
����������
�������

Citation: Syed Shahul Hameed, A.S.;

Rajagopalan, N. SPGD: Search Party

Gradient Descent Algorithm,

a Simple Gradient-Based Parallel

Algorithm for Bound-Constrained

Optimization. Mathematics 2022, 10,

800. https://doi.org/10.3390/

math10050800

Academic Editor: Alfredo Milani

Received: 25 January 2022

Accepted: 26 February 2022

Published: 2 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

SPGD: Search Party Gradient Descent Algorithm,
a Simple Gradient-Based Parallel Algorithm for
Bound-Constrained Optimization
A. S. Syed Shahul Hameed * and Narendran Rajagopalan

Department of Computer Science and Engineering, National Institute of Technology Puducherry,
Karaikal 609609, India; narendran@nitpy.ac.in
* Correspondence: shahulshan81@gmail.com

Abstract: Nature-inspired metaheuristic algorithms remain a strong trend in optimization. Human-
inspired optimization algorithms should be more intuitive and relatable. This paper proposes a novel
optimization algorithm inspired by a human search party. We hypothesize the behavioral model
of a search party searching for a treasure. Motivated by the search party’s behavior, we abstract
the “Divide, Conquer, Assemble” (DCA) approach. The DCA approach allows us to parallelize the
traditional gradient descent algorithm in a strikingly simple manner. Essentially, multiple gradient
descent instances with different learning rates are run parallelly, periodically sharing information.
We call it the search party gradient descent (SPGD) algorithm. Experiments performed on a diverse
set of classical benchmark functions show that our algorithm is good at optimizing. We believe
our algorithm’s apparent lack of complexity will equip researchers to solve problems efficiently.
We compare the proposed algorithm with SciPy’s optimize library and it is found to be competent
with it.

Keywords: optimization; gradient-based algorithm; human-inspired algorithm; group dynamics;
metaheuristics; multi-armed bandits

MSC: 68W50; 90C26

1. Introduction

Optimization is an evergreen field of engineering. Domains like marketing, economics,
science, and finance are full of optimization problems (OPs). An arsenal of powerful algo-
rithms is available for optimization, but the search for a better algorithm seems never to
end. There are two main types of optimization algorithms: exact and heuristic/stochastic
methods [1]. Stochastic methods are preferred over exact methods as they are approxi-
mate methods and can provide near-optimal solutions with less computational effort [1].
In real-world problems like machine learning, it is sufficient to have near-optimal solutions
to achieve desired results, and avoid overfitting. In this paper, we consider OPs subject to
simple bounds on the variables. The bound-constrained optimization (BCO) problem is
to minimize a single objective function of the D dimension subjected to simple bounds on
the variables [2]:

Min f
(
X
)

(1)

where, f : RD → R is a real valued function; X = (x1, x2, . . . , xd) € RD is a D dimensional
vector such that,

LB ≤ X ≤ UB (2)

Vectors LB and UB represent lower and upper bound on X [2].
Many novel approaches are being introduced in the literature for optimization. Nature-

inspired algorithms, especially evolutionary algorithms, are popular stochastic optimization

Mathematics 2022, 10, 800. https://doi.org/10.3390/math10050800 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10050800
https://doi.org/10.3390/math10050800
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-8828-2919
https://doi.org/10.3390/math10050800
https://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/10/5/800?type=check_update&version=1

Mathematics 2022, 10, 800 2 of 24

methods. Most of these algorithms are complex and are often used by researchers as black-
box optimizers ignoring their internal working [3]. A simple and robust optimization
algorithm, which is easy to understand, can serve as a great quick start for researchers to
tackle OPs with confidence.

Genetic algorithms (GA), particle swarm optimization (PSO), and differential evolution
are well-established evolutionary algorithms. Evolutionary algorithms search from multiple
points and hence are inherently parallel [1]. Several modifications and hybridization to
the evolutionary algorithms have also been reported [4]. Gradient-based PSO is one such
hybrid optimization algorithm that combines stochastic PSO for search diversification and
deterministic gradient descent (GD) to intensify the search. The authors of [5] present a
hybridization approach that combines deterministic local search optimization methods
like Nelder-mead with simulated annealing, a metaheuristic global OP algorithm. The
gradient-based genetic algorithm [1] is another similar hybrid algorithm that uses GD for
exploitation and GA for exploration, specifically for constrained optimization. Since GD is
highly efficient in local optimization, it is hybridized commonly with a global optimization
algorithm (generally gradient-free), and they are designed to complement each other. Our
proposed algorithm also uses GD for exploitation and an exploration scheme based on the
decaying epsilon greedy strategy from the multi-armed bandit (MAB) problem [6]. We run
a fixed number of parallel GD instances from multiple starting points in the hope of finding
the global optimum. After a fixed number of iterations, new starting points are generated
strategically based on past experiences to push the instances conducive to a global optima
basin. Nevertheless, SPGD disseminates similarity to the GA approach, which is discussed
briefly in Section 2.4.

Nature-inspired algorithms for optimization are numerous. The authors in [7,8]
present an exhaustive list of nature-inspired optimization algorithms. Ant colony optimiza-
tion, artificial fish swarm algorithm, artificial bee colony algorithm, monkey algorithm, and
krill herd algorithm are some of the many (See Table 1 for a brief discussion on several
nature-inspired algorithms). Most of these algorithms are inspired by the foraging behavior
of animals. Animals, when searching for foods and resources, depict a systematic and
strategic approach towards the search. Animals do not possess human-level intelligence,
but they depict complex swarm intelligence when searching for food resources [7]. Strategic
cooperation between the animals and their capability to adapt the search methodology
concerning the change in the environment has paved the way for various ideas to solve
complex OPs [7].

Table 1. A brief discussion on several nature-inspired OP algorithms.

Nature-Inspired Algorithm Comments

Ant Colony Optimization (ACO) [9]
It is inspired by the pheromone-laying phenomenon of ants. Artificial ants simulate the
pheromone behavior by recording position information and using it in the subsequent

iterations to guide to the optimum possibly.

Artificial Fish Swarm Optimization
(AFSO) [10]

The schooling behavior of fishes inspires AFSO, particularly their swimming, preying,
following, and random behaviors. These movements serve as guidance to explore the

function surface to be optimized.

Moth-Flame Optimization Algorithm
(MFO) [11]

Moths can navigate in a straight line for long distances by maintaining a fixed angle
with the moon as the reference. Artificial lights can deceive the moths into entering into

a deadly spiral path. This navigation behavior is simulated to perform optimization.

Monkey Algorithm (MA) [12]
The movement pattern of monkeys inspires the MA. Climbing, watch-jump, and the
somersault process are the three movement patterns employed to search through the

function surface. It is suitable for higher-dimensional OP problems.

Grey Wolf Optimizer (GWO) [13]
The GWO mimics grey wolves’ hunting strategy, which involves search, encircling, and
finally hunting. Alpha, beta, delta, and omega wolves are the four types that dictate the
leadership ladder and are simulated to navigate the search space to find the optimum.

Mathematics 2022, 10, 800 3 of 24

Table 1. Cont.

Nature-Inspired Algorithm Comments

Bat Algorithm (BA) [14]
The BA is based on the echolocation capabilities of microbats. Virtual bats move
through the objective function space depending on their velocity, frequency, and

loudness, searching for their prey/optimum.

Bacterial Foraging Algorithm (BFA) [15] The way in which bacterium E. coli searches for nutrients is termed chemotaxis. The BFA
simulates this chemotaxis with virtual bacterium moving in the search space.

Whale Optimization Algorithm
(WOA) [16]

Humpback whales hunt their prey in a spiral motion called the bubble-net feeding
strategy. The WOA simulates the movement pattern depicted by the whales during the

bubble-net strategy to search through the objective function surface.

