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Abstract: The following article presents the elaboration and results obtained from a 3D finite element,
of the 8-node hexahedron type with 6 degrees of freedom (DOF) per node (48 DOF per element)
based on third degree Hermitian polynomials, and of a 2-node structural element, with 6 DOF
per node (12 DOF per element), based on third degree Hermitian polynomials and the theory of
Timoshenko for beams. This article has two purposes; the first one is the formulation of a finite
element capable of capturing bending effects, and the second one is to verify whether it is possible to
obtain the deformation of the beam’s cross section of a structural member of the beam type, based
on the deformations of its axis. The results obtained showed that the 8-node hexahedron FE was
able to reproduce satisfactory results by simulating some cases of beams with different contour and
load conditions, obtaining errors between 1% and 4% compared to the ANSYS software, educational
version. Regarding the structural element of the beam type, it reproduced results that were not as
precise as the FE Hexa 8, presenting errors of between 6% and 7% with regard to the axis but with
error rounding between 10% and 20%.

Keywords: finite element; Hermitian polynomials; theory of Timoshenko; 8-node hexahedron

MSC: 65L60; 74S05; 65F45

1. Introduction

Currently there are a large number of analytical and finite element models [1–7]
capable of reproducing the behavior of beams with accuracy and precision. Generally, finite
element models demand a considerable computational cost depending on the analysis that
is proposed and the meshing established by the user.

Regarding recent developments employing Timoshenko’s beam theory, ref. [8] derived
a non-local formulation using Timoshenko’s Theory and non-local elasticity, formulating
the elasticity matrix using two parameters that combined the assumptions of Winkler and
Pasternak. For their part, ref. [9] used the Theory of Functional Connections (TFC) to
solve numerical boundary value problems. The authors solved equations that govern the
response of beams using the Timoshenko–Ehrenfest Theory, which incorporates transverse
shear strains.

To solve Timoshenko beams with nonlinear behavior at both geometric and material
levels, the authors of [10] developed a formulation that directly applied three-dimensional
nonlinear constitutive equations without zero-stress conditions. The researchers compared
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the results with those obtained by applying brick-type elements, managing to verify the
precision and efficacy of the formulation. In another recent work, the authors of [11]
incorporated interpolation functions in the Timoshenko 3D beam solution, which were ob-
tained directly from the solution of the equilibrium differential equation of an infinitesimal
deformed element, thus reducing the discretization of elements used. The interpolation
functions were used in the definition of the tangential stiffness matrix in an updated
Lagrangian formulation. The formulation was used to solve various three-dimensional ex-
amples with elements using different bending theories, including Timoshenko’s, achieving
accurate prediction of results with minimal discretization.

To simulate the rotation phenomenon of a Timoshenko beam with different slenderness
ratios, the authors of [12] implemented a 3D finite element formulation. The novelty
introduced in the finite element consisted of correctly considering the moment of inertia
under small rotational deformations around the equilibrium position. The authors carried
out various numerical simulations that allowed them to compare the effectiveness of
the formulation against commercial finite element programs. The dynamic response of
Timoshenko beams has also been studied by the authors of [13], who studied perforated
beams under accelerated loads in a variable thermal environment. The equations of
the system have been solved numerically by means of implicit integration in time. The
results obtained show correspondence with respect to the results obtained by applying
conventional methods.

Another important phenomenon is the one involving lateral-torsional buckling in
steel beams subjected to high temperatures. To study it, the authors of [14] have used a
formulation based on Timoshenko beam-type finite elements, thus avoiding using shell-
type elements that transform the problem into a much more complex and computationally
expensive one. They implemented two strategies: the first one corresponded to a fiber-
based beam model (FBM) and the second one corresponded to a cruciform frame model
(CFM). The results obtained from the numerical simulations show an adequate reproduction
of the local buckling using a reduced computational time, which represents a promising
projection towards the performance-based design of this type of beam when subjected to
the action of fire.

In another recent study, this time focused on the dynamic response under moving loads
of fiber-reinforced Timoshenko composite beams, the authors of [15] used a Lagrangian
procedure to determine the constitutive equations of motion accompanied by the use of
the Ritz Method. The results obtained with the numerical simulations demonstrated the
effectiveness of the formation, which, however, depends on the orientation of the reinforcing
fibers and the volume fraction on the dynamic response of the models. Continuing with
the Timoshenko beams, the authors of [16] studied the effect of complex loads applied
at multiple nodes. The authors used the inverse finite element method (iFEM) as a basic
conceptual framework and Isogeometric Analysis (IGA) as a complementary strategy to
update the shape of beams in two dimensions. Numerical simulations were compared
against experimental results, indicating acceptable errors for deformations.

As for finite elements applied to structural members such as beams, there are no
limits to modeling, including deformations in the cross section and in the longitudinal
axis, while with analytical models, only beams that have specific formulations can be
modeled at a low computational cost, limiting the types of analysis of non-deformable
beams that can be carried out on their cross section, and their longitudinal axis can also be
modeled at a low computational cost . Commonly, for buildings design, the cross section
deformation is neglected, but when the analysis requires cross section deformation, or the
steel reinforcement contribution for concrete beams, it is mandatory to evaluate it by using
a finite element (FE) modeling or a fiber modeling.

