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Abstract: The present work investigates the influence of triple diffusion on Carreau nanoliquid in
peristaltic flow through an asymmetric channel. By using appropriate non-dimensional parameters,
governing equations are transformed to conventional non-linear partial differential equations. The
Ms-DTM is used to find solutions to developing equations. Because of the buoyancy force that prevails
inside the boundary layer, velocity is impacted by the buoyancy ratio. The current investigation
found that as the varied values of the modified Dufour parameter were increased, the temperature
profile increased. The thermal conductivity increases as thermal diffusivity increases. It has also been
discovered that the existence of triple-diffusing components with low diffusivity might alter the type
of convection in the system. Graphs depict the influence of several parameters on velocity, salt1 and
salt2 concentrations, solute concentration, and temperature.
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1. Introduction

Natural convection with multi-diffusive features has several practical applications.
The triple diffusion motion may be found in many scientific and technical fields, including
astrophysics, nuclear waste disposal, geology, chemical engineering, and the study of
deoxyribonucleic acid (DNA). Ghalambaz et al. [1] analyzed triple diffusion in a porous
cavity that is a mixing process, in which three stratifying factors with different diffusivities,
such as heat and salt concentration, control the density. When the thermal expansion
coefficient and element concentration in the mixture alter sufficiently, the buoyancy force in-
duced by mass transfer can have a major influence on transport circulation and component
distribution in the cavity. The number of buoyancy forces increases as the number of com-
ponents increases, and the mixture’s behavior becomes more complicated. Furthermore,
Archana et al. [2] investigated the impact of buoyancy force and nonlinear thermal ra-
diation on triple diffusion flow down a horizontal plate using the Casson nanofluid
model. Khan et al. [3,4] investigated the effect of triple diffusion in porous media.
Umavathi et al. [5] expanded the study by investigating the convective flow of triple dif-
fusion under robin boundary conditions in a vertical flat plate. Nawaz et al. [6] numerically
investigated the nanoparticle’s twofold diffusion and the influence of thermal diffusion.
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Latham [7] described peristalsis in 1966. The Greek term for “peristalsis” is peri-
staltikos, which means “clasping and compression”. The mechanism of peristalsis oc-
curs in the intestines and ureters, and the motion of blood in small vessels like capil-
laries, venules, and arterioles. In the nuclear industry, a toxic liquid can be pumped
peristaltically to avoid pollution of the environment. Differential equations are increas-
ingly being employed in physical sciences like liquid transport, microelements, radia-
tion analysis, heat convection and conduction, and dynamics. Partial differential equa-
tions aid in the mathematical formulation of engineering and physical problems. Further,
Shapiro et al. [8] analyzed peristaltic motion with low Reynolds number and long wave-
lengths. Jaffrin et al. [9] expanded peristaltic transport. Vajravelu et al. [10] demonstrated
the peristaltic flow of the Carreau model under the influence of multislip parameters.
Reddy et al. [11] demonstrated the peristaltic motion of a Carreau liquid under the influ-
ence of porous material and an induced magnetic field. Nadeem et al. [12] demonstrated the
peristaltic pumping of Carreau liquid. Hayat et al. [13] analyzed the influence of induced
magnetic field on Carreau liquid in peristaltic pumping.

In 1995, Choi [14] of Argonne National Laboratory coined the term “nanofluid” after
discovering nanoliquids. Nanoparticles have applications in a wide range of sectors, such as
industry, biology, chemistry, and photochemistry. The present advancement of nanofluids
has received a lot of interest because of its applications. Furthermore, Asha et al. [15]
analyzed the impact of joule heating in the mechanism of peristalsis of Carreau nanoliquid
in an inclined asymmetric channel. Eldabe et al. [16] explained the mechanism of peristalsis
of Carreau nanoliquid under the impact of mass and heat transfer. Machireddy et al. [17]
demonstrated MHD Carreau liquid with the impact of cross-diffusion and heat and mass
transfer. Akram et al. [18] studied the influence of inclined magnetic field and nanofluid on
peristaltic motion of carreau fluid model.

In recent years, there has been a surge of attentiveness in developing and applying
analytical and numerical approaches. Such strategies can aid in overcoming the com-
plexity and non-linearity seen in non-Newtonian liquids. Mechanisms of peristalsis with
non-Newtonian liquids necessitate substantially non-linear partial differential equations.
It is hard to find precise answers to such challenges. In this research, we employed a
semi-analytical technique known as the differential transform method (DTM). In 1986,
Zhou was the first to introduce DTM [19]. The multi-step differential transformation
approach (Ms-DTM) is a dependable semi-analytical method that is an excellent enhance-
ment over the traditional DTM. Furthermore, Odibat et al. [20] demonstrated the multi-
step differential transform method and its appliances to chaotic or non-chaotic systems.
Hasona et al. [21] studied the influence of Joule heating on Jeffery liquid in the mechanism
of peristalsis using Ms-DTM. Hasona et al. [22] analyzed Williamson nanoliquids in an
asymmetric channel using Ms-DTM. Hasona et al. [23] studied the combined impact of
temperature-dependent viscosity and MHD on peristaltic pumping of Jeffrey nanoliquid.
Tripathi et al. [24] described DTM in peristaltic viscoelastic bioliquid motion in an asymmet-
ric porous channel. Hatami et al. [25] analyzed third-grade non-Newtonian blood transport
in arteries using Ms-DTM. Beg et al. [26] investigated multi-step DTM in the mechanism of
magneto-peristaltic motion of a conducting Williamson viscoelastic liquid.