Artificial Bee Colony Optimization
(ABC) [17]

In ABC, possible solutions are represented as food sources, and two types of artificial
bees search for the food source. Employed bees perform exploitation while scout bees

explore new food sources. Information exchange happens through the bee
dancing phenomena.

Krill-Herd Optimization Algorithm
(KH) [18]

Krill is a marine animal whose foraging behavior inspired the KH algorithm. Individual
krill and their foraging activity influence the krill-herd movement. Further random

diffusion happens, which helps in exploration.

Teaching Learning Based Optimization
(TLBO) [19]

TLBO is a human-inspired two-phase OP algorithm. This algorithm does not require
algorithm-specific hyperparameters. Common hyperparameters like the number of

generations and population size are alone needed.

League Championship Algorithm
(LCA) [20]

Artificial human teams play a league of matches in the LCA for several iterations. Team
formation represents a solution, and team strength represents fitness (objective function

value). The formation evolves in each iteration to attain peak fitness.

Water Cycle Algorithm (WCA) [21]

The WCA is inspired by the natural phenomena of the water cycle. Rivers and streams
flow downhill to reach the sea. The sea is the most downhill location and hence

represents the optimum. The water flow serves as the inspiration to guide the search in
the objective function surface.

Social Spider Optimization (SSO) [22]
SSO mimics the cooperative behavior depicted by social spiders to search for the

optimum. Male and female spiders exhibit different collective behaviors. SSO avoids
premature convergence and escapes the local optimum efficiently.

Cuckoo Search (CS) [23]

The breeding behavior of cuckoo birds and the Levy flight behavior of birds, in general,
serve as the inspiration for this algorithm. The cuckoo lays eggs. Surviving eggs become

mature cuckoos and move to a better location to lay eggs. This migration pattern is
simulated to find the optimum of the objective function.

In this paper, rather than relying on animals for inspiration, we choose humans.
Intuitively, an algorithm based on human behavior should be easier to comprehend. Fun-
damentally, SPGD is a population-based optimization algorithm, where the population is
interpreted as a group of humans searching for a treasure. According to [8], the number of
human-inspired algorithms is very few (a mere 6%) than other cadres of nature-inspired
algorithms. Since humans occupy the pinnacle of the food pyramid, technically, drawing
ideas from human behavior should be advantageous. Be it through a team of players
playing a sport [20,24] or a group of students learning from a teacher [19], humans exhibit
cooperation and individual adaptability to achieve the goal. In this paper, we assume
a truly cooperative task where individuals prioritize the team’s goal rather than their
own performance [25,26]. This ensures collectivism [27,28]. In contrast, in a competitive
cooperative task, individuals try to outperform one another while trying to achieve the
overall goal. The true cooperation behavioral model fits the proposed SPGD algorithm.

Though humans are morphologically similar, they are cognitively different. This is not
the case with animals. There is not much difference between two monkeys in the monkey
algorithm [29] or between two wolves in the wolf pack algorithm [7]. However, every
human has a different set of skills and capabilities. This intrinsic difference in humans is
desired and is exploited synergistically by teams. The difference in human capabilities is
captured through the learning rate we set in our SPGD algorithm. In GD, the learning rate

Mathematics 2022, 10, 800 4 of 24

dictates how far we move in the direction of the steepest descent [30]. In SPGD, we run
multiple independent instances of GD with different learning rates. Multiple GD instances
simulate a group of people searching for the treasure at their own pace. Here, the learning
rate can logically be interpreted as the ability of a person to assess the surroundings and
how quickly he or she moves towards the treasure.

Hyperparameter tuning is a cumbersome, if not a tricky, process. Most of the optimiza-
tion algorithms have step size or learning rate as one of their primary hyperparameters. In
GD, the learning rate is the only hyperparameter. To quote the authors of [30], “Choosing a
proper learning rate can be difficult” in GD. Different approaches to set the learning rate
exists in the literature. Annealing, adaptive learning rates, and performing a grid search
are some of the approaches [30,31]. Sophisticated GD versions like ADAM, AdaGrad, and
Adadelta are efficient adaptive learning rate GD algorithms, which are quite complex and
often used as black-box optimizers [30]. The vanilla GD algorithm with constant learning
rate is simple and easy to understand [32] but is not preferred for real-world tasks. This is
because at a higher learning rate, it oscillates, while at a low learning rate, it takes too long
to converge [33]. To quote the authors of [31] “use of any fixed step length is problematic”.
So, getting a learning rate that is “Just Right” is difficult. However, by combining multiple
GD instances with different constant learning rates, SPGD makes the process of choosing
the appropriate learning rate transparent to the user while providing a competitive perfor-
mance for global optimization. Effectively, SPGD circumvents the problem of learning rate
tuning in a straightforward manner.

In SPGD, we assign learning rates systematically to the GD instances (uniformly
distributed from 1 to 0.001). At a given time, we have multiple GD instances searching the
function space from multiple points at their own pace. Though each of these instances is a
simple constant learning rate GD instance, together, they are more. The assemble phase
of the DCA enables the instances to share vital information to coordinate and search the
function space smartly, just like a human search party. Very large constant learning rates
that are generally not used (such as 0.9, 0.8...) have their role in SPGD; they explore the
function space aggressively and can quickly secure vital location information pointing
to the global minimum, which is later exploited by other GD instances. SPGD leverages
the foundational premises of group dynamics ”the whole is greater than the sum of its
parts” [27]. The hyperparameters of SPGD (such as the number of GD instances, the
number of GD steps to be taken) are straightforward and are not tricky to tune.

To summarize, we propose a novel parallel GD-based optimization algorithm named
SPGD, which is arguably simple, explained by the search party metaphor, and uses the
epsilon greedy strategy from MAB to balance exploration and exploitation. Additionally,
SPGD eliminates the need for tuning the learning rate. The remainder of this paper
is structured as follows: Section 2 presents the SPGD algorithm. Section 3 details the
experiments performed on the benchmark functions and presents a discussion of the
results. Section 4 concludes the paper.

GD—A Brief Recap

Before we proceed further, we will briefly review the vanilla GD algorithm underpin-
ning the proposed SPGD algorithm. GD is a popular term in the field of machine learning
(ML) [31]. GD and its flavors are widely used for training ML models. The constant learning
rate GD is one of the introductory OP algorithms that is easier to understand [32]. SPGD
uses this simple constant learning rate GD as its building block. GD is based on the theory
that the gradient of a function is oriented in the direction where the function value increases
maximally. For minimization, the negation of the gradient is utilized. For completeness,
we present the pseudocode of the vanilla GD algorithm here as Algorithm 1.

Mathematics 2022, 10, 800 5 of 24

Algorithm 1: Constant Learning Rate GD.

Input: Objective function f ; Learning rate α

Output: Vector X€RD representing the location of the minimum found.

Initialize X0€RD with random weights
t = 1
Repeat until convergence:

Xt+1 = Xt − α∗ 5X f (Xt) #5X f () Represents gradient of objective function.
t = t+1

Return X

To test convergence,
∣∣Xt+1 − Xt

∣∣ ≤ ε is the condition practically used (where, ε is
a small number). However, theoretically, the algorithm converges when Xt+1 = Xt.
This happens when5X f (Xt) = 0.

2. SPGD Algorithm

This section develops the behavioral model of a search party (SP) with the help of
group dynamics theory [27]. We use this model as the inspiration to build the SPGD
algorithm. According to the authors of [34], a search party means “a group of persons con-
ducting an organized search for someone or something lost or hidden”. Let us synthesize a
situation and analyze how an SP might plausibly coordinate to carry out a search operation.