Most of 3D FE are based on tethraedrons or hexaedrons, generally with 3 DOF each
node, whose shape functions are generally linear (2 nodes per edge) or quadratic (3 nodes
per edge); this means, for each polinomyal degree, an extra node is needed; with this
formulation, the beam’s cross section and steel reinforcement can be modeled [17–20]. For
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1D FE, generally the cross section is considered through the geometrical properties within
the formulation, and 6 DOF per node for full axial, shear, and bending effects. When the
formulation is treated as 1D, the effects of the reinforcement in concrete beams can be
represented by transforming the steel reinforcement into concrete, due to the limitations of
the formulation.

When beams are being formulated, with a 3D FE or 1D FE, it is necessary a formulation
capable to capture the bending and shear effects; for a 3D FE, the bending and shear effects
are obtained by the three main displacements of each node, with a quadratic shape function
(minimum), due to the complexity of the formulation; for a 1D FE, the formulation is quite
easy, with a full 6 DOF each node (axial forces, shear forces, and bending moments). There
are two main theories for beam formulation: Bernoulli’s formulation, which neglects the
shear deformation (valid for small beams in heigth), and Timoshenko’s Theory, which
considers the shear deformation (valid for all types of beams) [21–26].

In this article, an Hexa 3D 8-node (48 DOF per element) and a 1D 2-node (12 DOF
per element) will be developed, both based on their weak formulation and the Hermitian
interpolation.

2. Materials and Methods
2.1. Formulation of the Hexahedral FE with 8 Nodes and 48 DOF per Element, Using
Hermitian Interpolation
2.1.1. Isoparametric Formulation

This formulation has the advantage of being able to capture bending effects directly
with only 8 nodes in a regular hexahedron, in the isoparametric space [7]. The hexaedron
element and its DOF, in the isporametric space (which domain is Ω = (−1, 1) for each
edge), number of nodes and local axis, is shown in Figure 1. The hermitian polynomial for
the interpolation was selected as third degree polynomial, as shown in Equation (1), which
will be used to generate the shape functions for the three local axis (ξ, η, ζ).

Figure 1. DOF for each edge of the hexahedron.

P(ξ) = a + bξ + cξ2 + dξ3 (1)

Rotation at any point of P(ξ) will be ∂
∂ξ P(ξ), and, if the boundary conditions are taken

in 2D for each edge as θw1, θw2, w1, w2 (Figure 2), the constants a, b, c, d can be calculated as
shown in Equation (2).
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Figure 2. DOF for the hexahedron.
w1

θw1

w2

θw2

 =


1 −1 1 −1

0 1 −2 3

1 1 1 1

0 1 2 3




a

b

c

d

 (2)

w1 and w2 represent the displacement perpendicular to the edge axis for each node,
while θw1 and θw2 represent the rotation of each node. Solving Equation (2) for constants
a, b, c, d, with each one as a function of θw1, θw2, w1, w2, then grouping for θw1, θw2, w1, w2
and expanding the solution for each local axe, the shape functions are obtained as shown
in Equation (3). It has to be noticed that the same procedure can be applied for axis η and ζ,
obtaining the same equations.

H1(ξ)

H2(ξ)

H3(ξ)

H4(ξ)

 =


1/4 ξ3 − 3/4 ξ + 1/2

1/4 ξ3 − 1/4 ξ2 − ξ/4 + 1/4

−1/4 ξ3 + 3/4 ξ + 1/2

1/4 ξ3 + 1/4 ξ2 − ξ/4− 1/4

 (3)

In order to construct the shape functions for each node, in the isoparametric space,
a superposition of all them are proposed, as shown in Figure 3, where H1, H3 represent
displacements, and H2, H4 represent rotations.

Figure 3. Combination of shape functions for each node (Isoparametric).

By making the superposition of the corresponding shape functions for each node, the
equations for displacements and rotations are shown from Equations (4)–(11). Notice that
this element is ’complete’, it means, if any equation for displacement is evaluated in any
point with its coordinate, the result will be one (1), and for rotations, the result will be
zero (0).

NH1(η, ξ, ζ) = H3(ξ)H3(η)H3(ζ) ; RH1(η, ξ, ζ) = H4(ξ)H4(η)H4(ζ) (4)
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NH2(η, ξ, ζ) = H1(ξ)H3(η)H3(ζ) ; RH2(η, ξ, ζ) = H2(ξ)H4(η)H4(ζ) (5)

NH3(η, ξ, ζ) = H1(ξ)H1(η)H3(ζ) ; RH3(η, ξ, ζ) = H2(ξ)H2(η)H4(ζ) (6)

NH4(η, ξ, ζ) = H3(ξ)H1(η)H3(ζ) ; RH4(η, ξ, ζ) = H4(ξ)H2(η)H4(ζ) (7)

NH5(η, ξ, ζ) = H3(ξ)H3(η)H1(ζ) ; RH5(η, ξ, ζ) = H4(ξ)H4(η)H2(ζ) (8)

NH6(η, ξ, ζ) = H1(ξ)H3(η)H1(ζ) ; RH6(η, ξ, ζ) = H2(ξ)H4(η)H2(ζ) (9)

