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Abstract: Functional brain connectivity networks obtained from resting-state functional magnetic
resonance imaging (rs-fMRI) have been extensively utilized for the diagnosis of Alzheimer’s disease
(AD). However, the traditional correlation analysis technique only explores the pairwise relation,
which may not be suitable for revealing sufficient and proper functional connectivity links among
brain regions. Additionally, previous literature typically focuses on only lower-order dynamics,
without considering higher-order dynamic networks properties, and they particularly focus on single
frequency range time series of rs-fMRI. To solve these problems, in this article, a new diagnosis
scheme is proposed by constructing a high-order dynamic functional network at different frequency
level time series (full-band (0.01–0.08 Hz); slow-4 (0.027–0.08 Hz); and slow-5 (0.01–0.027 Hz)) data
obtained from rs-fMRI to build the functional brain network for all brain regions. Especially, to
tune the precise analysis of the regularized parameters in the Support Vector Machine (SVM), a
nested leave-one-out cross-validation (LOOCV) technique is adopted. Finally, the SVM classifier
is trained to classify AD from HC based on these higher-order dynamic functional brain networks
at different frequency ranges. The experiment results illustrate that for all bands with a LOOCV
classification accuracy of 94.10% with a 90.95% of sensitivity, and a 96.75% of specificity outperforms
the individual networks. Utilization of the given technique for the identification of AD from HC
compete for the most state-of-the-art technology in terms of the diagnosis accuracy. Additionally,
results obtained for the all-band shows performance further suggest that our proposed scheme has a
high-rate accuracy. These results have validated the effectiveness of the proposed methods for clinical
value to the identification of AD.

Keywords: Alzheimer’s disease; higher-order dynamic network; sequential features selection;
SVM; classification

1. Introduction

Alzheimer’s disease (AD) is an inevitable, neuronal disorder progressively appearing
in older age and slowly altering the brain tissue that is subjected to memory, thinking,
learning, and behavioral pattern. The study of the prodromal phase, commonly known as
Mild Cognitive Impairment (MCI), has become popular among researchers in recent years.
Biomarkers that rely on imaging methodologies such as positron emission tomography
(PET), resting-state functional MRI (rs-MRI), and structural magnetic resonance imaging
(sMRI) have served promisingly to identify MCI and AD [1]. To identify AD [2], the neu-
roimaging method is an efficient tool. MRI, a none-invasive and safe imaging technique
of the brain, served as a new way for early detection of AD [3] by disclosing variation
of imaging biomarkers in the brain. As one imaging methodology, the functional MRI
(fMRI) [4] has been extensively used in the brain research area. The brain functions are
closely related to the contraction and dilation of blood vessels of the brain, which changes
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the flow velocity of blood and oxygen status. fMRI is useful to generate and analyze hemo-
dynamic alterations and is useful to record the real-time brain functions employing blood
oxygenation level dependence (BOLD) [5]. The current literature shows that a healthy adult
brain has about 86 billion neurons [6]. By analyzing the functional or structural network
topology among patients, we can reveal more about the abnormal network’s connection
among mental and neurological disorders. Therefore, network analysis techniques are
largely utilized in the early detection of brain diseases [7–9]. Recently, several studies
have demonstrated that the brain network features and machine learning technique with
fMRI yield useful information for the accurate diagnosis of Alzheimer’s. Machine learning
techniques have been shown to be feasible in a recent article. The support vector machine is
one of the most often used approaches for tackling classification problems (SVM). The SVM
has been used in a number of research to predict and classify Alzheimer’s disease [10,11].
Recently, deep learning has become a prominent and promising technology in the field
of machine learning [12–14]. Deep learning involves multilayer representation learning
and abstraction, which has led to considerable gains in data analysis and image classifi-
cation performance. Khazaee et al. [10] utilized time series to obtained brain functional
connectivity, and linear SVM classifiers to diagnose AD and achieved 100% diagnosis
accuracy; this may be caused by the limited number of experimental data. In the traditional
brain connectivity analysis technique, it is considered to be that connectivity of brain is
constant throughout the imaging procedure of fMRI. However, new literature advised
that the brain connectivity correlation demonstrates dynamic changes through the resting
state [15]. In another study, Zuo et al. [16] categorized the BOLD time series into five
frequency bands: slow-2 (0.0198–0.25 Hz), slow-3 (0.073–0.0198 Hz), slow-4 (0.027–0.08 Hz),
slow-5 (0.01–0.027 Hz), and full-band (0.01–0.08 Hz). Functional response of AD individ-
uals shows a noticeable difference in the hippocampus, medial prefrontal, and posterior
cingulate regions in the slow-4 and slow-5 frequency bands, and the better diagnostic
accuracy was obtained through the division of the BOLD frequency [17].