Consider an imaginary island that houses a treasure (say a chest of gold coins) some-
where deep within it. Clearly, the search for the treasure is constrained within the geo-
graphical boundaries of the island (BCO). We assume that the gold coins are scattered
randomly in clusters over the island’s surface in various places. This assumption captures
the multi-modal aspect of the nonconvex optimization. There is a possibility of mislabeling
a cluster of scattered coins as the main treasure, which should not happen. The goal is
to find the chest of gold coins hidden among the scattered coins. The chest of gold coins
resembles the global minimum.

Given the above scenario, a team of people, namely the SP, enters the island to find
the treasure. Members of the SP uniformly agree to share the treasure equally among
them once it is found. This assumption helps achieve a sense of perceived unity and
maintains group cohesiveness [27,35]. Further, this assumption eliminates any form of
status differentiation within the members [27], which in turn might encourage participants
to make “sacrifices for the common good” [25]. The SP members randomly spread out
in different directions and start their search (multi-point parallel search). An individual
looks around his surroundings and moves towards the direction where he sees the most
scattered coins. This mimics GD. Each individual’s observational and physical capacity
differs (different learning rate). Some people might explore the island aggressively by
running from one group of scattered coins to another, hoping the other will be better. In
contrast, others might take slower steps while closely observing the surroundings. It is
intuitive to expect more scattered coins near the actual treasure stash, so effectively the
search is guided by the number of scattered coins an individual encounters.

The SP members are well-connected through some communication platform (say
cellular phones with GPS). Whenever an individual encounters a bigger cluster of coins, he
updates its location on the platform to share this information among his peers. Effectively,
the location of the current largest cluster of coins known is globally kept track of in the
platform. In SPGD, we keep track of the current best minima encountered so far in a
globally shared variable.

Since we assume a truly cooperative task from a particular person’s perspective, the
fact that other individuals are searching for the treasure creates a sense of “diffusion of
responsibility” [27]. This sense might stir a person to drop his current search track and
instead explore the search space from some other point. To quantify, say periodically (every
15 min approx.), some individuals get greedy/excited and decide to reposition themselves

Mathematics 2022, 10, 800 6 of 24

in the location where the largest cluster of scattered coins is found so far and start searching
from there. This intensifies the search.

In contrast, other individuals might drop their current trail of search out of boredom
and start afresh from another random location (exploration). Note that this new random
location may not be completely random (not drawn from a uniform distribution) and is
most likely to be around the vicinity of the known largest cluster of coins due to human
intuition [25] (triangular distribution captures this aspect, see Section 2.3). The remaining
portion of meticulous individuals continues their search from as, and where, they are.
Changing the current track of search out of boredom, though it looks irresponsible, never-
theless maintains the cooperative spirit of the group and in fact is necessary for diversifying
the search process.

The above behavioral model, we believe, captures the group dynamics of the search
party plausibly.

2.1. Divide, Conquer, Assemble, and Repeat (DCA)

From the SP’s behavioral model, we abstract an intelligent paradigm, which is the
fundamental driver of the SPGD algorithm. This section and the following subsections
provide a gradual transition from the notion of the SP searching for a treasure to a metaphor-
free OP algorithm (SPGD) searching for the global optimum.

The SP’s main activities can be summarized in three main steps:

1. The SP’s members search the island from different locations at their own pace.
This indicates a division of labor.

2. Every member of the SP does nothing but a meticulous search for the treasure.
3. Periodically, some SP members assemble at the most tempting location (as of now) of

the island and resume their search from there.

The three steps clearly correspond to divide, conquer, and assemble (DCA). The
assemble phase further contains two more actions, which are detailed in the following
subsection. The assemble phase essentially provides strategically better starting locations
for the subsequent iterations of the search.

The divide and conquer (D&C) paradigm [36] is a popular algorithmic technique in
which we repeatedly divide the problems into subproblems until the subproblems can be
trivially solved (conquer). Then, the sub solutions are combined to form the solution of the
main problem. The steps of D&C are quite different from those of the DCA approach. In
DCA, divide refers to the division of the workload among the multiple GD instances. It is
essentially parallelism. Conquer refers to the search for the treasure or the GD steps taken
by the instances. In SPGD, multiple gradient descent instances divide the search space
among themselves. They parallelly search (conquer) the function surface by taking steps in
the opposite direction of the gradient calculated at the current location.

2.2. Exploration vs. Exploitation

A good optimization algorithm should achieve the right balance between exploration
and exploitation. The authors of [37] explain the exploration vs. exploitation dilemma from
a human perspective. Ref. [38] conducts an interesting experiment in which human subjects
are made to do a treasure hunt in a virtual environment to study humans’ exploration vs.
exploitation trade-off amidst uncertainty. In optimization, exploitation directs the search
towards the nearest minima, whereas exploration/diversification helps to escape the local
minima. In our SPGD algorithm, during the assemble phase, a particular GD instance
may end up taking one of the three available actions. It may decide to reposition itself at
the location of the current best minima found so far and start searching in that proximity
(hoping the global optimum will be close). This action is pure exploitation. Secondly, an
instance might decide to drop its current search trails, jump to some other random location,
and restart its search; this is pure exploration. Lastly, an instance might decide to continue
its search as and where it is. This third action is “majorly” exploitative. Here, the GD
instance does not explore aggressively (by jumping to another random location); instead, it

Mathematics 2022, 10, 800 7 of 24

intensifies the search by remaining on its track. The assemble phase of SPGD essentially
balances exploration and exploitation.

Note that GD is naturally exploitation-oriented [1] (taking steps in the opposite di-
rection of the gradient calculated at the current location). The act of repositioning the GD
instances to some other location is the means adopted by SPGD to bring in exploration. The
SP behavioral metaphor suggests two kinds of repositioning. Repositioning to a random
new location is a genuine act of exploration (inspired by curiosity), and hence we call it
pure exploration. Whereas repositioning the GD instances greedily to the most tempting
location (current best minima) is a meta-exploitative action, and we call it pure exploitation.
The term pure exploitation/exploration intuitively helps differentiate the first two actions
from the assembly phase’s third action.

At a given time, for each GD instance, which action is to be taken out of the three
will actually determine the balance between exploration and exploitation. The multi-
armed bandit (MAB) is a classic problem that addresses the exploration vs. exploitation
dilemma in the reinforcement learning setting. In SPGD, each instance can be assumed to
be an independent agent facing a three-armed bandit problem. It makes sense to initially
explore the objective function surface and eventually exploit it when nearing the target,
i.e., the global optimum [39]. The decaying epsilon greedy strategy is perfect for achieving
this. Epsilon denotes the degree to which we choose to explore [39]. Starting with a
higher epsilon and decaying it linearly with iterations gives a graceful transition from all
exploration to exploitation. The exact implementation of the decaying epsilon strategy can
be found in the next subsection.

To recapitulate, the GD instances in the SPGD always exploit the gradient of the
function surface to direct the search towards the local optima. The actions of the assemble
phase (inspired by the SP metaphor) periodically and strategically reposition the GD
instances to possibly more advantageous locations to bring in the much-needed explorative
behavior. These actions help the otherwise completely exploitative GD instances escape
the local optima and possibly guide the search towards the global optimum.

2.3. Defining the Algorithm

This section defines the necessary mathematical terms to model the SP’s search opera-
tion as an algorithm for global optimization.

The island where the search takes place is assumed to be a Euclidean space denoted
by X. Its associated vector space is

X, X€RD (3)

where D is the dimension of the Euclidean space. ‘D’ is the number of parameters of the
objective function that needs to be optimized.

The position of the ith member of SP is denoted by the vector

Xi = (xi1, xi2, . . . , xiD) (4)

where xij is the location of the ith member along the jth coordinate axes.
The island has well-defined geographical boundaries. The vectors

LB = (l1, l2, . . . , ld)€RD and UB = (u1, u2, . . . , ud)€RD (5)

are the lower bound and upper bound vectors, respectively, which define the boundary of
the island along each dimension. The boundary of the ith coordinate axes is given by the
ordered pair (li, ui), where li is the lower extreme and ui is the upper extreme of the search
space along the ith dimension. Effectively, the vectors LB and UB define the D-dimensional
hyper region within which the search for the global minima should take place.