NH7(η, ξ, ζ) = H1(ξ)H1(η)H1(ζ) ; RH7(η, ξ, ζ) = H2(ξ)H2(η)H2(ζ) (10)

NH8(η, ξ, ζ) = H3(ξ)H1(η)H1(ζ) ; RH8(η, ξ, ζ) = H4(ξ)H2(η)H2(ζ) (11)

Once obtained, the shape functions in the isoparametric space, a transformation to
the Cartesian space is required, through the Jacobian matrix. The shape functions can be
expressed in Cartesian coordinates according to Equations (12)–(14)

X =
n

∑
i=1

NHi(η, ξ, ζ)Xi +
n

∑
i=1

RHi(η, ξ, ζ)Xi (12)

Y =
n

∑
i=1

NHi(η, ξ, ζ)Yi +
n

∑
i=1

RHi(η, ξ, ζ)Yi (13)

Z =
n

∑
i=1

NHi(η, ξ, ζ)Zi +
n

∑
i=1

RHi(η, ξ, ζ)Zi (14)

In matrix form, the Jacobian matrix can be expressed as shown in Equation (15), and
the transformation to the Cartesian coordinates is shown in Equation (16).

J =


∂

∂ξ x(η, ξ, ζ) ∂
∂ξ y(η, ξ, ζ) ∂

∂ξ z(η, ξ, ζ)

∂
∂η x(η, ξ, ζ) ∂

∂η y(η, ξ, ζ) ∂
∂η z(η, ξ, ζ)

∂
∂ζ x(η, ξ, ζ) ∂

∂ζ y(η, ξ, ζ) ∂
∂ζ z(η, ξ, ζ)

 (15)


∂

∂X
∂

∂Y
∂

∂Z

 = (J−1)T


∂

∂η

∂
∂ξ

∂
∂ζ

 (16)

2.1.2. Elasticity Parameters

The deformation tensor, based on the six DOF per node, is shown in Equation (17) (ma-
trix B), and the displacements matrix is shown in Equation (18). Notice that Equation (18)
is showing 6 rows and 6 columns, but it is only for 1 node; hence, for the 8 nodes, the
dimension of the matrix will be by 6 × 48.

εx

εy

εz

γxy

γyz

γzx


=



∂
∂x NHn 0 0 ∂

∂x RHn 0 0
0 ∂

∂y NHn 0 0 ∂
∂y RHn 0

0 0 ∂
∂z NHn 0 0 ∂

∂z NHn
∂

∂y NHn
∂

∂x NHn 0 ∂
∂y RHn

∂
∂x RHn 0

0 ∂
∂z NHn

∂
∂y NHn 0 ∂

∂z RHn
∂

∂y RHn
∂
∂z NHn 0 ∂

∂x NHn
∂
∂z RHn 0 ∂

∂x RHn





un
vn
wn
θun
θvn
θwn

 (17)
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N =



NHn 0 0 0 0 0
0 NHn 0 0 0 0
0 0 NHn 0 0 0
0 0 0 RHn 0 0
0 0 0 0 RHn 0
0 0 0 0 0 RHn

 (18)

The properties of the materials are shown in the Equation (19).

σx

σy

σz

τxy

τyz

τxz


=



2 µ + λ λ λ 0 0 0

λ 2 µ + λ λ 0 0 0

λ λ 2 µ + λ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





εx

εy

εz

γxy

γyz

γxz


(19)

2.1.3. Numerical Integration

The numerical integration used for calculations was based on Gaussian method,
with 3 integration points for edge. The three main points used for the calculations were

x = [−
√

5
3 , 0,

√
5
3 ], and w = 5

9 , 8
9 , 5

9 . The 27 integration points were obtained by the
permutation of x and w.

2.1.4. Elemental Stifness and Forces Matrices

The strong formulation for the element stiffnes matrix is shown in Equation (20), while
the strong formulation of the forces matrix is shown in Equation (21). The e subfix denotes
the elemental matrix.

Ke =
∫

Ω
BTD B J dΩ (20)

Fe =
∫

Ω
NTq(x) J dΩ (21)

The strong formulation is not viable to evaluate, due to the complexity of the coor-
dinate transformation between the isoparametric space and the Cartesian space; hence,
a finite elements formulation based on the weak formulation, which implies numerical
integration to the Equations (20) and (21), which become Equations (22) and (23)

Ke = Ke +
n

∑
i=1

wiB(xi)
TD B(xi) det(J) (22)

Fe = Fe +
n

∑
i=1

wiN(xi)
T q(x) det(J) (23)

where:
B is the deformation tensor (Equation (17)). Notice that this tensor depends directly of the
shape functions (η, ξ, ζ), which asume the values of the Gaussian points.
N is the displacements matrix (Equation (18))
D is the matrix which contains the materials properties (Equation (19))
q(x) is the Neumann condition or boundary conditions (external forces)
n is the number of integration points

The global matrices K and F are obtained from the assembly of Ke and Fe.
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2.2. Formulation of the 1D 2-Nodes Structural Element Based on Timoshenko’s Beams Theory

In this section, a formulation of a 1D 2-nodes structural element with 6 DOF per node
is based on Timoshenko’s beams theory starting from a variational formulation (this type
of formulation is based on virtual work commonly), and also based on the main differential
equation of displacement. Once this FE is formulated, the cross section will be deformated
using geometric relationships in order to compare if, for simple beams, a deformed shape
is based on the axis displacement.