This paper presents the research on high-order dynamic functional network (DFCN)
analysis at the difference-frequency band. The low-order conventional brain network
has relied on the correlation of the entire-brain functional networks, which ignores the
dynamic variability of brain regions’ connection and restrict its full potential in brain disease
diagnosis. To address this condition, many previous studies explore the brain network’s
dynamics by utilizing the sliding window process [18], the wavelet transform coherence
technique [19], and the dynamic conditional correlation technique [20]. The dynamic
networks represent a new research direction in the field of functional network analysis.
Moreover, some studies proposed a hybrid network for early AD diagnosis. For example,
Zhang et al. [21] present a new procedure known as “hybrid-higher order FC networks”
to represent the existing unincluded inter-level relation between low- and higher-order
brain networks and give better diagnostic accuracy. However, such a technique has some
limitations since it does not include the dynamic changes in brain connections. Motivated
by this work, in the present work, we utilized higher-order dynamic interaction between
the brain regions at different frequency levels for the diagnosis of AD.

SVM classifiers were utilized to diagnose AD and MCI individuals from healthy
controls by applying higher-order functional brain connectivity at different frequency
bands along with SFS feature selection. Thus, the fusion of the frequency division and the
higher-order dynamic functional brain networks provides a new horizon for AD diagnosis.
The overall workflow of the proposed methods is shown in Figure 1 below.
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Figure 1. Overall workflow of the proposed Alzheimer’s identification technique.

2. Materials and Methods
2.1. Data

The dataset utilized in this experimental study was collected from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database, which has various kinds of neuroimaging
datasets. The ADNI collection was accredited by Institutional Review Board (IRB) for each
data collecting site. Table 1 represents the participants’ demographics utilized in this work.
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Table 1. Demographics of the participant subjects.

Group MCI AD HC

Nos. of Subjects 61 35 35

Male/Female 33/28 23/12 14/21

Age 72.80 ± 7.9 75.65 ± 8.61 77.83 ± 6.17

FAQ score 2.74 ± 3.71 4.46 ± 4.01 0.33 ± 0.78

CDR 0.5 0.7 ± 0.3 0

MMSE score 26.42 ± 3.75 19.59 ± 4.56 29.13 ± 1.20

2.2. Data Acquisition

fMRI images were acquired through a 3.0-T Philips Medical scanner and all rs-fMRI
imaging modalities were accessed from the ADNI homepage. The individual subjects were
prescribed not to think and lie down calmly while in scanning to obtain the brain fMRI imag-
ing. The arrangement criteria to obtain the imaging modalities were as follows: TE = 30 ms,
sequence = GR, TR = 3000 ms, flip angle = 800, pixel spacing X, data matrix = 64 × 64,
Y = 3.31 mm, axial slices = 48, slice thickness = 3.33 ms, time points = 140 with no slice gap.