Let f
(
X
)

represent the concentration of scattered coins at a particular location X.

f
(
X
)
= −

(
Number o f scattered coins f ound at X

)
(6)

Mathematics 2022, 10, 800 8 of 24

The negation is required since we deal with function minimization (this can be trivially
converted to a maximization problem if required). The lower the magnitude of f

(
X
)
, the

higher the number of scattered coins found at X. The goal is to find the location where
f
(
X
)

is the lowest, i.e., the location of the treasure chest (global minima). If we denote the
treasure chest location with:

X∗ subject to LB ≤ X∗ ≤ UB (7)

then X∗ is the parametric solution to our global optimization problem.
With this background, we now present the SPGD algorithm.
In Algorithm 2, for action two and three, we use triangular distribution [40,41] for

generating new random locations instead of uniform distribution. After completing every
episode, we have a (monotonously) increasingly better estimate of the global minima
location. This incrementally better location estimate should be utilized to guide the search.
Unlike uniform distribution, in which sample points are uniformly generated between
the supplied extremes, triangular distribution generate more points around the mode.
According to [42], triangular distribution “is based on a knowledge of minimum, maximum
and an inspired guess as to the modal value.” In our case, the current best minima location
known serves as the “inspired guess” for generating the random starting locations for the
upcoming episode. Thus, by assigning LB, UB, and CBML as the minimum, maximum, and
modal values, respectively, for the triangular distribution, the new random starting points
are generated closer to the best minima found so far. Instead of traditional randomness, the
triangular distribution provides a “guided randomness,” which in some sense combines
both exploration and exploitation synergistically.

The Grad_Descent subroutine (Algorithm 3) in SPGD uses numerical differentia-
tion to calculate the gradient. In the #EXPLOITATION segment of the SPGD algorithm
(Algorithm 2), it can be seen that 10% of the time, we choose to explore. We find that adding
a small bit of randomness in the otherwise purely exploitative assemble phase gives good
performance in experimentation. Further, at the Ep/2th episode, we perform two events.
First, the Learning_Rate [N] array is reassigned with evenly spaced numbers between
0.1 to 0.0001. This reassignment smoothens the initial aggressiveness of the GD instances
and results in a concentrated fine-grained search for the remaining episodes. Next, we
update the LB and UB vector to focus the search circle. We use the previously obtained
CBML information for this update. Both these steps together intensify the search.

SPGD converges if for a certain number of episodes (NSEp) there is no improvement
in the value of CBML. We look at the CBML of each of the past NSEp episodes, and if the
standard deviation of those values is zero, then the algorithm converges. Zero standard
deviation means that CBML has not been updated for the past NSEp episodes. Since
we use the vanilla constant learning rate GD, the chances of getting stuck in the local
minima are very high. At the end of an episode, the assemble phase comes into play to
possibly pull out the GD instances stuck in the local minima. If the assemble phase does
not improve the CBML for a certain number of episodes (NSEp), then we converge the
algorithm, hoping that the search circle has pitched itself around the optimum and it has
found the global minima.

It is representative of stochastic metaheuristic OP algorithms to take a large number of
iterations to find the optimum, especially in the non-convex setting [5]. GD algorithms are
also specifically known for being heavily iterative [43]. SPGD, which is the combination
of both, takes [N × Ep(Converge) × Nip] number of iterations (where Ep(Converge) is the
particular episode at which SPGD converges). This can be parallelized into N instances
with [Ep(Converge) × Nip] iteration per instance. Note that the parallel GD instances have to
synchronize at the end of every episode to perform the operations of the assemble phase.

Mathematics 2022, 10, 800 9 of 24

Algorithm 2: SPGD.

Input: Objective Function, f ; Dimension of objective function, D;
Lower and Upper bound vectors, LB and UB; Number of GD Instances/Threads/Humans, N;
Number of Episodes, Ep; Number of Iterations per Episode, Nip;
Number of Stable Episodes, NSEp;

Output: Best X representing the location of the global optimum. i.e.: CBML (current best minima
location) and
f (CBML)

INIT:
Init_Loc[N] # Generate and store N random Locations X€RD such that LB ≤ X ≤ UB.
Learning_Rate[N] #An Array containing N evenly spaced numbers between the interval (0.9,0.001)
GLOBAL: CBML = Ø # At any point in time, the best location X encountered so far will be stored in this
variable.
Epsilon = 0.9
Decay = Epsilon/Ep
Minima_List = Ø #The CBML found in every episode will be stored in this list.

For i = 1:N
Create Thread_i.
Pass Grad_Descent (i, Init_Loc[i], Learning_Rate[i]) as the target function to Thread_i

For j = 1:Ep
Start all N threads parallelly #, Each thread will run Grad_Descent for Nip steps
Join all N threads # Wait for all the threads to complete execution

CToss = Generate a random number between (0,1) #Assemble Step Begins

#Exploration vs Exploitation Trade-off Based on MAB
IF (CToss ≤ Epsilon): #EXPLORATION

For Each Thread_k, k = 1:N
temp1 = Generate a random number between (0,1)
IF(temp1 > 0.5):

#ACTION 2, Pure Exploration
Init_Loc[k] = Triangular_Distribution(LB, CBML, UB)

ELSE:
#Action 3
Continue As and Where you are

ELSE: #EXPLOITATION
For Each Thread_k, k = 1: N

temp2 = Generate a random number between (0,1)
IF(temp2 > 0.1):

#ACTION 1 Pure Exploitation viz Assemble
Init_Loc[k] = CBML

ELSE:
#ACTION 2
Init_Loc[k] = Triangular_Distribution(LB, CBML, UB)

IF (j == Ep/2):
Learning_Rate[N] = Assign N evenly spaced numbers between 0.1 to 0.0001
For Each Dimension, d=1:D

Look through the Minima_List to find out the min and maximum
location (for each dimension) and overwrite LB[d] and UB[d] respectively

IF (There is no improvement for the past NSEp episodes):
Break and Return: CBML

Mathematics 2022, 10, 800 10 of 24

Minima_list.append(CBML)
Epsilon = Epsilon − Decay

Return: CBML

Algorithm 3: Grad_Descent (Thread_Id, Weight[i], Learning_rate[i]):

For i: = 1:Nip
Old_Weight = Weight
#5X f () Represents gradient of objective function.
Weight = Old_Weight − Learning_rate[Thread_Id] * 5X f (Old_Weight)

IF (Weight < LB OR Weight > UB): # If new weight is out of bounds
Weight = Generate a random Location (uniformly) X€RD such that LB ≤ X ≤ UB

IF (f (Weight) < f (CBML)):
CBML = Weight

END Grad_Descent

In summary, the SPGD algorithm runs multiple GD instances with different constant
learning rates. A global shared variable keeps track of the best minima encountered so
far. This information is bootstrapped to generate better random starting points for every
episode. At the end of each episode, the epsilon-greedy strategy comes into play, and
different GD instances stochastically end up taking one out of the three available actions.
The epsilon-greedy strategy ensures a good balance between exploration and exploitation,
ensuring a competitive optimization performance.

2.4. A GA Perspective to SPGD

With careful observation, it can be seen that SPGD has many traits of a classical genetic
algorithm. This section explores these similar traits. We do not aim to establish SPGD as a
full-fledged memetic algorithm. Rather, we demonstrate its resemblance to GA.

