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Abstract: The sinh-Gordon equation is simply the classical wave equation with a nonlinear sinh source
term. It arises in diverse scientific applications including differential geometry theory, integrable
quantum field theory, fluid dynamics, kink dynamics, and statistical mechanics. It can be used to
describe generic properties of string dynamics for strings and multi-strings in constant curvature
space. In the present paper, we study a generalized sinh-Gordon equation with variable coefficients
with the goal of obtaining analytical traveling wave solutions. Our results show that the traveling
waves of the variable coefficient sinh-Gordon equation can be derived from the known solutions of
the standard sinh-Gordon equation under a specific selection of a choice of the variable coefficients.
These solutions include some real single and multi-solitons, periodic waves, breaking kink waves,
singular waves, periodic singular waves, and compactons. These solutions might be valuable
when scientists model some real-life phenomena using the sinh-Gordon equation where the balance
between dispersion and nonlinearity is perturbed.

Keywords: sinh-Gordon equation; space and time dependent coefficients; soliton; periodic waves;
traveling wave solution
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1. Introduction

The sinh-Gordon equation in its standard form

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t) + sinh(u(x, t)) = 0, (1)

is a completely nonlinear integrable partial differential equation that is widely used in
physics and sciences [1]. This equation has broad-spectrum scientific applications in inte-
grable quantum field theory, fluid dynamics, kink dynamics, differential geometry theory,
and statistical mechanics. Early examples include particular surfaces of constant mean
curvature and Josephson junctions between two superconductors [1–4]. The geometrical
interpretation of Equation (1) was shown by studying surfaces of constant Gaussian curva-
ture in a three-dimensional pseudo-Riemannian manifold of constant curvature [5,6]. It can
be used to describe generic properties of string dynamics for strings and multi-strings in
constant curvature space [6,7]. It also arises in models of interacting charged particles in
plasma physics, the interaction of neighboring particles of equal mass in a lattice formation
with a crystal, and on effects of weak dislocation potential on nonlinear wave propagation
in the anharmonic crystal [1,8,9].

Equation (1) involves the d’Alembertian ∂2

∂t2 − ∂2

∂x2 and the hyperbolic function sinh
of the function u(x, t). The solution u(x, t) is supposed to be a real-valued function and
clearly a purely complex solution u = iû of Equation (1) satisfies the sine-Gordon equation
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∂2

∂t2 û(x, t)− ∂2

∂x2 û(x, t) + sin(û(x, t)) = 0.

Equation (1) is a perturbation of the well known linear Klein–Gordon equation [10]

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t) + u(x, t) = 0.

It is rewritten in a system model as

∂

∂t
u(x, t) = −v(x, t),

∂

∂t
v(x, t) +

∂2

∂x2 u(x, t)− sinh(u(x, t)) = 0.

Using the transformation x = 1
2 (x + t), t = 1

2 (x− t), Equation (1) becomes the famous
sinh-Gordon equation

∂2

∂x∂t
u(x, t) = sinh(u(x, t)), (2)

and hence obtaining the analytical solutions for Equation (2) is similar to finding the
analytic solutions of Equation (1). Equation (2) is an integrable system and has a self-adjoint
Lax pair [11]. It is known that Equation (2) has an auto-Backlund transformation [12]

∂

∂x
u(x, t) +

∂

∂x
v(x, t) = −4 λ sinh

(
u(x, t)

2
− v(x, t)

2

)
,

∂

∂t
u(x, t)− ∂

∂t
v(x, t) = − 1

λ
sinh

(
u(x, t)

2
+

v(x, t)
2

)
,

(3)

and hence if u is a solution of Equation (2), then v can be determined by the auto-Backlund
transformation (3). Thus, it could be said that the function v satisfies the sinh-Gordon
equation in the form of

∂2

∂x∂t
v(x, t) = sinh(v(x, t)).

Many mathematicians and physicists studied Equations (1) and (2) from different
aspects [2,5–7,9–17]. The Painlevé property was used in [2] to investigate the sinh-Gordon
equation. Nonlocal symmetries and conservation laws of the Sinh-Gordon equation were
obtained in [12]. The sinh-Gordon equations in (1 + 1), (2 + 1), and (3 + 1) dimensions
were investigated and the one soliton solution and the two soliton solutions were formally
derived for each model [16]. Several analytic solutions were obtained in [15,17] by using the
tanh method and in [13] by using the Exp-function method. The bifurcation theory of the
dynamical system was used in [14] to obtain more analytic solutions to Equation (1) such
as periodic wave solutions, breaking kink wave solutions, and compactons. The authors
in [6] found elliptic solutions for Equation (1) and showed that these elliptic solutions are
orbitally stable with respect to subharmonic perturbations of the arbitrary periods. The
direct and inverse scattering problems were solved in [18] for the elliptic sinh-Gordon
equation and it was also shown that the inverse scattering transform might be useful in the
analysis of localized singular solutions. Three numerical techniques were proposed in [19]
for solving the two-dimensional sinh-Gordon equation using the moving least squares,
RBF-PS collocation, and radial basis function meshless methods.