2.3. Data Preprocessing

The functional-MRI images were pre-processed using the statistical parametric map-
ping software package (SPM12, http://www.fil.ion.ucl.ac.uk/spm/software/spm12, ac-
cessed on 17 November 2021) and Data Processing Assistant for Resting-State Functional
MR Imaging (DPARSF) [22] toolbox and Resting-state fMRI Data Analysis Toolkit (REST;
http://restfmri.net, accessed on 17 November 2021) [23] Firstly, 10 volumes were rejected
for each scanned image to allow dynamic equilibrium of magnetization in each subjects.
Every slice was time-corrected by resampling the slice to eliminate the time variation.
Thereafter, we took a middle slice as a reference slice and carried out the realignment
procedure; none of the participants were excluded based on the criteria with head motion
limited to less than 2 mm or 20. The co-registration of individual mean functional MRI
with structural image was linearly performed, and then Gray matter (GM), cerebrospinal
fluid (CSF), and white matter (WM) were obtained from the segmentation of transformed
images. Afterward, each fMRI images were normalized to Montreal Neurological Institutes
(MNI) space and resampled to 3 × 3 × 3 mm3. FWHM linear and Gaussian kernel were im-
plemented for spatial smoothing process. Finally, low frequency signals were categorized
into slow-4 (0.027–0.08 Hz), slow-5 (0.01–0.027 Hz), and full-band (0.01–0.08 Hz).

2.4. Features Selection

The prime objective of features selection is to find out a few important features from
the features set that boost the diagnostic performance [24]. The number of features per
subject is quite large in comparison to the number of patients, as in the neuroimaging
study, a phenomenon known as the curse of dimensionality. Furthermore, dealing with
many features might be problematic because of the computational limitations of dealing
with high-dimensional data, which can lead to overfitting. Feature selection is a step that
comes before the classification problem and helps to minimize the dimensionality of a
feature by choosing the right features and ignoring the wrong ones. This technique reduces
the computing time for the training and testing datasets, speeding up the classification
process and improving classification accuracy. In this framework, we proposed a Sequential
Features Selection (SFS) approach [25]. SFS technique relied on the scan scheme, which
begins from an empty set of feature S and repeatedly adds features selected by some
estimation method that boost the classification performance by minimizing the Mean
Square Error (MSE) [26,27]. Sequential feature selection algorithms are basically wrapper
techniques that successively add and delete features from a dataset. In a proper technique,
the algorithm picks different features from a collection of features and assesses them for

http://www.fil.ion.ucl.ac.uk/spm/software/spm12
http://restfmri.net
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model iteration, eliminating and improving the number of features until the model achieves
optimal performance and outcomes. In SFS, variant features are gradually added to an
empty set of features until the criteria is not reduced by the inclusion of more features.
Mathematically, the data are input into the following Algorithm 1:

Algorithm 1: SFS

Input : R = {r1, r2, . . . , rn}
Then, the output will be:

Output : Sk =
{

sj

∣∣∣j = 1, 2, . . . , k; sj ∈ R
}

Where k = (0, 1, 2, . . . , n)
Where the selected features are k and k < n
In the initialization S is a null vector and k = 0 (where k is the size of the subset).
In the termination, the size is k = p where p is the number of desired features.

2.5. SVM Classifier

As a supervised learning technique, SVM [28] divides the classification group by
finding the best hyperplane. By training data, SVM is trained in a given features space.
Thereafter, that test dataset is classified according to its arrangement in the n-dimensional
vector field. SVM has been a practice in numerous neuroimaging fields [29,30] and is
recognized as one of the highly robust machine learning tools in the area of neuroscience.
Mathematically, in a 2D field, a linearly separable features vector can be separated by a
line. A line equation is defined by y = ax + b. By replacing x with x1 and y with x2, the
equation will become a(x1 − x2) + b = 0. If we stipulate X = (x1, x2) and w = (a− 1),
we obtain wx + b = 0, which gives the hyperplane equation. Hyperplane equation with
linearly separable output has the following form as in Equation (1):

f (y) = zTφ(y) + b (1)

where y represents input data, zT represent a hyperplane, similarly, and φ(y) represents a
function that map vector y into a high dimension. The elements z and b are appropriately
scaled by the equal value, and the selected hyperplane in Equation (1) remains stable.
Furthermore, hyperplane can make an exclusive pair of (z, b), which is represented by the
below formulation:

min
∣∣∣zTφ(yi) + b

∣∣∣ = 1, i = N, (2)

where y1, y2, . . . , yN represent the training vector. The hyperplane in Equation (2) is recog-
nized as the canonical hyperplanes. Given hyperplanes are represented by Equation (3)
as below:

zTφ(x) + b = 0, which is same as zTφ(y) = 0 (which has more dimension) (3)

