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Abstract: In recent years, deep neural networks (DNN) have been widely used in many fields. Lots
of effort has been put into training due to their numerous parameters in a deep network. Some
complex optimizers with many hyperparameters have been utilized to accelerate the process of
network training and improve its generalization ability. It often is a trial-and-error process to tune
these hyperparameters in a complex optimizer. In this paper, we analyze the different roles of training
samples on a parameter update, visually, and find that a training sample contributes differently to
the parameter update. Furthermore, we present a variant of the batch stochastic gradient decedent
for a neural network using the ReLU as the activation function in the hidden layers, which is called
adaptive stochastic gradient descent (aSGD). Different from the existing methods, it calculates the
adaptive batch size for each parameter in the model and uses the mean effective gradient as the
actual gradient for parameter updates. Experimental results over MNIST show that aSGD can speed
up the optimization process of DNN and achieve higher accuracy without extra hyperparameters.
Experimental results over synthetic datasets show that it can find redundant nodes effectively, which
is helpful for model compression.

Keywords: deep network optimization; adaptive gradient descent; batch size

MSC: 62E99

1. Introduction

In recent years, as the hottest branch of machine learning, deep learning has been
playing an important role in our production and life. Due to its significant advantages
over traditional machine learning algorithms, deep learning has excellent performance
in areas such as image classification [1], speech recognition [2], cancer diagnosis [3,4],
rainfall forecast [5–7], and self-driving cars [8,9]. A deep neural network (DNN) is a
kind of deep learning technique that was initially designed to function like the human
nervous system and the structure of the brain. Compared to the earlier shallow networks,
DNN consists of multiple layer of nodes, including input, hidden and output layers. The
nodes of each layer are connected to the nodes of the adjacent layers by weights, and
each node has an activation function. Most of the activation functions are nonlinear, such
as sigmoid [10], ReLU [11], and tanh [12]. The inputs are multiplied by their respective
weights and summed at each node, and the sum is transformed via an activation function.
The output of the activation function is then fed as input to the node in the next layer. This
process continues until the output layer is reached. The final output is processed by other
methods to solve real-world problems. In order to achieve the right output, the parameters
of the DNN need to be optimized. The DNN comprises complicated functions with lots
of nonlinear transformations, so most optimization functions are non-convex functions
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with local optima and global optima. Many optimization methods can be used to find
the optimal parameters, including backpropagation (BP) algorithms [13], Markov chain
Monte Carlo (MCMC) algorithms [14], evolutionary algorithms [15], and reinforcement
learning [16]. MCMC algorithms are a class of sampling algorithms used to obtain a
sequence of random samples from a probability distribution. They work by constructing a
Markov chain with an equilibrium distribution equal to the target probability distribution.
It may require sampling many times to make the sample match the target distribution,
but it helps to find the global optima. The BP algorithm is the most commonly used in
deep learning, also known as the gradient descent method. It is a very classic algorithm to
find the local minimum of an objective function by taking repeated steps in the opposite
direction of the gradient of the function at the current point [17]. The rapid development
of deep learning is partly due to the continuous improvement of optimization algorithms.
Many improved optimization algorithms based on gradient have been proposed [17]. It
started with three gradient descent variants: batch gradient descent, stochastic gradient
descent, and mini-batch gradient descent. The difference between them lies in the number
of samples used to calculate the gradient of the objective function. Due to two problems,
the mini-batch gradient descent does not guarantee good convergence. First is the saddle
point [18]. Since the gradient in all dimensions around the saddle point is close to zero, it is
difficult for the mini-batch gradient descent to escape. Second is an appropriate learning
rate. A too-small learning rate will lead to slow convergence, while a too-large learning rate
will hinder convergence. The same learning rate applies to all parameter updates in the
mini-batch gradient descent, but differences between samples and features with different
frequencies require a larger update in specific parameters for rarely occurring features.