If a particular GD instance and its current location and learning rate can be inferred as
a chromosome, then the multiple GD instances together constitute the GA’s population.
The location or the weight vector (Xi) is a gene of the ith chromosome (i.e., the ith GD
instance). The objective function’s value f

(
Xi

)
, at a location where the ith chromosome is

currently positioned, can be taken as its fitness value.
If we define the mutation of our chromosome as changing its current location to

some other random location, then the explorative action 2 represents mutation. Action 2
alters/replaces the gene value X with a new random location vector. The assemble action
(action 1) is essentially taking the fittest chromosome’s gene (X), and this gene (best location
found so far) replaces the genes of other chromosomes participating in the assemble action.
This can be interpreted as a crossover operation, where the location gene of the fittest
chromosome is recombined with other chromosomes of different learning rates.

Typically, the genetic operators of GA-based global optimization algorithms are quite
involved. These genetic operators are carefully designed since they determine the perfor-
mance of the algorithm [1,44]. In our case, despite these similarities to GA, the actions of
SPGD should not be interpreted as dedicated genetic operators, as they were not designed
in that perspective. Further, SPGD is fundamentally not driven by the survival of the
fittest paradigm [45]. Instead, it is driven by collaboration and coordination between the
individuals. The information collected by each individual is shared strategically among
themselves at the end of every episode to guide the search smartly. However, the fact that
SPGD is similar to a classical paradigm like GA should strengthen the certainty of SPGD in
optimizing BCOs. The further implications of this similarity are that there is no need to
set algorithm-specific parameters like mutation rate, crossover rate, elitism, etc. Yet, we
virtually reap the benefits pertaining to those genetic operations without undergoing the
nuances of designing such complex genetic operators.

Mathematics 2022, 10, 800 11 of 24

3. Numerical Experiments

In this section, we test the proposed algorithm with classical benchmark functions. We
perform an empirical study to evaluate for which combination of algorithmic parameters
SPGD performs better in general. Then, we compare the SPGD algorithm with the state-of-
the-art global optimization algorithms from the SciPy library.

3.1. Empirical Analysis of SPGD Parameter Sensitivity

In order to see the effectiveness of an optimization algorithm, it is necessary to ana-
lyze how well it performs on different classical benchmark functions. The test functions
to be benchmarked should be chosen diversely to ensure robustness. Table 2 lists the
14 benchmark functions we have carefully curated and their associated properties. All the
chosen functions are continuous and differentiable except F14 (which is discontinuous
and non-differentiable). Since SPGD uses numerical differentiation, it can also handle
non-differentiable functions [1]. The 14 benchmark functions were taken from [46,47].

Table 2. Classical benchmark functions and their properties.

Function
Id Function Name Dimension Global

Minimum Characterstics Search Range

F1 Ackley 2 0 MM, NS (−35, 35)

F2 Beale 2 0 UM, NS (−4.5, 4.5)

F3 Eggholder 2 −959.6407 MM, NS (−512, 512)

F4 Goldstein-Price 2 3 MM, NS (−2, 2)

F5 Matyas 2 0 UM, NS (−10, 10)

F6 Schaffer N.4 2 0.292579 UM, NS (−100, 100)

F7 Tripod 2 0 MM, NS (−100, 100)

F8 Colville 4 0 UM, NS (−10, 10)

F9 Griewank 5 0 MM, NS (−600, 600)

F10 Michalewicz
(m = 10) 5 −4.687658 MM, S (0, 3.14)

F11 Rosenbrock 10 0 UM, NS (−30, 30)

F12 Rotated Hyper
Ellipsoid 10 0 UM, NS (−65.536, 65.536)

F13 Zakharov 10 0 UM, NS (−5, 10)

F14 Rastrigin 20 0 MM, S (−5.12, 5.12)

Multi-modal functions (MM) with many local minima, non-separable (NS), and high-
dimensional functions are well known to be challenging to optimize. Functions with
profound flatness do not disseminate helpful information to direct the search process and
are difficult to optimize (e.g., F5), especially for gradient-based algorithms [46]. According
to [46], the following are certain classes of function, which are difficult to optimize:

1. Functions in which the global minima is very close to the local minima (F6).
2. Functions with a narrowed curved valley (F2, F8, F11).
3. Functions in which the area that contains the global optimum is small with respect to

the whole function space (F10).
4. Functions with a significant magnitude difference between their hypersurface and

domain (F4).

Further, in [47] there is a compiled list of classical benchmark functions that classify
the functions into six categories (based on geometry), namely [47]: many local minima
(F1,F3,F9,F14,F6), bowl-shaped (F12), valley-shaped (F11), steep-ridges (F10), plate-shaped

Mathematics 2022, 10, 800 12 of 24

(F5, F13), and others (F2, F8). Our assorted test suite includes at least one function from the
various types mentioned above, thus ensuring diversity.

The proposed SPGD algorithm has four primary hyperparameters, namely, the number
of GD instances/threads (N), number of episodes (Ep), number of iterations/GD steps per
episodes (Nip), and number of stable episodes (NSEp). We test the SPGD on the benchmark
functions for different combinations of these hyperparameters. This experiment aims to see
how these hyperparameter choices influence SPGD. Table 3 lists the various combinations
we have chosen to test. C1 is the most computationally costly combination out of all. In
the worst case (if SPGD does not converge), C1 can take 100,000 iterations. We halve the
number of individuals in C2. For the remaining combinations, we set the n = 25 to see
how SPGD performs with fewer individuals. In C3, we increase Nip to 30, while in C5, we
reduce NSEp to five to study the corresponding effect on performance and convergence.

Table 3. Various hyperparameter combinations of SPGD.

Name of The
Hyperparameter

Combination

Number of GD
Instances (N)

Number of
Episodes (Ep)

Number of
Iterations per

Episodes (Nip)

Number of Stable
Episodes (NSEp)

Number of Iterations at
Worst Case

(IF Ep(Converge) = N)

C1 100 50 20 10 100,000

C2 50 50 20 10 50,000

C3 25 50 30 10 37,500

C4 25 50 20 10 25,000

C5 25 50 25 5 25,000

To test the sensitivity of the aforementioned hyperparameters for each benchmark
function, we perform 50 independent runs with different initial random seeds. All experi-
ments (in this and the upcoming sections) are performed in python 3 (Jupyter Notebook)
over the Asus TUF–FX504 laptop computer with Intel i5-8300H CPU @ 2.30 GHz and
8 GB RAM, running Windows 10 operating system. The python implementations of the
functions in Table 2 are taken from [48].

The best, worst, mean, standard deviation (SD), and success rate (SR) are popular
metrics to evaluate an OP algorithm’s performance on the benchmark functions. According
to [7], best, mean, and SD are used to evaluate the accuracy and efficiency of the OP
algorithm. In contrast, SR and worst are used to evaluate the convergence speed and
robustness of the algorithm. A lower SD also indicates robustness [49]. SR is defined as the
ratio of successful runs out of the 50 runs [7]. A single run of an OP algorithm is deemed
successful if it manages to find the global optimum within an acceptable error margin. The
error measure is adopted from [8], which is “(f(x) − f(x*)), where x is the best solution
obtained by algorithms in one run and x* is the well-known global optimum of each
benchmark function” [8]. If (f(x) − f(x*)) < 10−6 for a run, then it is declared as a successful
run. The average number of episodes taken to converge (Mean_ Ep(Converge)) is tabulated
to observe the convergence performance of SPGD. With these evaluation criteria, we
benchmark the test functions with SPGD for various combinations of its hyperparameters.

Table 4 shows the results of SPGD in terms of the discussed evaluation metrics. Values
below 10−6 are shown as 0.