For a feature x that does not fit the obtained hyperplane, the equation below repre-
sents it [28]:

zTφ(x) + b = ±s‖z‖ (4)

where s is the measure of vector x to the defined hyperplane. Therefore, the output
vector f (y) from SVM is exactly equivalent to the distance s(x) and z vector for obtained
hyperplane. Furthermore, in this work, we have utilized the kernel-support vector method,
which is good to deal with the non-linear issue with the help of the linear classification
method and which engages in swapping a linearly un-classifiable vector into a linearly
classifiable one. The concept inside this idea is a linearly un-classifiable vector that might
be linearly classifiable in high dimensions. The kernel is mathematically defined as:

K(x, y) = (x, y)d (5)
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where x and y represent features in the input, and d represents the kernel element. Gaussian
radial bias functions are represented by:

K(x, y) = exp

(
−‖x− y‖2

2σ2

)
(6)

where x and y represent two samples input, which are vectors in input ‖x− y‖2 and can be
represented as Euclidean distance in square form among two features, representing kernel
elements. Sigmoid functions derived from the neural networks were used for activation, the
bipolar sigmoid function is utilized often for an artificial neuron, which is represented by:

K(x, y) = tanh(αxTy + c) (7)

where x and y represent features in the input and represent the kernel elements.
We employed an RBF-kernel SVM from the Scikit-learn toolkit for our research [31].

To conduct all calculations, the Scikit-learn package uses LIBSVM [32]. The kernel-based
SVM’s hyperparameters must be tuned to determine how much maximum performance
can be improved by tuning it. This is essential since they have direct influence on the
behavior of the training algorithm and have a major impact on the model’s performance.
Furthermore, a well-chosen hyperparameter can make an algorithm run smoothly. Finding
the proper values for the hyperparameters c and γ in the training set is quite challenging,
and their values have an influence on the classification performance. Moreover, we know
that the parameter c trades off training sample misclassification vs. decision surface
simplicity; a small c value makes the decision surface flat, whereas a large c value seeks to
accurately classify all training samples. Furthermore, a γ value indicates how powerful
a single training sample is. The bigger γ is, the closer it must be to other samples to be
influenced. To obtain appropriate hyperparameter values for the regularization constant c
and γ, we employed the cross-validation approach. In a particular situation, we cannot
know what the optimum value for a model hyperparameter is. There will be no overfitting
or underfitting if the hyperparameters are set correctly. On the training set, we employed a
grid-search approach to discover the ideal hyperparameter values for a kernel-based SVM.
The grid search was conducted in the c =1 to 9 and γ = 1 × 10−4 to 1 range. Leave-one-out
cross-validation (LOOCV) was performed for N = 70 times. At c = 1 and γ = 0.01, the
optimum validation accuracy was achieved. Finally, the trained classifier was evaluated
using the held-out sample.

2.6. Evaluation Matrices

This study framework used nested LOOCV along with the SVM classifier to maxi-
mize the diagnostic accuracy for the Alzheimer’s classification. The accuracy, specificity,
sensitivity, and receiver operating characteristic (ROC) curves were calculated to validate
the classification performance. Receiver Operating Characteristics (ROC) were obtained
by plotting the true positive rate versus false-positive rate and measured the diagnostic
potentiality of a binary classifier. The Area Under the Curve (AUC) calculated by ROC is
proportional to the performance of the classifier.