A soliton in nonlinear dispersive systems is a self-reinforcing pulse that maintains its
shape during propagation with constant velocity. Its caused by canceling the nonlinear
and dispersive effects in the medium. Soliton solutions are well known in physics and
engineering fields including fluid dynamics, optics, surface wave propagation, and shallow
water waves. Many new studies have focused on finding N soliton solutions for systems of
nonlinear partial differential equations, for instance, N solitons and Bäcklund transforma-
tions of the Boussinesq–Burgers system have been carried out in [20] for the shallow water
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waves in a lake or near an ocean beach. In [21], scaling transformations, hetero-Bäcklund
transformations, bilinear forms, and N solitons have been carried out for a generalized
(2 + 1)-dimensional dispersive long-wave system on the shallow water of an open sea or
a wide channel of finite depth. The soliton solutions of the sinh-Gordon Equation (1) are
expressed by [16]

u(x, t) = 4 arctanh
(

f (x, t)
g(x, t)

)
, (4)

where f (x, t) and g(x, t) are auxiliary functions. The single soliton solution of the sinh-
Gordon Equation (1) is given by

u(x, t) = 4 arctanh
(

exp
(

κ x±
√

κ2 − 1 t
))

, (5)

whereas, the two-soliton solution is

u(x, t) = 4 arctanh

 exp(κ1 x±ω1 t) + exp(κ2 x±ω2 t)

1−
(

1−κ1 κ2+ω1 ω2
1+κ1 κ2−ω1 ω2

)
exp((κ1 + κ2) x± (ω1 + ω2) t)

, (6)

where ω1 =
√

κ2
1 − 1 and ω2 =

√
κ2

2 − 1.
More analytic traveling wave solutions for Equation (1) can be obtained by using

the transformation
v(x, t) = exp(u(x, t)),

so that

u(x, t) = arccosh
(

v(x, t) + v−1(x, t)
2

)
. (7)

Thus, the authors in [13,17] obtained the solution

u(x, t) = arccosh

−1
2

tanh4
(

1
2
√

c2−1
(x− ct)

)
+ 1

tanh2
(

1
2
√

c2−1
(x− ct)

)
, (8)

where c2 > 1 and the solution

u(x, t) = arccosh

1
2

tanh4
(

1
2
√

1−c2 (x− ct)
)
+ 1

tanh2
(

1
2
√

1−c2 (x− ct)
)

, (9)

where c2 < 1. Another traveling wave solution to Equation (1) is

u(x, t) = 2 ln
(

tanh
(

1
2

κ x± 1
2

√
κ2 − 1 t

))
. (10)

Other possible solutions for the Equation (1) can be obtained from Equations (8)–(10)
by replacing the tanh function with coth, tan, or cot functions (see [17]).

A number of researchers have studied several extensions of the standard sinh-Gordon
equation. For example, analytic traveling wave solutions for the generalized double sinh-
Gordon equation

∂2u
∂t2 − κ

∂2u
∂x2 + 2α sinh(nu) + β sinh(2nu) = 0,

where n is a positive integer, obtained in [22] by using a new function approach based on
the hyperbolic function cosh, in [23] by using the Exp-function method, and in [24] by using
the ( G′

G )-expansion method. In [25–27], various travelling waves, periodic solutions, and
Jacobi elliptic function solutions are derived for the combined sinh–cosh-Gordon equation
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∂2u
∂t2 − κ

∂2u
∂x2 + α sinh(nu) + β cosh(nu) = 0.

where n is a positive integer. The dynamical behavior and analytic traveling wave solutions
are obtained for the generalized double combined sinh–cosh-Gordon equation