To quote [50], “Derivative based learning techniques do not fare well for finding global
optimal solutions of the nonlinear problems having many local optimal solutions,” despite
this, SPGD performs decently well. For functions F1, F4, F5, F6, F8, and F11-F14, SPGD
consistently gives an SR close to 1 (or at least greater than 0.9), SD < 1, and mean closer
to the optimum for almost all (except C5) of the hyperparameter combinations. An SR
greater than 0.9 indicates that, nine times, out of 10 runs, SPGD will most likely find the
exact optimum. For functions F2, F3, F7, and F9, SPGD gives a competitive performance

Mathematics 2022, 10, 800 13 of 24

compared to other OP algorithms (see Section 3.2). This indicates that SPGD, in general, is
accurate, efficient, robust, and has good convergence capability.

Table 4. Results of numerical experiments performed on the selected benchmark functions for various
hyperparameter combinations of SPGD.

Function Id
Hyper

Parameter
Combination

Best Worst Mean SD SR Mean_Ep(Converge)

F1
(Ackley)

C1 0 0 0 0 1 16

C2 0 0 0 0 1 15.9

C3 0 0 0 0 1 16

C4 0 0 0 0 1 16.46

C5 0 0 0 0 1 10.92

F2
(Beale)

C1 0 7.57467 × 10−5 1.51734 × 10−6 1.07118 × 10−5 0.98 36.16

C2 0 6.0145 × 10−4 2.38475 × 10−5 1.0895 × 10−4 0.94 45.6

C3 0 1.05487 × 10−5 0 2.41421 × 10−6 0.92 45.76

C4 0 2.20053 × 10−3 7.19695 × 10−5 3.4012 × 10−4 0.86 47.4

C5 0 5.29452 × 10−3 1.29834 × 10−3 1.58691 × 10−3 0.34 22.18

F3
(EggHolder)

C1 −959.640662 −935.337951 −956.512989 7.4296201 0.0 25.76

C2 −959.640662 −894.578898 −945.252029 21.331546 0.0 33.86

C3 −959.640588 −786.525994 −931.834921 32.667300 0.0 30.16

C4 −959.639814 −786.525994 −927.660588 34.371745 0.0 30

C5 −959.636808 −786.525994 −925.475682 38.169414 0.0 13.58

F4
(Gold-Stein

Price)

C1 3.0 3.0 3.0 0 1 11

C2 3.0 3.0 3.0 0 1 34.22

C3 3.0 3.0 3.0 0 1 11.16

C4 3.0 3.0 3.0 0 1 11.14

C5 3.0 3.0 3.0 0 1 6

F5
(Matyas)

C1 0 0 0 0 1 16.57

C2 0 0 0 0 1 22.02

C3 0 0 0 0 1 26.78

C4 0 0 0 0 1 23.1

C5 0 0 0 0 1 17.48

F6
(Schaffer)

C1 0.29257863 0.29257863 0.29257863 0 1 22.42

C2 0.29257863 0.29257863 0.29257863 0 1 25.58

C3 0.29257863 0.29257863 0.29257863 0 1 28.12

C4 0.29257863 0.29257876 0.29257863 0 1 30.12

C5 0.29257863 0.29261529 0.29257941 5.18320 × 10−6 0.96 21.96

F7
(Tripod)

C1 0 0.02197657 0.00091925 0.00322785 0.18 37.6

C2 0 0.11337406 0.00637666 0.01931453 0.14 37.02

C3 0 0.12792996 0.00730648 0.02230414 0.1 35.34

C4 0 0.08701752 0.00514379 0.01680644 0.04 36.62

C5 2.25691 × 10−5 0.22906872 0.03468707 0.05019722 0 18.74

F8
(Colville)

C1 0 0 0 0 1 16.22

C2 0 0 0 0 1 16.92

C3 0 0 0 0 1 16.78

C4 0 0 0 0 1 17.38

C5 0 1.58140399 0.03205936 0.22360284 0.96 12.56

Mathematics 2022, 10, 800 14 of 24

Table 4. Cont.

Function Id
Hyper

Parameter
Combination

Best Worst Mean SD SR Mean_Ep(Converge)

F9
(Griewank)

C1 0 0.00986467 0.00034521 0.00172647 0.96 40.65

C2 0 0.16277361 0.01084491 0.03119835 0.8 44.76

C3 0 0.39174897 0.01843029 0.06740692 0.72 43.61

C4 0 0.12318531 0.00808213 0.02397737 0.74 47.1

C5 0 5.82227555 0.15844181 0.86088410 0.7 39.86

F10
(Michaelwicz)

C1 −4.687658 −3.52489854 −4.48758298 0.29075257 0.26 44.86

C2 −4.687658 −3.52498727 −4.38087234 0.3646653 0.18 46.28

C3 −4.6876581 −3.4938926 −4.32720985 0.3697356 0.18 45.9

C4 −4.6876581 −3.22626745 −4.2453005 0.3777910 0.1 47.44

C5 −4.6868078 −2.13186393 −3.08535244 0.64314420 0 16.78

F11
(Rosenbrock)

C1 0 9.97379 × 10−5 1.99475 × 10−6 1.41050 × 10−5 0.98 41.56

C2 0 7.92577600 0.15851552 1.1208739 0.98 29.5

C3 0 0.02173848 0.00043476 0.00307428 0.98 39.14

C4 0 2.33355643 0.05058394 0.33060934 0.96 42.98

C5 0 99824.3438 2544.21169 14557.6125 0.66 32.06

F12
(Rotated Hyper

Ellipsoid)

C1 0 0 0 0 1 22.22

C2 0 0 0 0 1 23.98

C3 0 0 0 0 1 21.26

C4 0 0 0 0 1 24.12

C5 0 1.85962 × 10−5 0 2.62984 × 10−7 0.96 16.3

F13
(Zakharov)

C1 0 0 0 0 1 44.96

C2 0 0 0 0 1 48.46

C3 0 0 0 0 1 46.84

C4 0 0 0 0 1 49.04

C5 0 58.1560150 6.75172438 15.3146739 0.54 30.42

F14
(Rastrigin)

C1 0 0 0 0 1 12

C2 0 0 0 0 1 12.34

C3 0 0 0 0 1 11.76

C4 0 0 0 0 1 13.4

C5 0 0 0 0 1 8.44

Let us inspect other test functions for which SPGD does not give perfect optimal
performance. F11, a difficult function to optimize [47,50,51], despite having a good SR
('0.9), has a very high worst value for all hyperparameter combinations. This is because
of its narrow parabolic-shaped flat valley [52], which misdirects the SPGD to converge
in a suboptimal minimum in a few of the runs. This results in a high worst value which
correspondingly increases its mean value and SD. Note that increasing the number of GD
steps (Nip = 30) in C3 improves the performance significantly for F11. Functions F2, F5,
and F13 have profound flatness, and flatness does not disseminate directional information
to guide the search [46]. F2 additionally has frequent direction changes in the function [46],
with its minimum located in a narrow-curved valley [51] which causes GD to oscillate [31].
For F5 and F13, SPGD performs well; while for F2, the worst value is high for certain
combinations, but still, its SR is quite satisfactory ('0.8).

Functions F3 and F9 are highly multi-modal, non-separable, and are even difficult to
be optimized by other OP algorithms (see Section 3.2). For F9, the number of local minima
increases exponentially with increasing dimensionality [53]. Despite this, the mean value
and SD are closer to zero, with SR '0.7 for most hyperparameter combinations.

F10 is another multi-modal function with numerous valleys and ridges, which are
very difficult for SPGD to optimize. It has D! (dimension = D) local minima (in our case
5! = 120) [52]. Added to steep valleys and ridges [54], F10 also has numerous flat surfaces

Mathematics 2022, 10, 800 15 of 24

(see Figure 1). The combination of multi-modality with flatness and ridges makes F10
particularly difficult for GD-based algorithms to optimize.