LOOCV is a popular data shuffling and resampling technique for evaluating the
generalization idea for a design of the predictive model and preventing the under-or
overfitting of the classifiers. LOOCV is widely utilized in predictive modalities such
as classification problems. In such types of issues, a framework is fitted with a known
dataset, which is known as the training set, and unknown features set using the model
is evaluated as the test set. The purpose is to create testing sample for the model in the
training stage and then demonstrate adaptation process of various unknown data sets.
Each phase of the LOOCV engages the partition of the data samples into independent data
sets, followed by an analysis of an individual sample. Subsequently, the study is validated
on new independent subsets called testing samples. To lessen variability, numerous phases
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of LOOCV are carried out by several partitions, after which an average of the results is
considered. LOOCV is a robust practice for evaluating model performance. For cross-
validation purposes, we partitioned the dataset into three subgroups. The test data are
used to evaluate model performance, while the other two training and validation sets are
used to assess model performance by training against new data. We randomly divided the
entire dataset into a 70:30 ratio after data preparation, with 70% utilized for training and
30% used for testing. This will allow the algorithm to generate fresh combinations each
time the model is run, allowing for the most accurate prediction. In this study, Accuracy
(ACC), Specificity (SPE), Sensitivity (SEN), and ROC curves were used for performance
validation of the classifiers via Area Under Curve (AUC). In this method, we referred to
HC as negative samples, patients with AD as positive samples, TN represents the number
of negative sample sets that are correctly classified, total positive (TP) denotes the number
of positive samples correctly categorized, false positive (FP) denotes the portion of the
negative dataset classified as positive, and false-negative (FN) denotes the number of
positive datasets classified as negative samples. The Accuracy, Specificity, Sensitivity, and
area under the curve are defined as follows:

Accuracy =
TP + TN

TP + FP + FN + TN
(8)

Speci f icity =
TN

TN + FP
(9)

Sensitivity =
TP

TP + FN
(10)

2.7. Higher-Order Dynamic Functional Network Construction

Under this section, we first present a conventional dynamic networks connectivity
construction process and then highlight the construction of high-order dynamic networks
of the suggested method. We constructed the conventional dynamic networks connectivity
(DCN) based on the mean time series of ROIs using non-overlapping and successive time
windows. The Pearson Correlation Coefficient (PCC) is widely used conventional brain con-
nectivity construction method among a pair of brain parts. Especially for individual subject,
every ROI’s time series were segmented equally into non-overlapping and successive time
windows, as illustrated in Figure 2. This is represented by the following equation:

T = (m− K)/s + 1 (11)

where s represents the transitional step size window, and K represents the length of a sliding
window. Let xi(t)(1 ≤ t ≤ T) represent the sub-section of the ith brain area within the tth

window. Afterward, a functional network Ct(t = 1, . . . , m) is constructed by calculating
the PCC among brain ROIs time series at the tth window, according to Equation (12):

Ct(i, j) = corr
(

xt
i , xt

j

)
(12)

where corr represent the co-relation among different time series. Here, xt
i and xt

j represents

sub-division of the BOLD frequency of the ith and jth ROIs within the time window. Ac-
cording to the definition in Equation (12), Ct(i, j) described the lower-order connection
between various regions. Then, for time window m, a set of networks’ connectivity can
be calculated as C =

{
C1, C2, . . . , Cm}, which could implicitly describe the dynamic of

lower-order network connectivity.
Higher-order dynamic networks are constructed based on the lower-order connectivity

networks at the time window, we described to create a higher-order dynamic networks
connectivity by measuring the correlation among functional brain architectures of the brain
region r and q as below:
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Ht(r, q) = corr(Ct(r, :), Ct(q, :)) (13)

where Ct(r, :) =
[
Ct(r, 1), (r, 2), . . . , Ct(r, R)

]
is a brain network architecture of region r, asso-

ciated to the rth row elements in Ct, representing the correlation among the rth(r = r, . . . , R)
brain parts with the entire brain area, and R denotes the number of brain regions. According
to Equation (2), Ht(r, q) describes the higher-order co-relation among brain parts r and q,
regarding that it is measured depending on connectivity structure of the r and q brain parts.
Therefore, this kind of connectivity structure suggests a relationship between an individual
ROI with all the other ROIs, and our construction Ht(r, q) can explicitly preserve the higher-
order correlation between brain ROIs. For given time window m, we can calculate a set of
higher-order dynamic functional brain networks, i.e., H =