Momentum [19] is a method that helps mini-batch gradient descent to escape the local
optima or the saddle point. By adding a portion of the past updated gradient to the present
gradient, it accelerates training and also reduces oscillations of loss. In addition, an adaptive
learning rate is also a way to accelerate training. Adagrad [20] is an algorithm based on an
adaptive learning rate. By using a different learning rate for every parameter depending
on their past gradients, Adagrad performs larger or smaller updates to each individual
parameter. Adagrad divides the learning rate by the accumulation of the squared past
gradients when updating the parameters. This makes the learning rate continually decrease,
even to an infinitesimally small size. To solve this problem, Adadelta [21] limits the window
of accumulated past gradients to a fixed size, instead of accumulating all past squared
gradients in Adagrad. The RMSprop [22] is another algorithm for solving the continued
decline in learning rates. The learning rate in RMSprop will divide by an exponentially
decaying average of squared gradients. Adam [23] is another method that combines an
adaptive learning rate and momentum. Adam stores an exponentially decaying average of
past squared gradients, such as Adadelta and RMSprop, for the adaptive learning rate, and
it keeps an exponentially decaying average of past gradients for momentum.

These algorithms are very effective in improving model training, but they also in-
troduce more hyperparameters. Adjusting these hyperparameters is based on data and
training. It takes a lot of time for trial and error, which has certain requirements for the
user’s ability [24]. Furthermore, the above optimizers mainly focus on improving the
convergence rate (adaptive learning rate). They care about the information from previous
parameter updates. Regarding the impact of samples on model training, the research is
mainly focused on selecting an appropriate batch size [25,26] or strategy for selecting sam-
ples [27–29]. However, little attention has been paid to the subtle distinction of the impact
of a sample on different parameters. Additionally, owing to the improvement in the storage
and computing capabilities of current computers, the development of GPUs and TPUs has
ensured the speed of model training and the depth of the network structure. However,
deeper networks are often more difficult to train [30], so it is a problem to design a suitable
network structure based on the complexity of the task [31]. In order to complete complex
tasks, some deep neural networks (DNN) often set the number of layers to hundreds or
even deeper, and it is difficult to know whether there are redundant nodes.
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In the paper, we analyzed the role of samples in the parameter update and found that
each of the training samples in the same batch might play a unique role in updating. That
means the effects of samples on parameter updates vary greatly. We can use such differences
to update the parameters in a novel manner. In order to maximize this difference, we take
ReLU [32] as the default activation function. It directly changes the degree of this effect into
whether or not there is an effect. Based on this observation, we proposed sample-based
adaptive batch size gradient descent (aSGD), which is a variant of the gradient descent
method. Without additional hyperparameters, it can speed up the optimization process of
the DNN and achieve higher accuracy than SGD. In addition, it could help one discover
redundant nodes in a neural network.

The remainder of this paper is organized as follows. In Section 2, we visualize the
effect of samples on parameter updating and present the proposed method, i.e., aSGD. In
Section 3, we demonstrate the properties of aSGD using three experiments. The conclusion
is drawn in Section 4.

2. Materials and Methods
2.1. Gradient Descent

Gradient descent is a common optimization algorithm for finding a local minimum of
a differentiable function. It is often used to optimize parameters in machine learning. Most
optimization problems of machine learning can be considered as minimizing a cost function.
Such a function is called the objective function. By iteratively updating the parameters in
the reverse direction of the gradient (i.e., the vector containing all the partial derivatives
of the objective function), we can continuously reduce the value of the target function to
approach the local minima.

The objective function used by a machine learning algorithm often decomposes as
an expectation of the per-samples loss function (e.g., mean squared error loss, and cross-
entropy loss) overall training samples

L(x, y, θ) =
1
M

M

∑
i=1

l
(

x(i), y(i), θ
)

(1)

where L is the expectation of the loss function,
{
(x(1), y(1)), (x(2), y(2)) . . . , (x(M), y(M))

}
is

the training data, θ represents training parameters, l is the pre-sample loss, and M is the
size of the training data.

To minimize such an objective function, the gradient descent needs for computing

g =
1
M

M

∑
i=1
∇θ l

(
x(i), y(i), θ

)
(2)

where g is the mean gradient of this overall loss, and ∇θ l is the gradients of the individual
sample. The computational cost of Equation (2) is O(M). If the size of the training set is
large, it will take a significant amount of time for one calculation.

The stochastic gradient descent (SGD) was proposed to solve the expensive computa-
tional cost. The main idea of SGD is that the expected losses over the overall training set
(i.e., L(x, y, θ) in Equation (1)) can be approximately estimated by using a mini-batch of
training samples. Algorithm 1 shows how to estimate expected loss and its gradients. m is
fixed, even if the training set size M grows. So, the cost of each parameter update does not
directly depend on the training set size M, and the computational cost of SGD is O(m).