Mathematics 2022, 10, x FOR PEER REVIEW 15 of 24

has a very high worst value for all hyperparameter combinations. This is because of its
narrow parabolic-shaped flat valley [52], which misdirects the SPGD to converge in a
suboptimal minimum in a few of the runs. This results in a high worst value which corre-
spondingly increases its mean value and SD. Note that increasing the number of GD steps
(Nip = 30) in C3 improves the performance significantly for F11. Functions F2, F5, and F13
have profound flatness, and flatness does not disseminate directional information to
guide the search [46]. F2 additionally has frequent direction changes in the function [46],
with its minimum located in a narrow-curved valley [51] which causes GD to oscillate
[31]. For F5 and F13, SPGD performs well; while for F2, the worst value is high for certain
combinations, but still, its SR is quite satisfactory (⪆0.8).

Functions F3 and F9 are highly multi-modal, non-separable, and are even difficult to
be optimized by other OP algorithms (see Section 3.2). For F9, the number of local minima
increases exponentially with increasing dimensionality [53]. Despite this, the mean value
and SD are closer to zero, with SR ⪆0.7 for most hyperparameter combinations.

F10 is another multi-modal function with numerous valleys and ridges, which are
very difficult for SPGD to optimize. It has D! (dimension = D) local minima (in our case 5!
= 120) [52]. Added to steep valleys and ridges [54], F10 also has numerous flat surfaces
(see Figure 1). The combination of multi-modality with flatness and ridges makes F10 par-
ticularly difficult for GD-based algorithms to optimize.

Figure 1. The 2D plot of F10 function.

For all unimodal functions, SPGD performs near optimally, except F2, for which
SPGD slightly underperforms due to the reasons discussed earlier. Nevertheless, for F2,
the mean value is very close to the optimum. This good performance with UM functions
shows that SPGD is good with its exploitation capabilities. For MM functions F1, F4, and
F14, SPGD performs optimally. In comparison, other MM functions, F3, F9, and F10, are
quite challenging functions in general and in specific for GD-based algorithms. However,
SPGD yields competitive performance for these functions (see Section 3.2). Hence, SPGD
balances exploration and exploitation effectively.

Regarding the hyperparameter combinations (from Table 3), it can be observed that
SPGD performs the best for the C1 combination, which is quite expected since C1 is the
most computationally costly combination. Halving the population to 50 very slightly re-
duces the performance for F2, F3, F7, F9, and F10 alone. For the remaining combination,
the population is set to 25 to keep the computational cost minimal.

Figure 1. The 2D plot of F10 function.

For all unimodal functions, SPGD performs near optimally, except F2, for which SPGD
slightly underperforms due to the reasons discussed earlier. Nevertheless, for F2, the mean
value is very close to the optimum. This good performance with UM functions shows
that SPGD is good with its exploitation capabilities. For MM functions F1, F4, and F14,
SPGD performs optimally. In comparison, other MM functions, F3, F9, and F10, are quite
challenging functions in general and in specific for GD-based algorithms. However, SPGD
yields competitive performance for these functions (see Section 3.2). Hence, SPGD balances
exploration and exploitation effectively.

Regarding the hyperparameter combinations (from Table 3), it can be observed that
SPGD performs the best for the C1 combination, which is quite expected since C1 is the
most computationally costly combination. Halving the population to 50 very slightly
reduces the performance for F2, F3, F7, F9, and F10 alone. For the remaining combination,
the population is set to 25 to keep the computational cost minimal.

Between C3, C4, and C5, the difference is, in C3, Nip is set to 30, while in C5, NSEp is
decreased to 5 to solicit the corresponding effects. Increasing the number of GD steps boosts
SR and other metrics for F2, F3, F10, and F11. Interestingly for F9, C3 performs marginally
inferior compared to C4; this might be due to the oscillatory nature of GD [31]. It should
be noted that increasing the GD steps almost always results in a better performance but
not necessarily. C5 drastically reduces the number of episodes taken to converge for all
14 benchmark functions at the cost of performance degradation. For several functions (F2,
F8, F9, F11, F13), the degradation is quite significant, and this is due to pre converging in
fewer episodes on suboptimal values.

The episode at which SPGD (for combination C4) converges for each of the indepen-
dent 50 runs is plotted as a box plot in Figure 2 for each test function. The Ep_Converge
deviates significantly for most of the functions except F1, F4, F8, F9, and F14. A small NSEp
should be preferred when the problem is to be optimized quickly or in situations where a
suboptimal solution is adequate.

Mathematics 2022, 10, 800 16 of 24

Mathematics 2022, 10, x FOR PEER REVIEW 16 of 24

Between C3, C4, and C5, the difference is, in C3, Nip is set to 30, while in C5, NSEp
is decreased to 5 to solicit the corresponding effects. Increasing the number of GD steps
boosts SR and other metrics for F2, F3, F10, and F11. Interestingly for F9, C3 performs
marginally inferior compared to C4; this might be due to the oscillatory nature of GD [31].
It should be noted that increasing the GD steps almost always results in a better perfor-
mance but not necessarily. C5 drastically reduces the number of episodes taken to con-
verge for all 14 benchmark functions at the cost of performance degradation. For several
functions (F2, F8, F9, F11, F13), the degradation is quite significant, and this is due to pre
converging in fewer episodes on suboptimal values.

The episode at which SPGD (for combination C4) converges for each of the independ-
ent 50 runs is plotted as a box plot in Figure 2 for each test function. The Ep_Converge
deviates significantly for most of the functions except F1, F4, F8, F9, and F14. A small
NSEp should be preferred when the problem is to be optimized quickly or in situations
where a suboptimal solution is adequate.

Figure 2. This box plot shows the convergence pattern of SPGD-C4.

With this experiment, we conclude that the combination C4 strikes a good balance
between reasonable performance and computational cost. C4 is the most computationally
economical combination yet yields a practically satisfactory performance (low SD, high
SR, mean closer to optimum) for most of the benchmark functions (F1, F2, F4-F6, F8, F11-
F14). We fix this combination of hyperparameters as the default choice for the SPGD al-
gorithm. The experiments performed in the subsequent sections use this default combina-
tion. In the next subsection, we compare SPGD with other popular OP algorithms.

3.2. Comparison
It is requisite to study how the proposed algorithm performs compared to other es-

tablished, commonly used OP algorithms. We choose to compare the proposed SPGD al-
gorithm with the global optimization algorithms in the scipy.optimize package [55] of the
widely used [56] opensource “SciPy” library. SciPy is the state-of-the-art, high-level, con-
tinuously developed python library for performing scientific and numeric computation
[57]. SciPy is known for its user-friendly [58] interfaces, which in turn serve as a great
quick start to solve applied mathematical and engineering problems even for “non-pro-
fessional programmers” [57].

Figure 2. This box plot shows the convergence pattern of SPGD-C4.

With this experiment, we conclude that the combination C4 strikes a good balance
between reasonable performance and computational cost. C4 is the most computationally
economical combination yet yields a practically satisfactory performance (low SD, high SR,
mean closer to optimum) for most of the benchmark functions (F1, F2, F4-F6, F8, F11-F14).
We fix this combination of hyperparameters as the default choice for the SPGD algorithm.
The experiments performed in the subsequent sections use this default combination. In the
next subsection, we compare SPGD with other popular OP algorithms.

3.2. Comparison

It is requisite to study how the proposed algorithm performs compared to other es-
tablished, commonly used OP algorithms. We choose to compare the proposed SPGD
algorithm with the global optimization algorithms in the scipy.optimize package [55] of
the widely used [56] opensource “SciPy” library. SciPy is the state-of-the-art, high-level,
continuously developed python library for performing scientific and numeric compu-
tation [57]. SciPy is known for its user-friendly [58] interfaces, which in turn serve as
a great quick start to solve applied mathematical and engineering problems even for
“non-professional programmers” [57].