∂2u
∂t2 − κ

∂2u
∂x2 + α sinh(nu) + α cosh(nu) + β sinh(2nu) + β cosh(2nu) = 0, (11)

where n is a positive integer [13,28–30].
In the real-life world, nonlinear systems with variable coefficients can be used to study

more complex phenomena, including special cases of nonlinear integrable systems with
constant coefficients. Therefore, it is beneficial to study nonlinear systems with variable
coefficients. Hence, several nonlinear systems with space- and time-dependent coefficients
have been studied and solved; see, for instance, the generalized sine-Gordon equation
with variable coefficients [31–33], the generalized sinh-Gordon equation with variable
coefficients [4,9,34], the Fisher–KPP equation with a time-dependent Allee effect [35], the
generalized Fisher equation with time-dependent coefficients [36–38], the Korteweg–de
Vries equation with variable coefficients and (or) nonuniformity terms [39,40], the three-
coupled variable-coefficient nonlinear Schrödinger system [41], the (2 + 1)-dimensional
generalized variable-coefficient Boiti–Leon–Pempinelli system [42], a population model
with time-dependent advection and an autocatalytic-type growth [43], and so on.

The analytical studies of an inhomogeneous sinh-Gordon equation that is space-
and/or time-dependent have been limited. A generalized sinh-Gordon with variable
coefficient can be expressed as

∂2u
∂x∂t

= γ(x, t) sinh(u(x, t)), (12)

where γ(x, t) is the variable coefficient. Solitary and extended wave solutions to Equa-
tion (12) were found in [4,34]. As opposed to the non-integrable Equation (12), let us
consider a different version of the generalized sinh-Gordon equation with variable coeffi-
cients expressed as

∂2u
∂t2 −

∂2u
∂x2 + sinh(µ(x, t) u(x, t) + ν(x, t)) = 0, (13)

where µ(x, t) and ν(x, t) are variable coefficients. Clearly, Equation (13) is reduced to the
sinh-Gordon Equation (1) in the case of µ(x, t) = 1 and ν(x, t) = 0. If the sinh term in (13)
is expanded, then the equation can be expressed as

∂2u
∂t2 −

∂2u
∂x2 + sinh(µ(x, t) u(x, t)) cosh ν(x, t) + cosh(µ(x, t) u(x, t)) sinh ν(x, t) = 0. (14)

To our knowledge, the generalized sinh-Gordon equation with variable coefficients
(13) has not been solved to date. In this paper, by employing a function transformation
in a judicious manner, we construct various analytical traveling wave solutions to the
generalized sinh-Gordon equation with variable coefficients (13). These solutions include
some real single and multi-solitons, breaking kink waves, periodic waves, singular waves,
periodic singular waves, and compactons.
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2. Traveling Wave Solutions for the Case ν(x, t) = 0

In this section, we employ the known solutions of Equation (1) in order to find analytic
solutions for the generalized sinh-Gordon equation with variable coefficients. Let us
consider the case when ν(x, t) = 0. Then Equation (13) becomes

∂2u
∂t2 −

∂2u
∂x2 + sinh(µ(x, t) u(x, t)) = 0, (15)

where µ(x, t) is a variable coefficient. We start by introducing the variable transformation

u(x, t) =
f (x, t)
µ(x, t)

, (16)

where f (x, t) is an auxiliary function to be determined later. It should be pointed out that
with the transformation (16), the sinh terms of Equations (1) and (15) will be exactly the
same. Therefore, the thought is to separately compare the second derivative terms ∂ttu
and ∂xxu of both the generalized sinh-Gordon Equation (15) and the standard sinh-Gordon
Equation (1) and decide if it is possible to find a suitable variable coefficient function µ(x, t).
Substituting the transformation (16) into the second derivative term ∂ttu in Equation (15),
we find the expression

∂2

∂t2 f (x, t)
µ(x, t)

−
2 ∂

∂t f (x, t) ∂
∂t µ(x, t)

µ2(x, t)
+

2 f (x, t)
(

∂
∂t µ(x, t)

)2

µ3(x, t)
−

f (x, t) ∂2

∂t2 µ(x, t)
µ2(x, t)

.

Now, equating the last expression and the linear term ∂ttu = ∂tt f and solving the
resulting equation for µ(x, t), we obtain

µ(x, t) =
f (x, t)(

∂
∂t f (x, t)

)
t−
∫

t ∂2

∂t2 f (x, t)dt + g1(x) + g2(x) t

=
f (x, t)

f (x, t) + g1(x) + g2(x) t
,

(17)

where g1(x) and g2(x) are arbitrary functions. Repeating this process for ∂xxu, we find

µ(x, t) =
f (x, t)

f (x, t) + g3(t) + g4(t)x
, (18)

where g3(t) and g4(t) are arbitrary functions.
If we compare (17) and (18), we find

µ(x, t) =
f (x, t)

f (x, t) + x(A1t + A2) + A3t + A4
, (19)

where A1, A2, A3, and A4 are arbitrary constants. Equation (19) can be used to find analytic
traveling wave solutions for (15). These solutions include real solitons, periodic waves,
breaking kink waves, singular waves, periodic singular waves, and compactons.