2.2.1. 2D Variational Formulation (Weak Formulation)

Similar to the deduction of the beam under Bernoulli’s theory, the resolution of the
Equation (24) leads to a varational formulation.

EI
d4v(x)

dx4 = q(x) (24)

where I is the second moment of area of the cross section, E is the Young’s module, v(x) is
a displacement function, and q(x) is the applied external force.

Following the general procedure, a solution is proposed by means of a test func-
tion, as shown in the Equation (25), which is integrated to reduce the order, as shown
in Equation (26); this is w(x) ε C4(Ω,<), where Ω = (0, L) is the domain of the beam;
v : Ω → < is the displacement at any point of the beam; and q : Ω → < is the Neumann
condition or boundary conditions (external forces).

w(x)EIz
d4v(x)

dx4 = w(x)q(x) (25)

where:
E, is the Young’s module.
Iz, is the second moment of areas around the axis submited to bending moments.

∫ L

0
w(x)EIz

d4

dx4 v(x) dx =
∫ L

0
w(x)q(x) dx (26)

When solving the integral by parts, and knowing that the test function w(x) must
have the same boundary condition (Dirichlet) as the function v(x), Equations (27) and (28)
are obtained.

w(x)EIz
d3

dx3 v(x)−
∫ L

0

d
dx

w(x)EIz
d3

dx3 v(x) =
∫ L

0
w(x)q(x) dx (27)

−
∫ L

0

d
dx

w(x)EIz
d3

dx3 v(x) =
∫ L

0
w(x)q(x) dx (28)

Equation (28) is solved again through integrating by parts, leading to Equation (29),
where the values w(L), w(0) and their derivatives evaluated at 0 and L are inputs; so, the
final Equation to solve is expressed as Equation (30). M(0) is the bending moment at the
initial node, and M(L) is the bending moment at the final node.

∫ L

0

d2

dx2 w(x)EIz
d2

dx2 v(x) =
∫ L

0
w(x)q(x) dx +

d
dx

w(L) M(L)−
d

dx
w(0) M(0) (29)

∫ L

0

d2

dx2 w(x)EIz
d2

dx2 v(x) =
∫ L

0
w(x)q(x) dx (30)

2.2.2. Finite Elements Solution

A Hermitian polynomial is proposed for the solution of Equation (3), as shown in
Equation (31).

v(x) = dx3 + cx2 + bx + a (31)
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Based on Timoshenko’s beam theory, the additional shear deformation can be ap-
pended to the polynomial of Equation (31), posing a balance of shear forces, as shown in
Equation (32), where the term Ks GA γ represents the shear force. Timoshenko’s beam
theory states that, unlike the Euler–Bernoulli’s beam theory, where the cross section does
not rotate after loads are applied to it, the shear distortion v is considered as an additional
rotation of the cross section. Therefore, transverse rotation and transverse displacement are
considered as independent variables [22].

EIz
d3

dx3 v(x) + Ks GAγ = 0 (32)

where Iz represents the second moment of area around the bending axis, Ks is a shear
correction factor depending of the cross section, G is the shear module, and A is the
shear area.

In order to include this shear deformation, the value of γ is determined from
Equation (32), obtaining Equation (33), and this value is substituted in the rotation ex-
pression, as shown in Equation (34).

γ = −6
EIz d

Ks GA
(33)

θ(x) =
d

dx
v(x) + 6

EIz d
Ks GA

(34)

To solve Equation (34), the boundary conditions shown in Figure 2 are set, obtaining
the expressions of the integration constants, as shown in Equation (35).

v1

θ1

v2

θ2

 =


1 0 0 0

0 1 0 6 EIz
AGKs

1 L L2 L3

0 1 2 L 3 L2 + 6 EIz
AGKs

.


a

b

c

d

 (35)

The values of the constants a, b, c, d are obtained by operating in Equation (35). Group-
ing the values θ1, θ2, v1, v2 and using the transformation φ = 1

1+α , α = 12EIz
KsGAL2 , the shape

functions shown in Equations (36)–(39) are obtained.

N1(x) = 1− 3x2φ

L2 +
2x3φ

L3 −
xφ( 1

φ − 1)

L
(36)

N2(x) =
x3φ

L2 −
x2φ

L
−

x2φ( 1
φ − 1)

2L
+ xφ +

xφ

2
(

1
φ
− 1) (37)

N3(x) =
3x2φ

L2 −
2x3φ

L3 +
xφ( 1

φ − 1)

L
(38)

N4(x) =
x3φ

L2 −
x2φ

L
+

x2φ( 1
φ − 1)

2L
− xφ

2
(

1
φ
− 1) (39)

Returning to Equation (30), the terms of stiffness and force are obtained, which are
shown in Equations (40)–(42)

w(x) =
n

∑
i=1

wi · Ni(x) v(x) =
n

∑
j=1

vj · Nj(x) (40)

Kij =
∫ L

0

d2

dx2 Ni(x)EIz
d2

dx2 Nj(x) (41)
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Fi =
∫ L

0
Ni(x)w(x)dx (42)

Using Equation (41) for the indices i = 1, 2, 3, 4 and j = 1, 2, 3, 4, the stiffness matrix
for bending and shear is obtained, shown in Equation (43), while the volume forces term is
used Equation (42); it is shown in Equation (44). The ful 3D stiffness matrix is shown in
Figure A2, and the schema for the ful 3D DOF is shown in Figure A3.