This study aims to provide different predictions about the effect of natural convection
with triple-diffusive features on the mechanism of peristalsis of Carreau nanoliquid through
an asymmetric channel. Because of the buoyancy force that prevails inside the boundary
layer, velocity is impacted by the buoyancy ratio. The current investigation found that
as the varied values of the modified Dufour parameter were increased, the temperature
profile increased. The thermal conductivity increases as thermal diffusivity increases. It has
also been discovered that the existence of triple-diffusing components with low diffusivity
might alter the type of convection in the system. Ms-DTM is used to find solutions, and
graphs depict the influence of several parameters on velocity, salt1 and salt2 concentrations,
and temperature.
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2. Mathematical Analysis

As illustrated in Figure 1, Carreau nanoliquid peristaltic movements propagate in a
two-dimensional asymmetric channel with a sinusoidal wave near the flexible and non-
conducting walls. Now, (X̃, Ỹ) are taken as Cartesian coordinate systems. The mathematical
model of the channel surface of the wall is [20].

h1

(
X̃, t̃
)
= a1 cos

(
2π

λ

(
X̃ − ct̃

))
+ d1, h2

(
X̃, t̃
)
= −b1 cos

(
2π

λ

(
X̃ − ct̃

)
+ φ

)
− d2, (1)
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Figure 1. Physical configuration.

Here, a1 and b1 denote waves amplitudes, d1 + d2 denote channel widths, λ denotes
the length of the wave, c denotes the propagation of velocity, t̃ represents time, X̃ represents
the direction of wave propagation, and φ represents phase difference, which varies in the
range 0 ≤ φ ≤ π. A symmetric channel with waves out of the phase is given, and the
waves that are in phase are given as φ = π.

Here, φ, d1, d2, a1 and b1 satisfy the following condition:

a1
2 + b1

2 + 2a1b1 cos φ ≤ (d1 + d2)
2

Let V be the velocity field defined as follows:

V =
(

Ũ, Ṽ, 0
)

(2)

Here, Ũ and Ṽ are components of velocity, respectively.
The constitutive equations [13] of Carreau liquid are given as follows:

(η − η∞)

(η0 − η∞)
=

[(
1 +

(
Γ

.
γ
)2
) n−1

2
]

, (3)

τ = −η0

[(
1 +

(n − 1)
2

(
Γ

.
γ
)2
)]

.
γ, (4)

η∞ stands for infinite shear rate viscosity, η0 for zero shear rate viscosity, and η for the
time constant; n represents power-law index with no dimension; and

.
γ is given as follows:

.
γ =

√
1
2∑

i
∑

j

.
γij

.
γji =

√
1
2

Π, (5)

where Π is the strain tensor of the second invariant. Note that the power-law index
characterizes the fluid behavior, and fluid is characterized as shear thinning for 0 < n < 1,
shear thickening for n > 1, and Newtonian fluid for n = 1 and/or Γ = 0. For large values
of Γ, the power-law model can be obtained.

Carreau liquid’s governing equations [2,18] are given below.

∂Ũ
∂X̃

+
∂Ũ
∂Ỹ

= 0, (6)
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ρ f

(
∂Ũ
∂t̃

+ Ũ ∂Ũ
∂X̃

+ Ṽ ∂Ũ
∂Ỹ

)
= − ∂ p̃

∂X̃
+ ∂S̃x̃x̃

∂X̃
+

∂S̃x̃ỹ

∂Ỹ
+ ρ f g

[
βT(T̃ − T̃0) + β1(C̃1 − C̃10) + β2(C̃2 − C̃20)

]
+(ρ f − ρg)g(C̃ − C̃0),

(7)

ρ f

(
∂Ṽ
∂t̃

+ Ũ ∂Ṽ
∂X̃

+ Ṽ ∂Ṽ
∂Ỹ

)
= − ∂ p̃

∂Ỹ
+ ∂S̃x̃x̃

∂X̃
+

∂S̃x̃ỹ

∂Ỹ
, (8)

(
∂T̃
∂t̃

+ Ũ ∂T̃
∂X̃

+ Ṽ ∂T̃
∂Ỹ

)
= α

(
∂2 T̃
∂X̃2 + ∂2 T̃

∂Ỹ2

)
+ τ

{
DB

(
∂C̃
∂X̃

∂T̃
∂X̃

+ ∂C̃
∂Ỹ

∂T̃
∂Ỹ

)
+
(

DT
T0

)((
∂T̃
∂X̃

)2
+
(

∂T̃
∂Ỹ

)2
)}

+DTC1

(
∂2C̃1
∂X̃2 + ∂2C̃1

∂Ỹ2

)
+ DTC2

(
∂2C̃2
∂X̃2 + ∂2C̃2

∂Ỹ2

)
,

(9)