In addition, those methods that use more than one but fewer than all the training
samples were traditionally called mini-batch or mini-batch stochastic methods, and it is
now common to call them simply stochastic methods [33].
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Algorithm 1: Stochastic gradient descent
Input: learning rate, η, epoch, T, initial parameters, θ, the neural network, f , loss

function, L, the training set,
{
(x(1), y(1)), (x(2), y(2)) . . . , (x(M), y(M))

}
.

1 for t = 1 to T do
2 Sample m samples from training set as a mini-batch ;

3 Estimate expectation: L(x, y, θt) =
1
m ∑m

i=1 l
(

x(i), y(i), θt

)
;

4 Estimate gradient: g = ∇θ L(x, y, θt) ;
5 Parameter update θt+1 = θt − ηg ;
6 end

2.2. The Role of Samples in Parameter Updating

It can be found that the optimization problems can be considered as minimizing the
expectation of the per-sample loss function over all training samples. SGD uses a small
set of samples to estimate this expectation. The overall loss is the mean of the losses of the
instances in this batch; then, the gradient of this overall loss is the mean of the gradients of
the individual losses.

However, it can be seen from line 3 in Algorithm 1 the expectation derived from the
accumulation of samples. The information in each sample is different, so the effect of each
instance on any parameter in the model varies greatly. That is, both the partial derivatives
of a single sample loss on different parameters and the partial derivatives of per-sample
loss to the same parameter are very multifarious. So, there are some partial derivatives in a
gradient that are negligible. When we use ReLU as an activation function, it will come to 0.
We show this through a practical example for better understanding.

2.2.1. Notations

As shown in Figure 1a, the “concentric circle” data are used as a binary classification
example to reveal the different role of each sample in the parameter update. It is a binary
classification problem with coordinates as input and categories as output. The inner blue
points are regarded as a “positive class”, and the outer red points are regarded as a “negative
class”. The data are trained through a fully connected network with one input layer, two
hidden layers, and one output layer. The ReLU is used as an activation function of neurons
in hidden layers. We make notational conventions for the convenience of description. The
four layers in Figure 1b are denoted by L1, L2, L3, and L4, respectively.

(a) Synthetic Dataset “circle” (b) Network Structure

Figure 1. (a) “Concentric Circle” dataset and (b) network structure.

Backpropagation is gradient descent applied to deep learning. The equations of
backpropagation are shown in Equations (3)–(6), respectively. The total number of layers
is L. The “error” of the j-th neuron in the l-th layer is δl

j , and δl is the “error” vector of
neurons in layer l. ∇aC is defined as a vector whose components are the partial derivatives
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∂C/∂al
j, and the cost function is C. al

j is the activation of the j-th neuron in the l-th layer.
� denotes the element-wise product of the two vectors, namely the Hadamard product.
zl

j is the weighted input to the j-th neurons in layer l, and zl is the weighted input vector
of neurons in layer l. σ denotes this kind of element-wise application of the activation
function, and σ′ is the derivative of the activation function. T represents the transpose of
the matrix. The wl

jk is used to denote the weight for the connection from the k-th neuron
in the (l − 1)-th layer to the j-th neuron in the l-th layer and the weight coefficient matrix
(matrix consisting of wl

jk) of neurons in layer l is wl . bl
j is the bias of the j-th neuron in the

l-th layer.
For a neural network, the “error” in the output layer can be derived from the cost,

activation and weighted input by Equation (3), and then propagated to other hidden layers
by Equation (4). The gradient can be derived from the error and activation by Equations (5)
and (6). The gradient of the cost function can be quickly found by the backpropagation
algorithm. Thus, the parameters of the neural network are solved iteratively using gradi-
ent descent.

δL = ∇aC� σ′
(

zL
)

(3)

δl =

((
wl+1

)T
δl+1

)
� σ′

(
zl
)

(4)

∂C
∂bl

j
= δl

j (5)

∂C
∂wl

jk
= al−1

k δl
j (6)

2.2.2. Back Propagation Visualization

It can be seen from Equation (4) that the “error” of any hidden layer node is calculated

by two parts,
((

wl+1
)T

δl+1
)

and σ′
(

zl
)

. The derivative function of the ReLU is given by

ReLU′(x) =
{

1 if x > 0
0 if x ≤ 0

(7)

ReLU′(x) divides all of samples with
((

wl+1
)T

δl+1
)

into two parts due to the posi-

tive or negative zl . The part greater than 0 is kept, and the rest is changed to 0. As a result,
the δl comes to 0. Such a phenomenon has two effects:

First, the “error” no longer propagates. It can be seen from Equation (4) that for
the samples with 0 “errors” in this layer, their “errors” in the next layer also become 0.
Consequently, their errors can no longer propagate to the next layer, exacerbating this
phenomenon. We visualized each factor term in Equation (4) when δ passes from L4 to L3
in Figure 2.