Ke =



12 φ EIz
L3 6 φ EIz

L2 −12 φ EIz
L3 6 φ EIz

L2

6 φ EIz
L2

EIz (3 φ+1)
L −6 φ EIz

L2
EIz (3 φ−1)

L

−12 φ EIz
L3 −6 φ EIz

L2 12 φ EIz
L3 −6 φ EIz

L2

6 φ EIz
L2

EIz (3 φ−1)
L −6 φ EIz

L2
EIz (3 φ+1)

L


(43)

Fe =


− 1

2 w(x)L

− 1
12 L2w(x)

− 1
2 w(x)L

1
12 L2w(x)

 (44)

It can be seen that if shear effects are neglected due to the effects explained in Timo-
shenko’s beam theory, that is, α = 0, the matrix Ke is equal to the one obtained by applying
the Euler–Bernoulli Theory. Since what is sought is to obtain a matrix of 6 degrees of
freedom per node (12 × 12 matrix), the same process can be carried out by taking into
account the rotation around the z axis, resulting in a 4 × 4 Ke matrix, including Iy instead
of Iz, and including axial and torsional effects.

3. Results
3.1. Validation of the Hexahedral FE with 8 Nodes

Firstly, the finite element Hexa 8 was validated for various types of beams subjected
to different types of load, comparing the results with the ANSYS® software. The cross
section is 20 cm in base and 40 cm in height (Concrete, fc = 24.52 MPa, E = 23,414 MPa), to
which the minimum amount of steel reinforcement has been introduced and transformed
into rectangular bars. The minimum reinforcing steel yielded 6 bars of 14 mm diameter,
which yielded rectangular bars 12.5 mm on a side (fy = 411.9 MPa, E = 205,940 MPa). In
Figures 4–7, the graphic at the right represents the modeling in ANSYS® software [27],
while the graphic at the left represents the output of the finite element Hexa 8, displayed
in Paraview® software [28] and calculated using Python® software [29]. The mesh was
constructed with a Python script, and there were three different types of mesh for the cross
section (Figure A1 and Table A1), using the medium mesh for the validation.

(a) (b)
Figure 4. Both sides fixed beam submitted to self weigth. (a) Paraview (Python), (b) ANSYS. (Note:
e− n indicates 10−n).
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(a) (b)
Figure 5. One side fixed beam, submitted to self weigth. (a) Paraview (Python), (b) ANSYS.

(a) (b)
Figure 6. One side fixed beam, submitted to self weigth and a force at the non-fixed side (1000 N).
(a) Paraview (Python), (b) ANSYS.

(a) (b)
Figure 7. One side fixed beam, submitted to a compression force (1000 N). (a) Paraview (Python),
(b) ANSYS.

The error in each simulation is shown in Table 1, where the maximun error is about
3.21%, which means that the results for Hexa 8 FE are reliable.

Table 1. Error between ANSYS and Hexa 8 EF.

Dirichlet Condition Neuman Condition Displacements (mm)

Hexa 8 ANSYS Error (%)

One side fixed Self weigth −9.87× 10−6 −9.79× 10−6 0.79
One side fixed Pz = −1000 N −1.26× 10−4 −1.27× 10−4 0.96
One side fixed Px = −1000 N −4.97× 10−7 −4.98× 10−7 0.11

Boths sides fixed Self weigth −4.21× 10−6 −4.26× 10−6 1.21
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3.2. Validation of the 1D 2-Nodes Structural Element for Timoshenko Beams

To determine if the deformed beam with the hypothesis is accurate in comparisson
with the Hexahedral FE with 8 nodes, the evaluation of three different beams with different
Dirichlet and Neuman conditions was proposed, as shown in the following paragraphs.

3.2.1. One Side Fixed Beam

This beam has the section already defined and has a length of 1 m. The results for this
beam are shown in Figures 8–10. The left Figure represents the EF simulation, while the
right represents the Timoshenko simulation. Notice that in these results, the error has been
calculated for the Timoshenko beam formulation in comparison with the Hexahedral FE
with 8 nodes.

(a) (b)
Figure 8. Case 1: Self weigth. (a) Hexa8. (b) Timoshenko. (Note: e− n indicates 10−n).

(a) (b)
Figure 9. Case 2: Horizontal (y) load at the end of the beam (1000 N). (a) Hexa8. (b) Timoshenko.
(Note: e− n indicates 10−n).
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(a) (b)
Figure 10. Case 3: Torsional load at the end of the beam (2800 N.m). (a) Hexa8. (b) Timoshenko.
(Note: e− n indicates 10−n).