{
H1, H2, H3, · · · , Hm}, char-

acterizing the dynamics of high-order functional networks. Figure 3 shows the calculation
of higher-order dynamic functional networks.
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3. Results

Without special threshold parameters, the dynamic functional networks were con-
structed for four frequency bands (full-band, slow-5, slow-4, and all bands). After obtaining
the higher-order dynamic networks’ connectivity, we used the local weight clustering
coefficient technique to obtain feature sets of distinctive brain functional networks. This
technique evaluates the individual node clustering in the weighted functional networks. In
comparison to local clustering coefficient parameters, it can expose the brain connectivity
in a highly efficient way, and the network weight significance is calculated in the measure-
ment stage. After establishing FC networks, we extract features from each network using
the weighted-graph local clustering coefficients [33,34]. For each vertex in a network, the
weighted-graph local clustering coefficient is produced to quantify the likelihood that the
vertex’s neighbors are also linked to each other. This technique evaluates the “cliques” of
individual nodes via weighted networks. A clique is a graph-theoretic notion that describes
the local topology of a network for each node. This measure is commonly utilized in the di-
agnosis of Alzheimer’s disease [35]. In particular, it is made up of 116 clustering coefficients,
one for each parcellated ROI. We concatenate the features from all of the nodes to form
the features vector. The most significant characteristics are then selected, while redundant
features are discarded, using a sequential features selection approach. SFS can achieve high
accuracy while removing redundant features, and only the most discriminative features
were chosen.
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In this part, we use high-order functional network characteristics extracted from three
frequency bands of rs-fMRI to undertake a classification investigation. At all frequency
bands, the SVM classifier with SFS techniques had the greatest performance accuracy. The
specificity, sensitivity (Table 2), and area under the curve (AUC) displayed in Figure 4 were
calculated to evaluate the performance of the SVM classifier using SFS features selection
techniques. We set up 10 step sizes, s = 1, 2, ..., 10, and a sliding window W = [30, 40, ..., 100]
in our experiment to build lower-order dynamic functional connections and develop higher-
order functional connectivity based on lower-order functional connectivity. Figure 4 depicts
the influence of step size in sliding window approaches on classification accuracy when
the window length is set to 60. Table 2 shows our classification procedure in high-order
functional connectivity networks with SVM classifiers, which achieved the best results for
AD vs. HC classification, with 94.10 percent accuracy, 90.95 percent sensitivity, 91.01 percent
specificity, and 95.75 percent AUC by utilizing high-order dynamic network features at
all-band. Our technique achieved 87.14 percent accuracy, 91.05 percent sensitivity, 86.91
percent specificity, and 94.77 percent AUC for AD vs. MCI classification. Similarly, we
achieved 85.85 percent accuracy, 93.89 percent sensitivity, 90.01 percent specificity, and
90.75 percent accuracy for HC vs. MCI diagnosis. The whole band and the slow-5 frequency
bands outperformed the slow-4 frequency band for all three binary classification groups.

Table 2. Classification Results.

Group Frequency Band Classifiers AUC ACC SEN SPE

AD vs. HC

Full band

SVM

68.10 64.33 65.45 71.15

Slow-4 71.74 60.50 67.13 55.12

Slow-5 80.77 89.30 92.41 88.90

All 95.74 94.10 90.95 96.75

AD vs. MCI

Full band

SVM

63.45 61.13 68.17 61.30

Slow-4 58.70 55.80 65.31 59.23

Slow-5 85.57 84.40 88.71 91.01

All 94.77 87.14 91.05 86.91

HC vs. MCI

Full band

SVM

74.57 63.35 81.09 74.50

Slow-4 67.85 57.17 68.54 71.20

Slow-5 88.90 83.71 90.03 85.33

All 90.75 85.85 93.89 90.01
AD = Alzheimer’s disease; HC = Healthy Control; MCI = Mild Cognitive Impairment; SVM = Support Vector
Machine; AUC = Area Under Curve, ACC = Accuracy; SEN = Sensitivity; SPE = Specificity.