The second is that the estimation of the gradient is biased. It can be seen from
Equations (5) and (6) that the gradient is related to the “error”. When δl = 0, the ∂C/∂wl

jk

and ∂C/∂bl
j are both 0, and the estimation of the gradient is biased. It should be noted

that ∂C/∂wl
jk also contains the ReLU function. In other words, even if δl 6= 0 and it can be

propagated to this layer, the estimation of gradient is biased for al = 0. As for Equation (4),
we also visualized Equations (5) and (6) in Figure 3.
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Figure 2. Backpropagation Equation (2): the visualized factors are listed below each sub-graph. Each
point means a sample, and the color represents their value. Red dots are positive, blue dots are
negative, and gray dots are 0. It can be seen intuitively that because some points of ReLU′(z3

1) are 0,
part of δ3

1 becomes 0 through the Hadamard product. Some “errors” in δ4
1 cannot propagate to δ3

1 . In
addition, node a3

2 is the true dummy node. It completely hinders δ4
1 propagating to δ3

2 .

= 𝛿!"

𝛿#"

𝜕𝐶/𝜕𝑏!"

𝜕𝐶/𝜕𝑏#"

(a) Backpropagation Equation (3): ∂C
∂bl

j
= δl

j

=

⋅

=

𝜕𝐶/𝜕𝑤!!"

𝜕𝐶/𝜕𝑤!#"

𝑎!$

𝑎#$

𝛿!"

(b) Backpropagation Equation (4): ∂C
∂wl

jk
= al−1

k δl
j

Figure 3. Backpropagation Equations (3) and (4). the visualized factors are listed below each sub-
graph. Each point means a sample, and the color represents their value. Red dots are positive, blue
dots are negative, and gray dots are 0. It can be seen intuitively that because some points of δ3

1 are
0, part of ∂C/∂b3

1 becomes 0. Due to the different contributions of multiple samples to the same
parameter update, SGD has biases in the expectation estimation of ∂C/∂b3

1. Some points of a3
1 that

are 0 lead to part of ∂C/∂w4
11 becoming 0. Even if the “error” is not 0, there are also biases in this

estimation. In addition, node a3
2 is the true dummy node. Because the “error” δ3

1 and activation a3
1 of

all samples are 0, the parameters ∂C/∂b3
2 and ∂C/∂w4

12
are no longer updated.
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2.2.3. Dummy Node

It is worth mentioning that there is such a node that is suppressed for the input of every
sample, such as a3

2 in Figure 3b. We define it as follows: for any sample, the σ
(

zl
)
< 0,

such a node is called the true dummy node. On the contrary, if a node is activated for
all samples, that is, for any sample, the activation σ

(
zl
)
> 0, which is called the pseudo

dummy node. Both of them are called dummy nodes.
It can be seen from a3

2 in Figure 3b that inputs of all samples in true dummy node
are suppressed. Its outputs are 0, which has no effect on the final classification result. In
addition, it can be seen from Equations (4) and (6) that true dummy nodes will seriously
hinder the propagation of “errors” and the updating of their own parameters. So, true
dummy nodes can be regarded as redundant nodes in the model [34].

Here, we only visualize the backpropagation process between L3 and L4. This phe-
nomenon also exists in other hidden layers. Through Figures 2 and 3, we can intuitively
see how multiple samples affect the update of the same parameter and the effects of one
sample on the update of different parameters.