The error for each simulation, for the Timoshenko beam, is shown in Table 2. Notice
that errors for Timoshenko beam formulation are not negible for the torsional case (case 3),
and there are several reasons for this; one reason is that for Timoshenko beam formulation,
the supports were added to a single point, allowing displacements for the nodes above
and below the support nodes, while for the Hexahedral FE with 8 nodes, supports were
added to a surface, restricting displacements for all the support nodes. These errors, from
the point of view of structural analysis, should be not allowed, due to the fact that for
structural analysis the main goal is to reproduce the behavior of a real structure as well as
posible; on the other hand, for structural design, even when these error values are high,
for the estimation of structural cross sections, steel reinforcement, or steel profiles, these
errors probably do not affect the design. For instance, a common structural parameter for
acceptation or rejection of beams is the deflection or maximun vertical displacement, which
is expressed in terms of the total length of the beam (Length/480, Length/360, among
others), and if the displacements are in the order of 10−3 cm, with these errors, the beam
still can be accepted.

Another reason could be that the deformed shape for Timoshenko beam formulation
is based on linear geometric relationships, which cannot be accurate in order to estimate the
deformed cross section, while with the Hexahedral FE with 8 nodes, the displacements of
each node are calculated based on the FE formulation explained above. In addition, these
errors were calculated as an average of the error of each point, which can be unfavorable if
one point presents a huge error.

Table 2. Error for Timoshenko beams simulations.

Case Axis Error (%)

1 Z 2.494
2 Z 7.531
3 Y 9.348
3 Z 10.214
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3.2.2. Double Pinned Beam

The results are presented for a beam with a length of 2 m, with pinned supports at its
ends (Figures 11–13). The left Figure represents the EF simulation, while the right Figure
represents the Timoshenko simulation.

(a) (b)
Figure 11. Case 1: Self weigth. (a) Hexa8. (b) Timoshenko. (Note: e− n indicates 10−n).

(a) (b)
Figure 12. Case 2: Pure flex. Two loads at L/3 and 2L/3 (Fz = −1000 N). (a) Hexa8. (b) Timoshenko.
(Note: e− n indicates 10−n).
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(a) (b)
Figure 13. Case 3: Torsional load at L/3 (2800 N.m). (a) Hexa8. (b) Timoshenko. (Note: e − n
indicates 10−n).

The error for each simulation, for the Timoshenko beam, is shown in Table 3.

Table 3. Error for Timoshenko beams simulations.

Case Axis Error (%)

1 Z 8.129
2 Z 0.024
3 Y 0.204
3 Z 6.912

3.2.3. Beam with Two Pinned Supports (L = 0 m and L = 2 m) and a 1 m Cantiliever

For this beam, a length of 3 m has been considered, as shown in Figures 14–19.

(a) (b)
Figure 14. Case 1: Self weigth. (a) Hexa8. (b) Timoshenko. (Note: e− n indicates 10−n).
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(a) (b)
Figure 15. Case 2: At L = 3 m, Fz = −1000 N. (a) Hexa8. (b) Timoshenko. (Note: e− n indicates 10−n).

(a) (b)
Figure 16. Case 3: at L = 1 m, Fz = −1000 N. At L = 3 m, Fz = −1000 N. (a) Hexa8. (b) Timoshenko.
(Note: e− n indicates 10−n).
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(a) (b)
Figure 17. Case 4: Torsional load at L = 3 m (2800 N.m). (a) Hexa8. (b) Timoshenko. (Note: e− n
indicates 10−n).

(a) (b)
Figure 18. Case 5: Torsional load at L = 1 m (2800 N.m). (a) Hexa8. (b) Timoshenko. (Note: e− n
indicates 10−n).

The error for each simulation, for the Timoshenko beam, is shown in Table 4.

Table 4. Error for Timoshenko beams simulations.

Case Axis Error (%)

1 Z 10.872
2 Z 0.800
3 Z 0.567
4 Y 1.511
5 Y 17.531
6 X 19.004
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(a) (b)
Figure 19. Case 6: Compression load at L = 3 m (Fx = −1000 N.m). (a) Hexa8. (b) Timoshenko. (Note:
e− n indicates 10−n).

4. Discussion

According to the results obtained, it is possible to affirm that although the results
appear to be satisfactory for the structural element under Timoshenko’s theory, the error
calculated in relative terms is high in some cases. In this paper, two different FE were created
and evaluated, with expected results: the Hexahedral FE with 8 nodes performed better
that the 1D FE Timoshenko beam formulation. In comparison, the axis displacements were
relatively close, but the deformed cross section were not, essencialy with torsional effects.

In the case of the beam embedded at one end, it is observed that in the first case
(Table A2), the error is 24.34% on average, while for case 2, the error remains quite low, at
3.56%, and for the torsional case, the values again increase to 17.00% on average, which
can mean important changes in the design of structures susceptible to displacement, by
underestimating the maximum deflections; however, the behavior of the cross section in all
cases is similar, and in addition to this, when observing the results just at the maximum
length (L = 1 m), where the maximum deflection occurs, the error is low , being the lowest
of the entire table in cases 1 to 3; therefore, from the point of view of maximum deflections,
the error is low.