Theorem 1. The generalized sinh-Gordon equation

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t) + sinh
(

f (x, t)
f (x, t) + x(A1t + A2) + A3t + A4

u(x, t)
)
= 0, (20)

has the analytic traveling wave solution

u(x, t) = f (x, t) + x(A1t + A2) + A3t + A4,
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provided that f (x, t) is a solution for the standard sinh-Gordon Equation (1), where A1, A2, A3,
and A4 are arbitrary constants.

For example, if we use the single soliton solution (5), the generalized sinh-Gordon
equation given by

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t)

+ sinh
( 4 arctanh

(
exp

(
κ x±

√
κ2 − 1 t

))
4 arctanh

(
exp

(
κ x±

√
κ2 − 1 t

))
+ x(A1t + A2) + A3t + A4

u(x, t)
)
= 0,

admits the following traveling wave solution

u(x, t) = 4 arctanh
(

exp
(

κ x±
√

κ2 − 1 t
))

+ x(A1t + A2) + A3t + A4. (21)

Additionally, using the two-soliton solution (6), the generalized sinh-Gordon equation

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t)

+ sinh


4 arctanh

(
exp(κ1 x±ω1 t)+exp(κ2 x±ω2 t)

1−
(

1−κ1 κ2+ω1 ω2
1+κ1 κ2−ω1 ω2

)
exp((κ1+κ2) x±(ω1+ω2) t)

)

4 arctanh

(
exp(κ1 x±ω1 t)+exp(κ2 x±ω2 t)

1−
(

1−κ1 κ2+ω1 ω2
1+κ1 κ2−ω1 ω2

)
exp((κ1+κ2) x±(ω1+ω2) t)

)
+ x(A1t + A2) + A3t + A4

u(x, t)

 = 0,

admits the analytic solution

u(x, t) = 4 arctanh

 exp(κ1 x±ω1 t) + exp(κ2 x±ω2 t)

1−
(

1−κ1 κ2+ω1 ω2
1+κ1 κ2−ω1 ω2

)
exp((κ1 + κ2) x± (ω1 + ω2) t)

+ x(A1t + A2) + A3t + A4,

where ω1 =
√

κ2
1 − 1 and ω2 =

√
κ2

2 − 1. Another analytic traveling wave solution for the
generalized sinh-Gordon equation

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t)

+ sinh

 2 ln
(

tanh
(

1
2 κ x± 1

2

√
κ2 − 1 t

))
2 ln

(
tanh

(
1
2 κ x± 1

2

√
κ2 − 1 t

))
+ x(A1t + A2) + A3t + A4

u(x, t)

 = 0,

can be taken from Equation (10) that is given by

u(x, t) = 2 ln
(

tanh
(

1
2

κ x± 1
2

√
κ2 − 1 t

))
+ x(A1t + A2) + A3t + A4.

Further, more analytic solutions to Equation (15) can be obtained using the alternate
form for µ(x, t) that is given by

µ(x, t) =
f (x, t)

f (x, t) + G1(x + t) + G2(x− t) + x(A1t + A2) + A3t + A4
, (22)

where G1(x + t) and G2(x− t) are arbitrary differentiable functions and A1, A2, A3, and
A4 are arbitrary constants.
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Theorem 2. The generalized sinh-Gordon equation

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t)

+ sinh
(

f (x, t)
f (x, t) + G1(x + t) + G2(x− t) + x(A1t + A2) + A3t + A4

u(x, t)
)
= 0,

(23)

has the analytic traveling wave solution

u(x, t) = f (x, t) + G1(x + t) + G2(x− t) + x(A1t + A2) + A3t + A4,

provided that f (x, t) is a solution for the standard sinh-Gordon Equation (1), where G1(x + t) and
G2(x− t) are arbitrary differentiable functions and A1, A2, A3, and A4 are arbitrary constants.