2.3. Sample-Based Adaptive Batch Size Gradient Descent

As shown in lines 3 and 4 of Algorithm 1, the expected losses over the overall training
set are estimated by using a mini-batch of training samples, and then the gradient is
calculated from the mean of each gradient of the individual samples (g = ∇θ L(x, y, θt) =
1
m ∑m

i=1∇θ l
(

x(i), y(i), θ
)

). However, based on the visualization results in Section 2.2.2, the
contribution of each sample to the same parameter update is unique (each point in Figure 3
has its own value). With the property of activation function ReLU, some samples do not
even contribute to the parameter update because their “errors” no longer propagate in
the backward propagation (gray dots in Figure 2), and the gradient disappears (gray dots
in Figure 3). This results in a deviation in the gradient estimation of SGD. Some samples
in the mini-batch do not contribute to parameter update, but still count as valid samples
when calculating the expectations. It results in the batch size (m in Algorithm 1 line 3) being
overestimated, and the expected gradient over the overall training set is underestimated.
Therefore, we propose a sample-based adaptive batch size gradient descent (aSGD), which
estimates the loss and gradient separately for each parameter in the model.

As shown in Algorithm 2, by making a non-zero judgment (r(x)) on the calculated
gradient of each sample and summing them up, we can obtain the number of samples that
really influence the update parameters and make an estimate on these samples. We call
the number of samples adaptive batch size (ml

j in Algorithm 2 line 4), and the estimated

gradient is called the mean effective gradient (g(θl
tj) in Algorithm 2 line 5).

The problem of SGD underestimating the gradients is solved in aSGD. The expected
gradient over the overall training set is accurately estimated by the mean effective gradient.
In addition, due to the variability of the samples, each parameter in the model has its own
adaptive batch size and mean effective gradient. It makes aSGD an adaptive method and
becomes more accurate and effective.

The calculating adaptive batch size is added to aSGD in line 4 of Algorithm 2, so the
time complexity of aSGD is O(2m) and can be approximated as O(m). In practical applica-
tion, the per-samples loss in one batch makes up a tensor, so only one calculation is required.
All operations on them are vectorized, it will not cause an increase in training time.
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Algorithm 2: Sample-based adaptive batch size gradient descent

Input: learning rate, η, epoch, T, parameters in layer l neuron j, θl
j , the neural

network, f , nonzero natural number, ε, the training set,
{

x(1), . . . , x(M)
}

,

where x(i) corresponds to the label y(i), non-zero judgment function,

r(x) =

{
1, if x 6= 0
0, if x = 0

.

1 for t = 1 to T do
2 Sample m samples from training set as a mini-batch ;

3 Calculate per-sample graient: g(θl
tj)

(i) = ∇θ l
(

f
(

x(i); θl
tj

)
, y(i)

)
;

4 Calculate adaptive batch size: ml
j = ∑m

i=1 r
(

g(θl
tj)

(i)
)

;

5 Estimate gradient: g(θl
tj) =

1
ml

j+ε
∑m

i=1∇θ l
(

f
(

x(i); θl
tj

)
, y(i)

)
;

6 Parameter update θl
(t+1)j = θl

tj − ηg(θl
tj) ;

7 end

3. Experiments

In this section, three experiments are conducted to reveal the characteristics of the
proposed method. Experiment 1 uses the same network structure and training data as
in Section 2. We recorded the changes in all parameters during the entire model training
process and analyzed the effect of aSGD on the training process. In Experiment 2, we
adopted a new network structure and two synthetic datasets and counted the step, accuracy,
and loss when the training was complete for comparing the effect of aSGD and SGD on the
neural network and training results. In Experiment 3, we used the MNIST handwritten
digit database to test the performance of aSGD and SGD, and repeated the experiment
100 times and counted the results.

3.1. Properties of aSGD

We trained the same network in the second section with aSGD and SGD, respectively.
The update of parameters during the entire training process is shown in Figure 4. By
comparing the variation of parameters under the two optimizers, we found two properties
of aSGD.

3.1.1. Accelerating Training Process

Comparing the parameter change curves under the two optimizers, such as w3
11, w3

12,
w3

13 and b3
1, it is easy to find that the range and rate of the change of parameters in aSGD

are greater than SGD. This is because aSGD uses the mean effective gradient defined in
Section 2 as the actual gradient for parameter updates. Compared with the gradient in
SGD, the mean effective gradient will be larger in a single step. This is due to the adaptive
batch size that corrects the biased estimation of the overall gradient in SGD caused by the
ReLU function. It makes the expected gradients over the overall training set well estimated
by the mean effective gradient. The gradient descent method becomes more effective and
accelerates the training process.