In the case of the beam articulated at both ends, it is observed that according to the
Table A3, the error for case 1 is low, at 5.14%, while the error for case 2 increases to 9.07%,
and in the case of torsion, it continues to increase to approximately 17%, again, this can
cause important changes in structures susceptible to displacement. Moreover, the same
behavior is presented, so that the error values at the maximum deflection point (L = 1 m)
are the lowest; so, an estimate of deflections is quite close.

Something similar happens with the cantilever beam (Table A4), observing high
average percentages in cases 1, 4, 5, and 6, but not in cases 2 and 3; in case 1, it is observed
that in the section between L = 0 m and L = 2 m, the lowest error occurs in the zone of
maximum deflection, and in the same way in L = 3 m, but the error is high in absolute
terms. For cases 2 and 3, the behavior is the same, with a lower error value, so it can
be considered acceptable. With respect to the other cases, the error has been calculated
without taking into account the values of 100 because this comes from the way in which
the degrees of freedom of both models are restricted, showing that for the FE model, there
are some displacements that are translated between sections, while in the Timoshenko
model, the displacements are restricted on the axis and no deformation is transmitted to
the cross section.



Mathematics 2022, 10, 836 18 of 23

5. Conclusions

As a conclusion, it can be established that the finite element 3D Hexa 8 created with
Hermite polynomials accurately represents the results of the simulations when compared
with a commercial software, with the disadvantage that when implemented in Python–
Cython, the computation times are quite high. This finite element 3D Hexa 8 has the
advantage to represent the rotations of the nodes with the translation and rotation com-
ponent, which is the correct way to represent the real behavior of an element submitted
to axial, bending and shear forces, in comparisson with some finite elements which the
rotations are based only on the translations of each node.

The FE 3D formulation for the hexahedron was easy to formulate with third degree
Hermitian polynomials due to the number of equations nedded for representing bending
effects and adding the corresponding DOF for rotation, in comparison with common
formulations. The proposed FE is based on hermitian polynomial interpolation, which
considerably reduces the quantity of nodes in the hexahedron element and catches the
bending effect more accurately by adding three additional DOF of rotation for each node.
Rotations in common FE are caught by adding more nodes in the hexahedron and can
include three or more nodes for each Edge, with 3 DOF for each one but only in translation,
and rotations are calculated based on the translations.

It is also well known that the addition of rotations of DOF using hermitian polynomial
interpolation is used for beam formulation (similar to the Timoshenko beam formulation
presented in this paper) and for plates, which work with the axis of the structural element,
but in this paper, the using hermitian polynomial interpolation is used directly in the FE
formulation, in order to reduce the quantity of nodes and add three more DOF for rotations.

The advantage of this FE could lie in the processing time, but it depends because for
a common FE formulation, there has to be a minumum of 16 nodes in order to correctly
catch the bending effect (which is not very precise, because the polynomical order is barely
2), generating 48 equations per element, so the number of equations increases, but, using
the Hexahedral FE with eight nodes, the number of equations is the same (48) per element
but the order of the interpolation is 3 (used in this paper), not 2, so, with a common
FE formulation (3 DOF per node) there will need 24 nodes, generating 72 equations per
element, and it will always catch the rotations based on the translations. Based on the
paragraph above, the advantages of using an FE lie in accuracy obtained by adding three
additional DOF for rotations.

With respect to the Timoshenko simulations, it is observed that the results oscillate
between high and low for the different beams in the different cases, so it is recommended
to continue with the development until a better approximation is achieved in terms of de-
flections. One of the possible causes of these differences is the way in which the restrictions
are carried out since by EF, these are carried out on a surface or on a line, while by the
Timoshenko simulation, they are carried out at a point on the shaft, and this might make
a difference.

In some cases, the Timoshenko simulations and the finite element 3D Hexa 8 matched
almost perfectly, which implies that for academic purposes, it is possible to use the total
section deformed shape based on the axis deformations, and by applying some trigonomet-
ric relations.

The accuracy of the finite element model must obviously be contrasted with the
experimental results carried out on beams with geometry and mechanical characteristics
similar to those used in this work.
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Appendix A. Mesh Sensitivity

(a) (b) (c)
Figure A1. Different cross sections used. (a) Coarse, (b) Medium, and (c) Fine.

Table A1. Mesh sensitivity.

Mesh N° of Hexahedrons N° of Nodes Max. Vertical Displacement (m) Error (%)

a 2240 2805 −3.85× 10−6 18.113
a 3360 4080 −4.03× 10−6 14.240
a 6720 7905 −4.21× 10−6 10.433
a 10,800 11,730 −4.24× 10−6 9.832
b 1500 2232 −4.68× 10−6 0.356
b 2000 2952 −4.71× 10−6 0.198
b 2500 3672 −4.72× 10−6 0.461
b 3000 4392 −4.73× 10−6 0.607
c 6800 8805 −3.78× 10−6 19.509
c 10,200 11,760 −3.97× 10−6 15.632
c 12,240 15,760 −4.56× 10−6 2.983
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Figure A2. Ful Timoshenko’s stiffness matrix (6 DOF per node).

Note: the matrix is symmetric, and the shear factor depends on the direction of the
bending, that is, as a function of Iz e Iy.

Figure A3. Timoshenko FE schema (6 DOF per node).
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Table A2. Ful error table for double fixed beam.