For example, a periodic wave solution for the standard sinh-Gordon Equation (1) [14]

u(x, t) = arccosh
(

v(x, t) + v−1(x, t)
2

)
,

where

v(x, t) = v1 − (v1 − v2)JacobiSN2
(

1
2

√
v1

c2 − 1
(x− ct),

√
v1 − v2

v1

)
,

v1 = 1 + κ
2 + 1

2

√
κ2 + 4 κ, and v2 = 1 + κ

2 −
1
2

√
κ2 + 4 κ. Then, the traveling wave solution

for the generalized sinh-Gordon equation

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t)

+ sinh

 arccosh
(

v(x,t)+v−1(x,t)
2

)
arccosh

(
v(x,t)+v−1(x,t)

2

)
+ G1(x + t) + G2(x− t) + x(A1t + A2) + A3t + A4

u(x, t)

 = 0,

is given by

u(x, t) = arccosh
(

v(x, t) + v−1(x, t)
2

)
+ G1(x + t) + G2(x− t) + x(A1t + A2) + A3t + A4, (24)

which is a bounded periodic wave solution when G1 and G2 are bounded functions and
A1 = A2 = A3 = 0. Further, other solutions can be obtained when any of the constants
A1, A2, and A3 are selected non-zero. However, the resulting solutions will be unbounded.

3. Traveling Wave Solutions for the Case ν(x, t) 6= 0

In this section, our goal is to look for an expression of ν(x, t) that can be used to
find more analytic traveling waves for the generalized sinh-Gordon Equation (13). Let us
initially consider the case when µ(x, t) = 1. Then Equation (13) becomes

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t) + sinh(u(x, t) + ν(x, t)) = 0. (25)

If we substitute the variable transformation

u(x, t) = f (x, t)− ν(x, t),

into Equation (25), we find that

∂2

∂t2 f (x, t)− ∂2

∂t2 ν(x, t)− ∂2

∂x2 f (x, t) +
∂2

∂x2 ν(x, t) + sinh( f (x, t)) = 0
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Setting ν(x, t) = 0, we find

∂2

∂t2 f (x, t)− ∂2

∂x2 f (x, t) + sinh( f (x, t)) = 0

Equating the two equations above and simplifying, by eliminating the like terms, we
find that

∂2

∂t2 ν(x, t)− ∂2

∂x2 ν(x, t) = 0

Solving the above equation for ν(x, t), we obtain

ν(x, t) = H1(x + t) + H2(x− t) + x(B1t + B2) + B3t + B4, (26)

where H1(x + t) and H2(x− t) are arbitrary differentiable functions and B1, B2, B3, and B4
are arbitrary constants.

Theorem 3. The generalized sinh-Gordon equation

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t) + sinh
(

u(x, t) + H1(x + t) + H2(x− t) + x(B1t + B2) + B3t + B4

)
= 0, (27)

has the analytic traveling wave solution

u(x, t) = f (x, t)−
(

H1(x + t) + H2(x− t) + x(B1t + B2) + B3t + B4

)
, (28)

provided that f (x, t) is a solution for the standard sinh-Gordon Equation (1), where H1(x + t) and
H2(x− t) are arbitrary differentiable functions and B1, B2, B3, and B4 are arbitrary constants.

Now, let us consider the case when µ(x, t) 6= 1. Substituting the transformation

u(x, t) =
f (x, t)− ν(x, t)

µ(x, t)
.

into Equation (13) gives us

∂2

∂t2 f (x, t)− ∂2

∂t2 ν(x, t)
µ(x, t)

−
2
(

∂
∂t f (x, t)− ∂

∂t ν(x, t)
)

∂
∂t µ(x, t)

µ2(x, t)
+

2 ( f (x, t)− ν(x, t))
(

∂
∂t µ(x, t)

)2

µ3(x, t)

−
( f (x, t)− ν(x, t)) ∂2

∂t2 µ(x, t)
µ2(x, t)

−
∂2

∂x2 f (x, t)− ∂2

∂x2 ν(x, t)
µ(x, t)

+
2
(

∂
∂x f (x, t)− ∂

∂x ν(x, t)
)

∂
∂x µ(x, t)

µ2(x, t)

−
2 ( f (x, t)− ν(x, t))

(
∂

∂x µ(x, t)
)2

µ3(x, t)
+

( f (x, t)− ν(x, t)) ∂2

∂x2 µ(x, t)
µ2(x, t)

+ sinh( f (x, t)) = 0.