∂C̃1

∂t̃
+ Ũ

∂C̃1

∂X̃
+ Ṽ

∂C̃1

∂Ỹ
= DC1T

(
∂2T̃
∂X̃2

+
∂2T̃
∂Ỹ2

)
+ DS1

(
∂2C̃1

∂X̃2
+

∂2C̃1

∂Ỹ2

)
, (10)

∂C̃2

∂t̃
+ Ũ

∂C̃2

∂X̃
+ Ṽ

∂C̃2

∂Ỹ
= DC2T

(
∂2T̃
∂X̃2

+
∂2T̃
∂Ỹ2

)
+ DS2

(
∂2C̃2

∂X̃2
+

∂2C̃2

∂Ỹ2

)
, (11)

∂C̃
∂t̃

+ Ũ
∂C̃
∂X̃

+ Ṽ
∂C̃
∂Ỹ

= DB

(
∂2C̃
∂X̃2

+
∂2C̃
∂Ỹ2

)
+

DT
T0

(
∂2T̃
∂X̃2

+
∂2T̃
∂Ỹ2

)
(12)

The wave frame and the laboratory frame have a relationship that is defined by
the following:

ũ(x̃, ỹ) = Ũ − c, ṽ(x̃, ỹ) = Ṽ, x̃ = X̃ − ct̃, ỹ = Ỹ, (13)

In a wave frame, (ũ, ṽ) represents velocity components, and (x̃, ỹ) denotes coordinates.
Introducing, non-dimensional quantities as following:

ψ = ψ̃
cd1

, x = x̃
λ , y = ỹ

d1
, t = ct̃

λ , v = ṽ
c , u = ũ

c , δ = d1
λ , d = d2

d1
, h1 = H1

d1
, h2 = H2

d2
,

Re =
ρ f cd1

η0
, α = K

(ρc) f
, τ =

(ρc)p
(ρc) f

, Ω = C̃−C̃0
C̃w−C̃0

, Ω1 = C̃1−C̃10
C̃1w−C̃10

, Ω2 = C̃2−C̃20
C̃2w−C̃20

,

Pr =
µ

ρ f α , . =
.̃d1
c , a = a1

d1
, b = b1

d2
, u = ∂ψ

∂y , v = − ∂ψ
∂x , p = d1

2 p̃
cλη0

, θ = T̃−T̃0
T̃w−T̃0

,

Sx̃x̃ = λ
η0c S̃x̃x̃ , Sx̃ỹ = d1

η0c S̃x̃ỹ, Sỹỹ = d1
η0c S̃ỹỹ, We = Γc

d1
, Br = EcPr , Ec =

c2

c f (T̃w−T̃0)
,

NC1 =
β1

(
C̃1−C̃10

)
βT(T̃w−T̃0)

, NC2 =
β2(C̃2−C̃20 )
βT(T̃w−T̃0)

, Nd1 =
DTC1

(
C̃1w−C̃10

)
α(T̃w−T̃0)

, Nd2 =
DTC2 (C̃2w−C̃20 )

α(T̃w−T̃0)
,

Ld1 =
DC1 T(T̃w−T̃0)

α
(

C̃1w−C̃10

) , Ld2 =
DC2 T(T̃w−T̃0)
α(C̃2w−C̃20 )

, GrT =
ρ f gd1

2(T̃w−T̃0)
cη0

, GrC =
(ρp−ρ f )(C̃1−C̃0)

ρ f βT(T̃w−T̃0)
.



(14)

where θ, Ω1, Ω2, and Ω are the dimensionless temperature, solutal concentration 1, solutal
concentration 2, and solutal concentration, respectively.

SXX = 2
(

1 +
(n − 1)

2
We2 .

γ
2
)

∂2ψ

∂x∂y
, (15)

SXY = SYX =

(
1 +

(n − 1)
2

We2 .
γ

2
)(

∂2ψ

∂y2 − δ2 ∂2ψ

∂x2

)
, (16)

SYY = −2δ

(
1 +

(n − 1)
2

We2 .
γ

2
)

∂2ψ

∂x∂y
, (17)

.
γ =

[(
∂2ψ

∂x∂y

)2

2δ2 +

(
∂2ψ

∂y2 − δ2 ∂2ψ

∂x2

)2

+ 2δ2
(

∂2ψ

∂y∂x

)2] 1
2

. (18)

Using the non-dimensional variables mentioned above, the basic Equations (6)–(10)
were reduced to

∂p
∂x

=
∂Sxy

∂y
+ GrT

[
θ + NC1 Φ1 + NC2 Φ2 + GrCΦ

]
, (19)

∂p
∂y

= 0, (20)
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∂2θ

∂y2 + Pr Nb
∂θ

∂y
∂Φ
∂y

+ Pr Nt

(
∂θ

∂y

)2
+ Pr Nd1

∂2Φ1

∂y2 + Pr Nd2

∂2Φ2

∂y2 = 0, (21)

∂2Φ1

∂y2 + Ld1
∂2θ

∂y2 = 0, (22)

∂2Φ2

∂y2 + Ld2
∂2θ

∂y2 = 0, (23)

∂2Φ
∂y2 +

Nt

Nb

∂2θ

∂y2 = 0, (24)