Moreover, we also analyzed the effect of step size and window length in our classifica-
tion accuracy. T = (m −W)/s + 1 is the number of sliding windows; as can be seen, step
size and window length have a significant impact on classification accuracy. At the same
time, the number of low-order dynamic functional sub-networks will also be different. As
a result, the duration of the sliding window and the transitional step size have an impact
on the infrastructure of low-order dynamic functional networks, which, in turn, has an
impact on the structure of high-order dynamic functional networks. As seen in Figure 4,
this might lead to differences in diagnostic accuracy. The choice of an adequate window
length and step size is a challenge since the window length must be short enough to capture
short-term oscillations while being long enough to allow for reliable functional connection
estimates [36]. As a result, we maximize the performance of each network by altering
the step sizes while maintaining a fixed window length. Figure 4 shows the variation of
accuracy with step size for high-order functional networks. We can see that for AD vs. HC
classification, full band, slow-4, and slow-5 bands achieved the highest accuracies at s = 6,
s = 4, and s = 5, respectively. Similarly, for AD vs. MCI classification, full band, slow-4,
and slow-5 bands achieved the best accuracy scores at s = 3, s = 5, and s = 7, respectively.
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Likewise for HC vs. MCI classification, full band, slow-4, and slow-5 bands reached the
best accuracies at s = 8, s = 7, and s = 3, respectively. From the above results, we can say
that choosing the window length and step size largely influence the performance accuracy.
In addition, we notice that the careful selection of step size is important while constructing
the high order networks. We carefully choose the functional networks with the greatest
classification accuracy, as shown in Figure 5, since all of the networks we have built have
good classification accuracy.
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4. Discussion

In this paper, we construct and implement the framework based on high order dynamic
functional networks to diagnose the Alzheimer’s disease and its prodromal stage known as
MCI utilizing different frequency band. Although the full band and slow-4 band contains
important brain network features, the highest accuracy was obtained in the slow-5 band
with 89.30% accuracy and 80.77 of AUC for AD/HC classification. Similarly, we obtained
the highest accuracy in the slow-5 band for AD/MCI and HC/MCI with 84.40% accuracy
and 85.57 of AUC and 83.71% accuracy with 88.90% AUC, respectively. From the results in
Table 2 and Figure 6, we can say there is no significance performance difference between
the full and slow-4 bands as compared to the slow-5 band with SFS features selection
method. These findings showed that a low frequency acquired using division frequency
would produce a more accurate categorization result. Furthermore, we combined all
the networks features obtained from different frequency band and achieved the batter
classification accuracy as compared to the individual frequency band with SFS features
selection method as shown in Table 2. In brief, this study provides a valuable insight into
the diagnosis of Alzheimer’s disease and revealed that high-order dynamic functional
networks measures are potential predictor at different frequency band and while combining
all together. Figure 7 presents the topmost discriminative features from combination of all
frequency band, while each link corresponds to a connectional feature. In agreement with
previous studies [37,38] connection abnormalities are significantly affected on temporal
lobe, including mid-temporal, fusiform, inferior temporal, and parietal-occipital regions
for the AD/HC group. The networks’ connectivity shows a similar pattern for other
two groups AD/MCI and HC/MCI as shown in Figure 6. In conclusion, the highly
sensitive brain area discovered that the characteristics picked in the integrated entire band
utilizing the SFS algorithm are more distinct. Furthermore, certain brain regions include
more illness information with very sensitive characteristics, allowing for more accurate
categorization. The importance of temporal regions in Alzheimer’s disease diagnosis is
generally acknowledged. We recommended that researchers in other areas investigate this
function in Alzheimer’s disease detection.

