it should be
implemented at maximal intensity for contributing optimal effect in suppressing pests.
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