Removing pressure from Equations (19) and (20) provides

∂2

∂y2

[
∂2ψ

∂y2 +

(
n − 1

2

)
We2

(
∂2ψ

∂y2

)3]
+ GrT

[
∂θ

∂y
+ NC1

∂Φ1

∂y
+ NC2

∂Φ2

∂y
+ GrC

∂Φ
∂y

]
= 0 (25)

where Nb represents a parameter of Brownian motion, Nt represents a parameter of ther-
mophoresis, GrT represents thermal Grashof number, GrC represents solutal Grashof num-
ber, NC1 and NC2 represent the buoyancy ratios of concentration 1 and concentration 2, and
Nd1 and Nd2 indicate the modified Dufour parameters of concentration 1 and concentra-
tion 2. Ld1 and Ld2 represent the Dufour solutal Lewis numbers of concentration 1 and
concentration 2.

The boundary constraints with no dimension in the problem’s wave frame are given
as follows:

ψ = q
2 , ∂ψ

∂Y = −1, θ = 0, Ω = 0 at y = h1 = a cos 2πx + 1,
ψ = − q

2 , ∂ψ
∂Y = −1, θ = 1, Ω = 1 at y = h2 = −b cos(2πx + φ)− d.

}
(26)

where φ, d, b and a satisfy the condition

a2 + b2 + 2ab sin φ ≤ (1 + d)2.

In the wave frame, the average flux with no dimension q is given as

q =

h2(x)∫
h1(x)

∂ψ

∂y
dy (27)

In the wave frame, the mean time is given by Q = q + 1 + d.
Using the boundary conditions (26), Equations (19)–(25) are solved by using Ms-DTM

with symbolic Mathematica tools.

2.1. Multi-Step Differential Transformation Method

Take domain T, in which u(z) is an analytical function, and any point can be repre-
sented in T. A power series is then used to express the function, with the center at z0. The
function can be transformed into a differential transformation as given below.

U(k) =
1
K!

[
dku(z)

dzk

]
z=z0

. (28)

Here, u(z) and U(k) are the original function and transformed function, respectively.
The conversion of the inverse is written as

u(z) =
∞

∑
k=0

(z − z0)
kU(k). (29)
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The Equations (28) and (29) give

u(z) =
∞

∑
k=0

(z − z0)
k

K!

[
dku(z)

dzk

]
z=z0

. (30)

A finite series gives the function and Equation (28) presented below.

u(z) ∼=
∞

∑
k=0

(z − z0)
kU(k). (31)

Here, u(z) = ∑∞
k=m+1 (z − z0)

kU(k) is ignored because it is too small. The value of m
depends on the convergence of the series coefficients.

The value of m is considered up to m = 15 for finding the approximation solution. It
was selected since beyond m = 15, there was no variation in the result.

2.2. Solution of the Problem by Ms-DTM

Here, we obtain the solution of Equations (19)–(25) with the appropriate boundary
constraints (26) by using the Ms-DTM as follows:

(k + 3)(k + 4)(k + 1)(k + 2)Ψ(k + 4) +
(

n−1
2

)
6We2

k
∑

l2=0

l2
∑

l1=0
(l1 + 1)(l1 + 2)Ψ(l1 + 2)(l2 − l1 + 1)

(l2 − l1 + 2)(l2 − l1 + 3)Ψ(l2 − l1 + 3)(k − l2 + 1)(k − l2 + 2)(k − l2 + 3)(k − l2 + 1)(Ψ(k − l2 + 3)+(
n−1

2

)
3We2

k
∑

l2=0

l2
∑

l1=0
(l1 + 4)(l1 + 3)(l1 + 2)(l1 + 1)Ψ(l1 + 4)Ψ(l2 − l1 + 2)(l2 − l1 + 1)(l2 − l1 + 2)(k − l2 + 1)

(k − l2 + 2)Ψ(k − l2 + 2) + GrT [Θ(k + 1)(k + 1) + Φ1(k + 1)NC1(k + 1) + Φ2(k + 1)NC2(k + 1) + Φ(k + 1)GrC(k + 1)] = 0.

(32)

(k + 1)Θ(k + 2)(k + 2) + Pr Nb
k
∑

l=0
(l + 1)Θ(l + 1)(k − l + 1)Φ(k − l + 1) + Pr Nt

k
∑

l=0
(l + 1)Θ(l + 1)(k − l + 1)Θ(k − l + 1)+

Φ1(k + 2)Pr(k + 2)Nd1(k + 1) + Φ2(k + 2)Pr(k + 2)Nd2(k + 1) = 0.
(33)

(k + 1)Φ1(k + 2)(k + 2) + (k + 1)Ld1(k + 2)Θ(k + 2) = 0. (34)

(k + 2)Φ2(k + 2)(k + 1) + (k + 2)Ld2(k + 1)Θ(k + 2) = 0. (35)

Φ(k + 2)(k + 2)(k + 1) + Θ(k + 2)(k + 1)
(

Nt

Nb

)
(k + 2) = 0. (36)

where Ψ[k], Θ[k], Φ1 [k], Φ2 [k], and Φ[k] are the differential transformation functions of
ψ(y), θ(y), Ω1(y), Ω2(y), and Ω(y), respectively, defined as follows:

ψ(y) ∼=
m

∑
k=0

Ψ(k)yk, (37)

θ(y) ∼=
m

∑
k=0

Θ(k)yk, (38)

Ω1(y) ∼=
m

∑
k=0

Φ1(k)yk, (39)

Ω2(y) ∼=
m

∑
k=0

Φ2(k)yk, (40)

Ω(y) ∼=
m

∑
k=0

Φ(k)yk. (41)

The transformed forms of the boundary constraints are given as follows:

Ψ(0) = q
2 , Ψ(1) = −1, Ψ(2) = m1

2 , Ψ(3) = m2
6 , Θ(0) = 0, Θ(1) = m3,

Φ1(0) = 0, Φ1(1) = m4, Φ2(0) = 0, Φ2(1) = m5, Φ(0) = 0, Φ(1) = m6,
(42)



Mathematics 2022, 10, 807 7 of 17

where m6, m5, m4, m3, m2, and unknown coefficients are to be found.
Putting Equation (42) into Equations (32)–(36), and further values of Ψ(k), Θ(k), Φ1(k),

Φ2(k), and Φ(k), it is solved by recursive method. Hence, substituting all Ψ(k), Θ(k), Φ1(k),
Φ2(k), and Φ(k) into Equations (37)–(41), the obtained series solutions are as follows:

ψ(y) = − q
2
− y +

m1

2
y2 +

m2

6
y3 −

GrT

(
m3 + NC1 m4 + NC2 m5 + GrCm6

)
+ 3we2(n − 1)m1m2

2

(24 + 36we2(n − 1)m1
2)

y4 + . . . (43)

θ(y) = m3y − 1
2

(
Pr Nbm3m6 + Pr Ntm3

2
)(

1 − Pr Nd1 Ld1 − Pr Nd2 Ld2

) y2 +
Pr

12

(
Pr Nbm3m6 + Pr Ntm3

2
)
(Ntm3 + 2Nbm6 + 4Ntm3)(

1 − Pr Nd1 Ld1 − Pr Nd2 Ld2

) y3 + . . . (44)

Ω1(y) = m4y +
Ld1
2

(Pr Nbm3m6+Pr Ntm3
2)(

1−Pr Nd1
Ld1

−Pr Nd2
Ld2

)y2−( Ld1
Pr

12

)
(Pr Nbm3m6+Pr Ntm3

2)(Ntm3+2Nbm6+4Ntm3)(
1−Pr Nd1

Ld1
−Pr Nd2

Ld2

)2 y3 + . . .
(45)

Ω2(y) = m5y +
Ld2
2

(Pr Nbm3m6+Pr Ntm3
2)(

1−Pr Nd1
Ld1

−Pr Nd2
Ld2

)y2−( Ld2
Pr

12

)
(Pr Nbm3m6+Pr Ntm3

2)(Ntm3+2Nbm6+4Ntm3)(
1−Pr Nd1

Ld1
−Pr Nd2

Ld2

)2 y3 + . . .
(46)

Ω(y) = m6y + Nt
2Nb

(Pr Nbm3m6+Pr Ntm3
2)(

1−Pr Nd1
Ld1

−Pr Nd2
Ld2

)y2−(
NtPr
12Nb

)
(Pr Nbm3m6+Pr Ntm3

2)(Ntm3+2Nbm6+4Ntm3)(
1−Pr Nd1

Ld1
−Pr Nd2

Ld2

) y3 + . . .
(47)

Differentiating Equation (42) partially for y, we get the velocity equation as follows:

U(y) = −1 + m1y +
m2

2
y2 −

(
GrT

(
m3 + NC1 m4 + NC2 m5 + GrCm6

)
+ 3we2(n − 1)m1m2

2

(6 + 9we2(n − 1)m1
2)

)
y3 + . . . (48)

Using boundary conditions of Equation (26), we can obtain the values of m1, m2, m3, m4,
m5, and

m1 = 0.5, m2 = −0.9, m3 = 1, m4 = 0.01, m5 = 0.01, m6 = 1.

Using boundary conditions of Equation (26), we can obtain the values of m1, m2, m3, m4,
m5, and

m1 = 0.5, m2 = −0.9, m3 = 1, m4 = 0.01, m5 = 0.01, m6 = 1.

A comparison between the solutions obtained by the Ms- DTM with exact solution is
shown in Table 1.

Table 1. Comparison of the solution obtained by Ms-DTM with the exact solution for
We = 0.2, n = 0.1, Br = 0.2, NC1 = NC2 = 0.4, GrC = GrT = 0.1,

Nt = 0.1, Nb = 0.5, Pr = 0.1, Ld2 = 0.6, Ld1
= 0.8, Nd1

= Nd2 = 0.5.
.

y Velocity Exact
Solution Temp Exact

Solution
Solutal
Conc1

Exact
Solution

Solutal
Conc2

Exact
Solution

Solutal
Conc

Exact
Solution

−1 −1.0002 −1 1.0009 1 1.0281 1 1.0009 1 1.0091 1

−0.5 −0.4551 −0.40512 0.3774 0.32596 0.4027 0.39746 0.3774 0.32596 0.3974 0.40276