Error (%)
Case 1 Case 2 Case 3

Length Z Z Y Z

0 0 0 0 0
0.05 72.59 21.19 69.22 86.48
0.1 57.45 14.52 43.54 38.89

0.15 47.75 10.20 33.07 29.32
0.2 40.84 7.31 26.60 24.22

0.25 35.58 5.37 22.12 20.74
0.3 31.40 4.03 18.87 18.09

0.35 27.98 3.06 16.43 15.98
0.4 25.13 2.34 14.56 14.28

0.45 22.70 1.79 13.07 12.88
0.5 20.60 1.37 11.86 11.70

0.55 18.77 1.03 10.84 10.68
0.6 17.14 0.76 9.96 9.79

0.65 15.68 0.54 9.17 8.98
0.7 14.35 0.36 8.41 8.23

0.75 13.14 0.21 7.63 7.57
0.8 12.01 0.08 6.80 7.07

0.85 10.97 0.02 5.83 6.91
0.9 9.98 0.11 4.65 7.60

0.95 9.04 0.17 3.07 9.75
1 8.13 0.23 0.20 13.75

Average 24.34 3.56 16.00 17.28

Table A3. Ful error table for two pinned supports beam.

Error (%)
Case 1 Case 2 Case 3

Length Z Z Y Z

0.00 0.00 0.00 0.00 0.00
0.07 22.13 20.82 60.34 68.47
0.13 11.48 12.49 35.58 31.99
0.20 7.91 10.02 25.92 24.48
0.27 5.96 8.84 20.11 19.95
0.33 4.83 8.32 16.35 16.89
0.40 4.09 8.11 13.86 14.85
0.47 3.57 8.09 12.26 13.72
0.53 3.20 8.18 11.45 13.69
0.60 2.93 8.37 11.21 14.87
0.67 2.74 8.63 12.40 19.15
0.73 2.61 8.17 10.38 13.82
0.80 2.53 7.84 9.70 11.67
0.87 2.49 7.63 9.36 10.59
0.93 2.50 7.53 9.35 10.23
1.00 2.54 7.54 9.53 10.21
1.07 2.62 7.65 9.84 10.42
1.13 2.74 7.86 10.24 10.77
1.20 2.90 8.18 10.74 11.24
1.27 3.10 8.62 11.35 11.83
1.33 3.35 9.19 12.10 12.55
1.40 3.67 9.05 13.02 13.45
1.47 4.06 8.99 14.19 14.57
1.53 4.56 9.02 15.70 16.01
1.60 5.20 9.18 17.71 17.87
1.67 6.05 9.51 20.49 20.33
1.73 7.28 10.15 24.50 23.66
1.80 9.26 11.38 30.58 28.39
1.87 12.72 13.78 40.62 36.14
1.93 22.78 21.55 66.32 73.62
2.00 0.00 0.00 0.00 0.00

Average 5.14 9.07 17.20 17.99
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Table A4. Ful error table for two pinned supports with cantiliever beam.

Error (%)
Length Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.10 24.18 0.80 3.94 100.00 78.28 100.00
0.20 15.04 5.87 1.31 100.00 62.47 100.00
0.30 12.67 6.69 2.16 100.00 51.48 100.00
0.40 11.52 6.91 2.36 100.00 43.40 100.00
0.50 11.01 6.89 2.27 100.00 37.21 100.00
0.60 10.87 6.79 2.05 100.00 32.29 100.00
0.70 11.01 6.64 1.76 100.00 28.26 100.00
0.80 11.41 6.48 1.40 100.00 24.76 100.00
0.90 12.05 6.32 1.00 100.00 21.56 100.00
1.00 12.97 6.17 0.57 100.00 17.53 100.00
1.10 14.21 6.04 0.96 100.00 20.55 100.00
1.20 15.87 5.93 1.30 100.00 22.63 100.00
1.30 18.06 5.85 1.59 100.00 24.87 100.00
1.40 21.02 5.81 1.85 100.00 27.48 100.00
1.50 25.09 5.84 2.09 100.00 30.80 100.00
1.60 30.88 5.96 2.34 100.00 35.26 100.00
1.70 39.72 6.33 2.67 100.00 41.64 100.00
1.80 53.67 7.18 3.21 100.00 51.53 100.00
1.90 78.77 11.65 5.40 100.00 68.72 100.00
2.00 – – – 100.00 100.00 100.00
2.10 82.87 10.77 5.83 91.28 100.00 74.49
2.20 63.64 7.34 3.90 67.48 100.00 56.80
2.30 51.67 6.25 3.31 48.30 100.00 45.73
2.40 43.36 5.57 2.94 33.85 100.00 38.64
2.50 37.42 5.11 2.69 22.91 100.00 33.58
2.60 32.93 4.76 2.50 14.46 100.00 29.69
2.70 29.41 4.48 2.34 7.84 100.00 26.57
2.80 26.58 4.26 2.22 2.61 100.00 23.87
2.90 24.21 4.09 2.13 1.51 100.00 21.18
3.00 22.16 3.88 1.99 4.76 100.00 19.00

Average 28.14 5.89 2.34 29.50 36.04 36.95
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