Setting ν(x, t) = 0, we find

∂2

∂t2 f (x, t)
µ(x, t)

−
2
(

∂
∂t f (x, t)

)
∂
∂t µ(x, t)

µ2(x, t)
+

2 f (x, t)
(

∂
∂t µ(x, t)

)2

µ3(x, t)
−

f (x, t) ∂2

∂t2 µ(x, t)
µ2(x, t)

−
∂2

∂x2 f (x, t)
µ(x, t)

+
2 ∂

∂x f (x, t) ∂
∂x µ(x, t)

µ2(x, t)
−

2 f (x, t)
(

∂
∂x µ(x, t)

)2

µ3(x, t)
+

f (x, t) ∂2

∂x2 µ(x, t)
µ2(x, t)

+ sinh( f (x, t)) = 0.

Equating the two equations above and simplifying, by eliminating the like terms, we
find that

∂2

∂t2

(
ν(x, t)
µ(x, t)

)
− ∂2

∂x2

(
ν(x, t)
µ(x, t)

)
= 0. (29)
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Solving the above equation for ν(x, t), we obtain

ν(x, t) = µ(x, t)
(

H1(x + t) + H2(x− t) + x(B1t + B2) + B3t + B4

)
, (30)

where H1(x + t) and H2(x− t) are arbitrary differentiable functions and B1, B2, B3, and B4
are arbitrary constants.

Theorem 4. The generalized sinh-Gordon equation given by

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t)

+ sinh
(

µ(x, t) u(x, t) + µ(x, t)
(

H1(x + t) + H2(x− t) + x(B1t + B2) + B3t + B4

))
= 0,

(31)

has the analytic traveling wave solution

u(x, t) =
f (x, t)− µ(x, t)

(
H1(x + t) + H2(x− t) + x(B1t + B2) + B3t + B4

)
µ(x, t)

, (32)

provided that

u(x, t) =
f (x, t)
µ(x, t)

,

is a solution for the generalized sinh-Gordon equation with variable coefficient (15), where H1(x + t)
and H2(x− t) are arbitrary differentiable functions and B1, B2, B3, and B4 are arbitrary constants.

Equations (28) and (32) are bounded and unbounded real-valued traveling waves
for the generalized sinh-Gordon Equations (27) and (31), respectively. For example, the
breaking kink wave solution and breaking anti-kink wave solution for the standard sinh-
Gordon Equation (1) is [14]

u(x, t) = 2 arctanh
(

sech
(

1√
1− c2

(x− c t)
))

,

where |c| < 1, and so, the generalized sinh-Gordon equation given by

∂2

∂t2 u(x, t)− ∂2

∂x2 u(x, t)

+ sinh

((
2 arctanh

(
sech

(
1√

1−c2 (x− c t)
))

2 arctanh
(

sech
(

1√
1−c2 (x− c t)

))
+ G1(x + t) + G2(x− t) + x(A1t + A2) + A3t + A4

)
[
u(x, t) + H1(x + t) + H2(x− t) + x(B1t + B2) + B3t + B4

])
= 0,

(33)

has the following analytic traveling wave

u(x, t) =2 arctanh
(

sech
(

1√
1− c2

(x− c t)
))

+ G1(x + t) + G2(x− t) + x(A1t + A2) + A3t + A4

−
(

H1(x + t) + H2(x− t) + x(B1t + B2) + B3t + B4

)
.

(34)

From (34), one can obtain a variety of traveling wave solutions for different choices of
G1, G2, H1, H2, A1, A2, A3, A4, B1, B2, B3, and B4. On the other hand, other types of solutions
for the generalized sinh-Gordon Equations (27) and (31) such as single and multi-solitons,
periodic waves, singular waves, periodic singular waves, and compactons can be obtained
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in a similar manner using Equations (28) and (32) and here, for the sake of brevity, we omit
the details.

4. Conclusions

Sinh-Gordon equation is an important soliton equation in the field of soliton. It has
applications in various fields, such as differential geometry, integrable quantum field
theory, fluid dynamics, and kink dynamics. It can be used to describe surfaces with a
constant negative Gaussian curvature. In this paper, we showed that real-valued traveling
waves and soliton solutions could be obtained for the generalized sinh-Gordon equation
with variable coefficients by utilizing the transformation of variables innovatively and
the known solutions of the standard sinh-Gordon equation. The analytic solutions are
new and have not been reported elsewhere in the literature. In addition, with the aid of
Maple, we have verified all the solutions by substituting them back into the generalized
sinh-Gordon Equation (13). These solutions can be viewed as more general and extensions
of the solutions of the standard sinh-Gordon equation. Additionally, these solutions can be
of great value when modeling real-life phenomena using the sinh-Gordon equation where
the balance between dispersion and nonlinearity is perturbed.
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