Moreover, existing studies have analyzed neuroimaging methods for the discrimina-
tive classification of AD and MCI. However, it is hard to perform a direct comparison with
existing state-of-art method due to a majority of the literature utilizing different datasets
and classification methods, which both significantly affect the performance accuracy. From
the previous literatures’ the binary classification in combination with different feature
selections with different classifiers for AD and MCI classification, the accuracies of different
ranges are reported, as shown in Table 3. From Table 3, the classification results achieved in
the current study using a higher-order dynamic networks at different frequency band with
SFS features selection are superior to those obtained using the other features selection and
machine learning models, including those obtained in prior investigations [39,40]. Most
prior brain network analyses utilized the Gaussian and regression models [39,40], and
only Khazaee et al. utilized the Fischer-score-based feature selection along with SVM and
KNN classifiers. After applying the Fischer score and SVM, they obtained an accuracy of
90% for SVM (RBF and polynomial), but they reported an accuracy of 100% for the linear
kernel. Similarly, for the KNN classifier, they reported an accuracy of 87.5% with feature
selection. In comparison with these state-of-art methods, we can say that our proposed
SFS feature selection with SVM classifier in higher-order dynamic functional networks
shows a great potentiality towards the diagnosis of Alzheimer’s disease. In summary, a
very sensitive characteristic was revealed in the integrated all band features selected using
the SFS method, suggesting that the information contained in the all band is more distinct.
Furthermore, certain brain areas contain more disease information with extremely sensitive
characteristics, resulting in more accurate classification. The temporal lobe’s importance in
AD disorder has long been acknowledged. We advised that other brain areas, such as the
Left Heschl gyrus, the Right caudate nucleus, and so on, should be investigated further to
learn more about their significance in AD.
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Table 3. Comparison with existing state-of-art method.

Reference Methods No of Subjects Group ACC SEN SPE

Challis et al. [39]
Covariance, 82 ROIs, logistic regression,

Bayesian Gaussian Process
20 HC/50

MCI/27 AD
AD vs. MCI 0.8 0.7 0.9
MCI vs. NC 0.75 1.00 0.5

de Vos et al. [40]
Amplitude of low frequency fluctuation

173 HC/27 AD
0.76 0.71 0.82

Sparse partial correlation FCNs, 70 ROIs 0.75 0.79 0.71
Sparse partial correlation
dynamic FCNs, 70 ROIs 0.78 0.83 0.73

khazaee et al. [10] graph measure 20 AD/20 HC AD vs. HC 90.00

Our method HoD-FCN (Full band, slow-4, slow-5) 35 HC/61
MCI/35 AD

AD vs. HC 94.1 90.95 96.75
AD vs. MCI 87.14 91.05 86.91
HC vs. MCI 85.85 93.89 90.01

5. Conclusions

In this article, first, we examined high-order dynamic functional networks measure at
different frequency band using rs-fMRI obtained by the ADNI core laboratory biomarkers.
The highest result was reached by evaluating and measuring these networks at different
frequency bands as a feature’s matrix and translating it into feature vectors for classifi-
cation using SFS feature selection and SVM classifier. From the obtained results, we can
say that a combination of all band high-order dynamic networks produced the highest
accuracy for AD and MCI diagnosis when compared to single frequency bands. We found
that a combination of four frequency band high-order dynamic functional brain network
properties has the potential to aid in the early detection of Alzheimer’s disease. More
crucially, we employed the sequential features selection (SFS) technique to find the best
features set for network feature vectors, which aids in classification accuracy. Finally, to
obtain the classification result, we fed the SFS features into an SVM classifier with nested
LOOCV cross-validation. We also reported the classification performance in different
evaluation matrices, demonstrating the efficacy of the presented method in improving
classification performance.
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Despite the fact that our study intended to offer a new viewpoint on the brain network
processes linked with early-stage AD detection, there are some limitations that need to
be addressed in future research. We plan to apply a feature-level fusion technique to
find relevant discriminative brain areas for AD classification. Second, the sample size
restricts our research. We plan to incorporate the large number of data set including
longitudinal dataset, increase the multi-network, multimodal dataset, and other network
analysis approaches for rs-fMRI, ensemble approach, and other feature selection methods
to improve the method’s performance.
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