The adaptive batch size is similar to the adaptive learning rate, but the basis of the two
adaptations is very different. Such adaptive learning rate methods as Adagrad, Adadelta,
RMSprop, and Adam accumulate the gradient in a range of time steps to adjust the learning
rate dynamically. This results in a proper gradient for each parameter, and the model will
converge faster. A proper gradient comes from samples in aSGD. The differences between
the samples and features with different frequencies make the gradient of each parameter
varied. Each time the parameters are updated, the mean effective gradient is accumulated
from several samples. This adaptation is reflected in the adaptive batch size. In other
words, the adaptive learning rate takes advantage of the difference caused by the change
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in the parameter during the training process, and the adaptive batch size takes advantage
of the difference in parameters caused by samples in one batch. However, this difference
can only be due to the specific activation characteristic of the ReLU. Specially, the ReLU
will return 0 when the value of the linear activation is less than 0. Consequently, theses
samples do not contribute to the parameter update. Both tanH and ReLU do not have this
kind of characteristic.

(a) aSGD

(b) SGD

Figure 4. The values of each parameter of the model for Experiment 1 during training process with
(a) aSGD and (b) SGD. Each subfigure represents the parameters in a layer of the network. The
horizontal coordinate is the number of iterations, and the vertical coordinate is the value of the
parameter. Each line represents a parameter, including weights and bias. The same parameter is the
same color in (a) aSGD and (b) SGD.

3.1.2. Increasing the Probability of True Dummy Nodes

As shown in Figure 4, in the late stage of training, some parameters (w3
21, w3

22, w3
23,

and b3
2) in aSGD are never updated at the later stage of training, while in SGD, this part of

the parameters is still updated. It is worth mentioning that we compared the final values of
each parameter at the end of training and found that aSGD assigns the gradient of some
parameters (w3

21, w3
22, w3

23, and b3
2) to another (w3

11, w3
12, w3

13, and b3
1). This may be the reason

for the formation of dummy nodes defined in Section 2. This phenomenon makes the
network update parameters selectively. Parameters that are more conducive to reduce loss
can be updated, while the others are not updated, which makes redundant nodes become
dummy nodes.

3.2. Synthetic Datasets

To further investigate the properties of aSGD and dummy nodes, we use a more
redundant network structure and synthetic data for training and testing. We observed
the performance of aSGD and SGD on synthetic data. The experiment was repeated
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10,000 times and we recorded the step, accuracy, and loss at the end of the training. We
counted the location and number of dummy nodes in the network and plotted them into a
probability distribution map.

The specific design is as follows: we use a fully connected network to train two kinds
of synthetic data, “concentric circles” and “spiral lines”, with SGD and aSGD, respectively.
The training samples are shown in Figure 5a. There are four groups of experiments. The
training data and test data are sampled in the same pattern of data, and the ratio is 7:3.
Groups 1 and 3 use aSGD to train “concentric circle” and “spiral line”, respectively, while
Groups 2 and 4 use SGD. The fully connected network is designed with five hidden
layers, each with 10 nodes. Except for the activation function of the output node, which is
sigmoid, other nodes are ReLU. Parameters are randomly initialized before each training,
and 10,000 batches are trained. We stop training with minimal loss or 10,000 batches.
The learning rate of Groups 1 and 2 is 0.01, and that of Groups 3 and 4 is 0.05. In total,
128 samples were input for training in the four groups, and the experiment was repeated
10,000 times.

(a) Synthetic Datasets (b) The final convergence steps

Figure 5. (a) Synthetic datasets and (b) the boxplot of final convergence steps of Experiment 2.

We count the final training results of the two optimizers. Figure 5b shows the final
convergence steps of the two optimizers in the two datasets. It can be seen that on the
concentric circle data, the two optimizers can train the data in 1000 steps. However, if
the training data are more complicated (spiral line), aSGD makes the objective function
converge faster than SGD, and the difference between the two is about 1500 steps. For the
classification results, we compare the accuracy and loss of the training set and the test set
when the model converges in Figure 6, and the results show that aSGD has better accuracy
and less loss than SGD. However, due to the redundancy of the network and the simplicity
of the synthetic data, the difference in model performance is not too much.

In order to verify that aSGD helps the network generate true dummy nodes, we count
the frequency and location of true dummy nodes, as shown in Figure 7.