0 −0.1155 −0.06861 0.0933 0.07974 0.1149 0.09334 0.0993 0.07174 0.09334 0.11494

0.5 −0.3333 −0.29931 0.0090 0.00852 0.0156 0.00908 0.00908 0.00352 0.0090 0.01568

1 −1.0003 −1 0. 0 0 0 0 0 0 0

3. Results and Discussion

The above description leads to a system of non-linear coupled partial differential
equations. When solving explicitly, exact solutions are difficult to obtain. The problem
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at hand is approached semi-analytically by using Mathematica software’s Ms-DTM. The
results obtained by Ms-DTM have been compared with the Exact solution. The results show
that they matched nicely as can be seen from Table 1. In this paper, we discuss the influence
of the Weisenberg number We, the power-law index, Buoyancy ratio parameters NC1 and
NC2 , modified Dufour parameters Nd1 and Nd2 , Dufour solutal Lewis numbers Ld1 and Ld2 ,
solutal Grashof number GrC, Brinkman number Br, thermal Grashof number GrT, parameter
of thermophoresis Nt, and parameter of Brownian motion Nb on solutal concentration 1,
solutal concentration 2, velocity, temperature, and solutal concentration profiles.

3.1. Velocity Distribution

The impact of We, Br, NC1 , NC2 , GrT , and GrC on velocity profile u(y) are presented
in Figure 2a–g. Figure 2a shows that velocity in peristaltic pumping decreases with an
increase in We. Physically, the Weissenberg number is the ratio of the relaxation time of the
fluid and the specific process time. It grows with the thickness of fluid, and that is why the
velocity of the fluid depreciates. Figure 2b explains the influence of the power-law index
on the velocity profile, increasing the values and reducing the non-Newtonian behavior of
the flow, and this leads to an enhancement of the momentum boundary layer. Figure 2c
illustrates that the velocity in peristaltic pumping enhances with a rise in Brinkman number
Br. In addition, Figure 2d shows that enhancing the thermal Grashof number GrT decreases
the velocity of the liquid. GrT satisfies the proportionate influence of viscous hydrodynamic
force and thermal buoyant force. In Figure 2e, an increase in the solutal Grashof number
GrC decreases the velocity distribution of the wall, as it influences the shrinkage of the
thermal boundary layer. From Figure 2f,g, it can be observed that the velocity in peristaltic
pumping rises with an increase in NC1 , due to the buoyancy force, which dominates within the
boundary layer, as NC1 depends upon density, which decreases with increasing temperature.
The buoyancy ratio is the ratio of fluid density contributions by the two solutes.

3.2. Temperature Distribution

Figure 3a–g are prepared to represent the temperature profile via Nd1 , Nd2 , Ld1 , Ld2 ,
Nb, Nt, and n. Figure 3a–f demonstrates that the temperature distribution rises when
there is a rise in Nb, Nt, Nd1 , Nd2 , and Ld1 , respectively. Figure 3a demonstrates that the
temperature distribution rises when there is a rise in Nb because the arbitrary movement of
the nanoparticle is increased as Nb is increased, causing more heat in the liquid and thus
enhancing the liquid’s temperature. From Figure 3b, it can be observed that the temperature
distribution rises when there is a rise in Nt. Furthermore, the presence of nanoparticles in
the fluid is represented by these two parameters. Because these particles increase the fluid’s
thermal conductivity, the temperature rises, and the thermal boundary layer thickens.
From Figure 3c,d, it can be noticed that temperature distribution increases for the larger
varying values of the modified Dufour parameters Nd1 and Nd2 . Thermal conductivity
rises as thermal diffusivity rises, leading to an increase in molecular vibrations, and as a
result, the temperature increases. From Figure 3e,f, it can be noticed that the temperature
distribution increases for the larger varying values of Dufour solutal Lewis numbers Ld1
and Ld2 . Within the boundary layer, both the dimensionless temperature and Dofour
solutal Lewis number are inversely proportional to the concentration difference at the wall.
Therefore, the greater the Dofour solutal Lewis number, the larger will be the temperature
distribution. Figure 3g represents the effect of the power-law index n on the temperature
distribution. The rise in the power-law index decreases the temperature distribution due to
the reduced non-Newtonian behavior of the flow, and this leads to an enhancement of the
momentum boundary layer.
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Figure 2. (a–g): Velocity distribution versus Y for various physical parameters
(a) n = 0.1, Br = NC1 = NC2 = GrC = GrT = 0.1. (b) We = 0.2, Br = NC1 = NC2 = GrC = GrT

= 0.1. (c) We = 0.2, n = NC1 = NC2 = GrC = GrT = 0.1. (d) We = 0.2, n = NC1 = NC2 = GrC =

Br = 0.1. (e) We = 0.2, n = NC1 = NC2 = GrT = Br = 0.1. ( f ) We = 0.2, n = GrC = NC2 = GrT =

Br = 0.1. (g) We = 0.2, n = GrC = NC1 = GrT = Br = 0.1.
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Figure 3. (a–g): Temperature distribution versus Y for various physical parameters
(a) Nt = 0.1, n = 2, Ld2 = Ld1

= Nd1
= Nd2 = Pr = 0.1. (b) Nb = 0.5, n = 2, Ld2 = Ld1

= Nd1

= Nd2 = Pr = 0.1. (c) Nb = 0.5, n = 2, Ld2 = Ld1
= Nt = Nd2 = Pr = 0.1. (d) Nb = 0.5, n = 2,

Ld2 = Ld1
= Nd1

= Nt = Pr = 0.1.(e) Nb = 0.5, n = 2, Ld2 = Nt = Nd1
= Nd2 = Pr = 0.1.