Comparing the two histograms, it can be found in Figure 7a,b that the number of
dummy nodes generated by aSGD is higher than SGD in a single training, whether in
concentric circles or spiral lines. On concentric circles, the network trained by aSGD has
an average of five more dummy nodes compared to SGD, and it is three in the more
complex spiral lines. Generally, in a fixed network structure, whether the parameters are
redundant or not is affected by the complexity of the data [35]. These two show that aSGD
can adaptively identify redundant parameters in the network according to the complexity
of the data and transform them into dummy nodes. This helps us to identify redundant
nodes and compress the model.
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Figure 6. The boxplots of final (a) train accuracy, (b) test accuracy, (c) train loss and (d) test loss of
Experiment 2.

(a) Distribution of the number of True dummy nodes (circle) (b) Distribution of the number of True dummy nodes (spiral)

(c) Probability of True dummy nodes (circle) (d) Probability of True dummy nodes (spiral)

Figure 7. Histogram of true dummy nodes of (a) “concentric circles” and (b) “spiral lines”, it means
the number of true dummy nodes generated by the network in one training. The probability of true
dummy nodes in (c) “concentric circles” and (d) “spiral lines” at different locations of network.
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As is shown in Figure 7c,d, the closer to the output layer, the more likely it is to become
a true dummy node. True dummy nodes are more likely to appear on simple datasets; its
probability of appearing in the output layer is 0.2 in concentric circles and 0.12 in spiral
lines. This may be because in the process of forwarding propagation, the classification
results are gradually formed, and there is no need to learn more parameters. This results in
a more true dummy node. The probability of nodes in the same layer is similar. This may
be due to the fact that the number of nodes in each layer of the network is the same.

3.3. MNIST Handwritten Digit Dataset

In order to explore the difference between the SGD and aSGD in terms of classification
performance, we design the experiment below. The dataset is a MNIST handwritten digit
dataset [36]. It contains 60,000 training images and 10,000 test images, and each image is
a 28 × 28 gray-scale image. There are 10 classes corresponding to the 10 digits. A fully
connected network with two hidden layers is used, and the number of nodes in each
layer is 784, 30, 20, and 10. The output layer uses Softmax as the activation function,
and the remaining layers still use ReLU. We set the batch size to 64, and train 500 epochs
under different learning rates. In this experiment, we do not take early stopping [37] to
prevent overfitting. Therefore, we can observe the performance of the two optimizers under
different conditions, including underfitting and overfitting. The experiment is repeated
100 times. The learning curves in two cases are presented in Figure 8a,b respectively, one
where only the optimizers are different and the hyperparameters are exactly the same, and
the other where both optimizers are adjusted to a suitable learning rate.

(a) Training on MNIST images at same learning rates (b) Training on MNIST images at suitable learning rates

Figure 8. The learning curve of Experiment 3 for training on MNIST images at (a) same and (b) suitable
learning rates using aSGD and SGD. Lines with buffers show the mean and 95% confidence interval.

It can be seen that with the same learning rate, the rates of accuracy increase and
loss decrease in aSGD are significantly greater than those of SGD due to a more precisely
estimated mean effective gradient. However, increasing the learning rate of SGD can also
achieve a similar iteration rate. Therefore, we gradually increase the learning rate within
the appropriate range and observe the process of the two optimizers from underfitting
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to overfitting. It can be found that at the learning rate of 0.01 in Figure 8b, the test loss
of aSGD decreases rapidly, and the lowest test loss value that can be achieved is lower
than SGD; while SGD cannot achieve both, under the learning rate of 0.03 in Figure 8b,
SGD converges to a good test loss value, but the training time is too long. At the learning
rate of 0.1 in SGD, the test loss decreases rapidly but cannot achieve a good loss value.
In terms of accuracy, aSGD performs better in both training and testing. Comparing the
performance of the two optimizers, aSGD has two advantages over SGD: accelerating the
training process and achieving higher accuracy. However, the buffer of the learning curve
in aSGD is much larger than that of SGD. At the learning rate of 0.01 in aSGD, the buffer
of the test loss curve becomes larger in the late training stages. This may be because the
adaptive batch is always less than or equal to the hyperparameter batch size, which has the
same effect as increasing the learning rate. This means that aSGD is more unstable than
SGD, especially in the later stages of training. Therefore, additional methods, such as early
stop, learning rate schedules [38], dropout [39], and batch normalization [40], should be
added to aSGD.