( f ) Nb = 0.5, n = 2, Ld2 = Nt = Nd1
= Nd2 = Pr = 0.1.(g) Nb = 0.5, Ld1

= Ld2 = Nt = Nd1
=

Nd2 = Pr = 0.1
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3.3. Concentration Distribution

Figure 4a–e shows that the solutal concentration profile 1 of the nanoparticle is influ-
enced by Ld1 , Ld2 , Nb, Nt, and n. Figure 4a,b shows that solutal concentration profile 1 in
peristaltic motion increases by rising the values of Ld1 and Ld2 . Within the concentration
boundary layer, both the solutal concentration 1 and Dofour solutal Lewis number are
inversely proportional to the concentration difference at the wall. Therefore, the greater
the Dofour solutal Lewis number, the larger will be solutal concentration 1. As a result of
increased mass diffusivity, these parameters show a significant increase in solutal concen-
tration profile 1 of the nanoparticle. Higher mass diffusivity indicates a higher possibility
of molecular collision due to a large difference in solutal concentration. The difference in
the solutal concentrations of molecules grows as the concentration gradient gets higher.
Figure 4c shows that solutal concentration profile 1 in peristaltic motion increases by rising
the values of Nt. Figure 4d shows a substantial decrease in solutal concentration profile 1
of the nanoparticle by enhancing the Brownian motion parameter Nb. Brownian motion is
based on a random motion of liquid elements moving across a flow surface as nanoparticle
movement is pushed from the hot region to the cold region, which results in a decrease
in concentration distribution. Figure 4e presents the effect of the power-law index n on
the solutal concentration profile 1: a rise in the power-law index decreases the solutal
concentration profile 1 due to the reduced non-Newtonian behavior of the flow, and this
leads to an enhancement of the momentum boundary layer.

Figure 5a–e show the solutal concentration profile 2 of the nanoparticle is influenced
by Ld1 , Ld2 , Nb, Nt, and n. Figure 5a,b show that solutal concentration profile 2 in peristaltic
motion increases by raising the values of Ld1 and Ld2 . Within the concentration boundary
layer, both the solutal concentration 2 and Dofour solutal Lewis number are inversely
proportional to the concentration difference at the wall. Therefore, the greater the Dofour
solutal lewis number, the larger will be the solutal concentration 2. As a result of increased
mass diffusivity, these parameters show a significant increase in solutal concentration
profile 2 of the nanoparticle. Higher mass diffusivity indicates a higher possibility of
molecular collision due to a large difference in solutal concentration. The difference in
the solutal concentrations of molecules grows as the concentration gradient gets higher.
Figure 5c demonstrates that solutal concentration profile 2 in peristaltic motion increases
by rising the values of Nt. Figure 5d shows a substantial decrease in solutal concentration
profile 2 of the nanoparticle by enhancing the Brownian motion parameter Nb. Brownian
motion is based on a random motion of liquid elements moving across a flow surface as
nanoparticle movement is pushed from the hot region to the cold region, which results in a
decrease in the concentration distribution. Figure 5e presents the effect of the power-law
index n on the solutal concentration profile 2. The rise in power-law index decreases the
solutal concentration profile 2 due to the reduced non-Newtonian behavior of the flow, and
this leads to an enhancement of the momentum boundary layer.

Figure 6a–e show that the solutal concentration profile of the nanoparticle are influ-
enced by Ld1 , Ld2 , Nb, Nt, and n. Figure 6a,b shows that the solutal concentration profile
in peristaltic motion increases by raising the values of Ld1 and Ld2 . Within the concentra-
tion boundary layer, both the solutal concentration and Dofour solutal Lewis number are
inversely proportional to the concentration difference at the wall. Therefore, the greater
the Dofour solutal Lewis number, the larger will be the solutal concentration. As a result
of increased mass diffusivity, these parameters show a significant increase in the solu-
tal concentration profile of the nanoparticle. Higher mass diffusivity indicates a higher
possibility of molecular collision due to a large difference in solutal concentration. The dif-
ference in the solutal concentrations of molecules grows as the concentration gradient gets
higher. Figure 6c demonstrates that the solutal concentration profile in peristaltic motion
increases by rising the values of Nt. Figure 6d shows a substantial decrease in the solutal
concentration profile of the nanoparticle by enhancing the Brownian motion parameter
Nb. Brownian motion is based on a random motion of liquid elements moving across a
flow surface as nanoparticle movement is pushed from the hot region to the cold region,
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which results in a decrease in concentration distribution. Figure 6e presents the effect of
the power-law index n on the solutal concentration profile: a rise in the power-law index
decreases the solutal concentration profile due to the reduced non-Newtonian behavior of
the flow, and this leads to an enhancement of the momentum boundary layer.
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Figure 4. (a–e): Solutal concentration 1 distribution versus Y for various physical parameters
(a) Nb = 0.5, n = 2, Nt = Ld2 = Nd1