The mean and standard deviation of the lowest test loss obtained from 100 experiments
with the corresponding test accuracy, train accuracy, and train loss are summarized in
Tables 1 and 2. Trained with the same hyperparameters, aSGD outperforms SGD in both
training and testing as shown in Table 1. In Table 2, the learning rates of the two optimizers
are adjusted to their appropriate ranges. aSGD achieves the lowest test loss at a learning
rate of 0.005, while SGD is 0.03. The best scores are in bold. The loss of aSGD is slightly
lower than that of SGD, but it is worth mentioning that aSGD reaches the minimum loss at
100 epochs, while SGD is at 500 epochs, as shown in Figure 8b.

Table 1. The mean and variance of the model performance trained on MNIST images at same
learning rates.

Method Learning Rate Train Accuracy Train Loss Test Accuracy Test Loss

aSGD 0.001 0.9464 ± 0.0055 0.1774 ± 0.0194 0.9372 ± 0.0044 0.2253 ± 0.0172
SGD 0.001 0.8137 ± 0.0438 0.5859 ± 0.1174 0.8186 ± 0.0430 0.5783 ± 0.1189

aSGD 0.003 0.9645 ± 0.0033 0.1189 ± 0.0117 0.9488 ± 0.0027 0.1965 ± 0.0126
SGD 0.003 0.8874 ± 0.0234 0.3787 ± 0.0774 0.8876 ± 0.0231 0.3834 ± 0.0778

aSGD 0.01 0.9652 ± 0.0039 0.1168 ± 0.0135 0.9498 ± 0.0034 0.1922 ± 0.0164
SGD 0.01 0.9376 ± 0.0063 0.2131 ± 0.0252 0.9317 ± 0.0062 0.2423 ± 0.0257

Table 2. The mean and variance of the model performance trained on MNIST images at suitable
learning rates.

Method Learning Rate Train Accuracy Train Loss Test Accuracy Test Loss

0.001 0.9464 ± 0.0055 0.1774 ± 0.0194 0.9372 ± 0.0044 0.2253 ± 0.0172
aSGD 0.003 0.9645 ± 0.0033 0.1189 ± 0.0117 0.9488 ± 0.0027 0.1965 ± 0.0126

0.005 0.9652 ± 0.0039 0.1168 ± 0.0135 0.9498 ± 0.0034 0.1922 ± 0.0164
0.01 0.9662 ± 0.0032 0.1135 ± 0.0102 0.9493 ± 0.0029 0.1937 ± 0.0112

0.01 0.9376 ± 0.0063 0.2131 ± 0.0252 0.9317 ± 0.0062 0.2423 ± 0.0257
0.03 0.9615 ± 0.0036 0.1311 ± 0.0129 0.9484 ± 0.0034 0.1984 ± 0.0176

SGD 0.05 0.9625 ± 0.0033 0.1276 ± 0.0111 0.9484 ± 0.0026 0.2023 ± 0.0141
0.07 0.9611 ± 0.0043 0.1326 ± 0.0145 0.9474 ± 0.0036 0.2074 ± 0.0164
0.1 0.9599 ± 0.0039 0.1374 ± 0.0137 0.9465 ± 0.0029 0.2099 ± 0.0126

4. Conclusions

In this paper, we analyzed the role of samples in the parameter update by visualizing
the process of error backpropagation. Sparse data and features with different frequencies
can result in SGD having biased estimates of the expected gradient over the overall training
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set. With the property of activation function ReLU, we amplified the biased estimation.
Based on that, a new adaptive optimization method was proposed from the perspective of
the samples, aSGD. An adaptive batch size was applied to aSGD, which allowed aSGD to
estimate the expected gradient over the overall training set more accurately than SGD. This
helped to perform gradient descent algorithms efficiently. aSGD performed well on both
the synthetic datasets and MNIST handwritten digit dataset. In addition, aSGD helped to
transform redundant parameters into true dummy nodes, which is beneficial for finding
redundant nodes and compress models. However, the current aSGD is a simple method. It
can be unstable in the later stages of training and needs to be used with other optimization
methods. The difference in parameter updates due to samples can only be amplified by the
ReLU function currently. Therefore, aSGD can only be applied to neural networks with
ReLU functions. However, many activation functions are common in deep learning, such
as sigmoid, tanH, and step function. Distinguishing the differences in parameter updates
due to samples under those activation functions and developing new adaptive parameter
updating methods need further study.
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