= Nd2 = Pr = 0.1. (b) Nb = 0.5, n = 2, Nt = Ld1
= Nd1

= Nd2 = Pr = 0.1.(c) Nb = 0.5, n = 2, Ld1
= Ld2 = Nd1

= Nd2 = Pr = 0.1. (d) Nt = 0.5, n = 2,
Ld1

= Ld2 = Nd1
= Nd2 = Pr = 0.1. (e) Nb = 0.5, Nt = Ld1

= Ld2 = Nd1
= Nd2 = Pr = 0.1
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Figure 5. (a–e): Solutal concentration 2 distribution versus Y for various physical parameters
(a) Nb = 0.5, n = 2, Nt = Ld2 = Nd1

= Nd2 = Pr = 0.1. (b) Nb = 0.5, n = 2, Nt = Ld1
= Nd1

= Nd2 = Pr = 0.1. (c) Nb = 0.5, n = 2, Ld1
= Ld2 = Nd1

= Nd2 = Pr = 0.1. (d) Nt = 0.5, n = 2,
Ld1

= Ld2 = Nd1
= Nd2 = Pr = 0.1. (e) Nb = 0.5, Nt = Ld1

= Ld2 = Nd1
= Nd2 = Pr = 0.1
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4. Conclusions 
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Figure 6. (a–e): Solutal concentration distribution versus Y for various physical parameters
(a) Nb = 0.5, n = 2, Nt = Ld2 = Nd1

= Nd2 = Pr = 0.1. (b) Nb = 0.5, n = 2, Nt = Ld1
= Nd1

= Nd2

= Pr = 0.1. (c) Nb = 0.5, n = 2, Ld2 = Ld1
= Nd1

= Nd2 = Pr = 0.1. (d) Nt = 0.5, n = 2, Ld2 = Ld1

= Nd1
= Nd2 = Pr = 0.1. (e) Nb = 0.5, Nt = Ld1

= Ld2 = Nd1
= Nd2 = Pr = 0.1.

4. Conclusions

This study reports the influence of natural convection with triple diffusion on peri-
staltic pumping under the assumptions of low Reynolds number and long wavelength
of a Carreau nanoliquid in an asymmetric channel. Using graphs flow, the behavior of
characteristics are examined.
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The key findings of this article are as follows:

â Velocity in peristaltic pumping decreases with an increase in We. It grows with the
thickness of the fluid, and that is why the velocity of the fluid depreciates. The
influence of the power-law index on the velocity profile is also observed; it reduces
the non-Newtonian behavior of the flow, and this leads to an enhancement of the
momentum boundary layer.

â It is observed that the velocity in peristaltic pumping rises with an increase in NC1
and due to the buoyancy force, which dominates within the boundary layer.

â It is observed that the distribution of temperature increases for the larger varying
values of modified Dufour parameters Nd1 and Nd2 .

â It is noticed that temperature distribution increases for the larger varying values of
Dufour solutal Lewis numbers Ld1 and Ld2 . In addition, the rise in power-law index
decreases the temperature distribution due to the reduced non-Newtonian behavior
of the flow, and this leads to an enhancement of the momentum boundary layer.

â Solutal concentration 1, solutal concentration 2, and concentration of the nanopar-
ticle in peristaltic pumping increase by raising the values of Dufour solutal Lewis
parameters Ld1 and Ld2 . As a result of increased mass diffusivity, these parameters
show a significant increase in solutal concentration 1, solutal concentration 2, and
concentration of the nanoparticles.

â The rise in power-law index also decreases the solutal concentration 1, solutal con-
centration 2, and concentration of the nanoparticles in peristaltic pumping due to the
reduced non-Newtonian behavior of the flow, and this leads to an enhancement of
the momentum boundary layer.

â The differential transformation method (DTM) can be applied directly to nonlinear
differential equations without requiring linearization and discretization, and therefore,
it is not affected by errors associated with discretization. Unlike other methods, DTM
is independent of any small or large quantities. Therefore, DTM can be applied
whether or not governing equations and boundary/initial conditions of a given
nonlinear problem contain small or large quantities.

â Unlike the homotopy analysis method (HAM), DTM does not need to calculate
auxiliary parameter Z1 through h-curves. DTM does not need initial guesses or an
auxiliary linear operator, and it solves equations directly.
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Nomenclature

X̃, Ỹ Cartesian coordinates
Tm Fluid mean temperature
T̃ Temperature of the fluid
C̃ Concentration of fluid
Re Reynolds number
Pr Prandtl number
P̃ Pressure of fluid
Br Brinkman number
Ec Eckert number
δ wave number
α Amplitude ratio
We Weissenberg number
ρ f Base fluid’s density
ρp Density of particle
K Thermal conductivity
DB Coefficient of Brownian diffusion
Ds Solutal diffusivity
DT Coefficient of thermophoresis diffusion
S̃x̃x̃, S̃x̃ỹ, S̃ỹỹ Extra stress tensor components
DTC and DCT Dufour and Soret type diffusivity
βT Volumetric thermal expansion coefficient
β1, β2 Volumetric solutal expansion coefficients
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