For global optimization, the scipy.optimize package provides the implementation
of five assorted OP algorithms. The five algorithms, along with their default values for
hyperparameters, can be found in Table 5. We have additionally included the PSO algorithm
whose implementation closely mimics the scipy.optimize interface. It can be seen from
Table 5 that most of these algorithms have quite a lot of hyperparameters, significantly
more than our proposed SPGD algorithm. The details of the hyperparameters can be seen
in the corresponding references [59–64]. SHGO is a deterministic algorithm [65]. Note that
basinhopping and PSO do not have the ‘bounds’ parameter. The corresponding implication
is that they might go out of the prescribed bounds (LB, UB) for some test problems. For Both
these algorithms we need to specify a D-dimensional starting point. Uniform distribution
is used to randomly generate a starting point (within the prescribed bounds) for each of the
50 independent runs (with random seeds). For PSO, the number of particles is set to 100,
and thus 100 random starting points are generated, whereas, for basinhopping, a single
point is generated.

Mathematics 2022, 10, 800 17 of 24

Table 5. Hyperparameters for the five global optimization algorithms from the SciPy library addi-
tionally with PSO.

S.NO Algorithm Hyperparameters with Default Values

1 Basinhopping (BH) [59]
func, x0, niter = 100, T = 1.0, stepsize = 0.5, minimizer_kwargs = None,

take_step = None, accept_test = None, callback = None, interval = 50, disp = False,
niter_success = None, seed = None

2 Simplicial Homology Global
Optimization (SHGO) [60]

func, bounds, args = (), constraints = None, n = None, iters = 1, callback = None,
minimizer_kwargs = ’SLSQP’, options = None, sampling_method = ‘simplicial’

3 Dual Annealing (DAE) [61]
func, bounds, args = (), maxiter = 1000, local_search_options = {}, initial_temp = 5230.0,

restart_temp_ratio = 2 × 10−5, visit = 2.62, accept = −5.0, maxfun = 10,000,000.0,
seed = None, no_local_search = False, callback = None, x0 = None

4 Differential Evolution (DE) [62]

func, bounds, args = (), strategy = ‘best1bin’, maxiter = 1000, popsize = 15, tol = 0.01,
mutation = (0.5, 1), recombination = 0.7, seed = None, callback = None, disp = False,
polish = True, init = ‘latinhypercube’, atol = 0, updating = ‘immediate’, workers = 1,

constraints = (), x0 = None

5 Brute [63] func, ranges, args = (), Ns = 20, full_output = 0, finish = <function fmin>, disp = False,
workers = 1

6 Particle Swarm Optimization
(PSO) [64,65]

fun, x0, confunc = None, friction = 0.8, max_velocity = 5., g_rate = 0.8,l_rate = 0.5,
max_iter = 1000, stable_iter = 100, ptol = 1 × 10−6, ctol = 1 × 10−6, callback = None

We have decided to compare SPGD to these algorithms with their default values of
hyperparameters. This is mainly done for two reasons. Firstly, the algorithms chosen to be
compared are very diverse, ranging from brute force to evolutionary (DE), annealing (DAE)-
based, algebraic topology (SHGO)-based, particle-based, and gradient-free algorithms.
This diversity implies that some algorithms might need more resources for some problems
(population, iterations, etc.) to perform optimally, while others might differ with specific
nuances to cater for. Secondly, since SciPy is meant to be a high-level quick-to-use library,
scientists will tend to use it as a black-box optimizer for quick experimentation without
getting lost in the intricacy of the underlying OP algorithms [57]. As a consequence,
no efforts to change the default hyperparameters might be made. So, it makes sense to
”practically” compare these algorithms in their most likely to be used default configurations.

Table 6 shows the results of SPGD (C4) and the other six OP algorithms for the 14 test
functions in terms of metrics discussed in the previous subsection. Values below 10−6 are
shown as zero.

It is not easy to distill one single algorithm as successful out of all others from
Table 6. Let us take one crucial evaluation metric, SR, to majorly gauge the performance
to make things simple. As the name suggests, SR measures how often the algorithm is
successful/finds the optimum. As mentioned in the previous section, an SR greater than
0.9 strongly indicates the practical applicability of an OP algorithm. We make another table,
Table 7, which lists the number of functions for which each algorithm yields a success rate
greater than 0.9.

From Table 7, it can be observed that DAE performs the best out of all others in its
default configuration. SPGD performs the second best. DE and SHGO are successful for
eight test functions. SHGO is known to work well with low-dimensional problems and
not so well with high-dimensional functions [60,65]. For F14 (20-dimensional), after 6 h
of execution SHGO, it does not return any results for even a single run. Similarly, Brute
also performs well for low-dimensional functions, and for high-dimensional functions
(>10-dimensional), Brute does not execute due to memory error. Since PSO and BH do not
have the ”bounds” parameter, they go out of bounds for some functions (F3 and F10).

Functions F3, F7, and F9 (except for SHGO) did not make it into Table 7. This shows
how complex these three functions are. F3 and F9 have a large parametric solution space.
Further, for F3, the global optimum lies at the extreme corner [66]. On closer observation, it
can be seen that SPGD indeed performs well for these two functions. For F3, DAE again

Mathematics 2022, 10, 800 18 of 24

performs better in mean and SD, and SPGD closely follows as the second best. For F9,
SHGO performs the best with an SR of perfect 1. In comparison, SPGD gives an SR of 0.74,
which is way higher than all other algorithms.

Table 6. Comparative results of SPGD-C4 with state-of-the-art algorithms from the global optimiza-
tion suite of the SciPy library.

Function Id Algorithm Best Worst Mean SD SR

F1
(Ackley)

BH 0 1.36472421 0.13514784 0.25274851 0.68

SHGO 0 0 0 0 1

Dual_Ann 0 0 0 0 1

DiffEvoul 0 0.2801272 0.0056025 0.0396159 0.98

Brute 0.78352294 0.78352294 0.78352294 0 0

PSO 0 0 0 0 1

SPGD 0 0 0 0 1

F2
(Beale)

BH 0 0 0 0 1

SHGO 0 0 0 0 1

Dual_Ann 0 0 0 0 1

DiffEvoul 0 0.7336411 0.0146728 0.1037525 0.98

Brute 0 0 0 0 1

PSO 0 0 0 0 1

SPGD 0 0.00220053 7.196953 × 10−5 0.00034012 0.86

F3
(EggHolder)

BH # −1102.97164 −88.3042594 −546.101393 222.441807 0

SHGO −935.337951 −935.337951 −935.337951 0 0

Dual_Ann −959.640662 −888.949125 −931.473470 29.64637 0

DiffEvoul −959.640662 −786.52599 −910.403744 49.9705672 0

Brute # −976.911000 −976.911000 −976.911000 0 0

PSO # −976.911000 −716.67150 −893.762654 69.4243212 0

SPGD −959.639814 −786.525994 −927.660588 34.3717458 0

F4
(Gold-Stein

Price)

BH 3.0 3.0 3.0 0 1

SHGO 3.0 3.0 3.0 0 1

Dual_Ann 3.0 3.0 3.0 0 1

DiffEvoul 3.0 3.0 3.0 0 1

Brute 3.0 3.0 3.0 0 1

PSO 3.0 3.0 3.0 0 1

SPGD 3.0 3.0 3.0 0 1

F5
(Matyas)

BH 0 0 0 0 1

SHGO 0 0 0 0 1

Dual_Ann 0 0 0 0 1

DiffEvoul 0 0 0 0 1

Brute 0 0 0 0 1

PSO 0 0 0 0 1

SPGD 0 0 0 0 1

Mathematics 2022, 10, 800 19 of 24

Table 6. Cont.

Function Id Algorithm Best Worst Mean SD SR

F6
(Schaffer)

BH 0.29257863 0.49741695 0.42685063 0.07275457 0.14

SHGO 0.50113378 0.50113378 0.50113378 0 0

DualAnn 0.29257863 0.29387375 0.29260453 0.00018315 0.98

DiffEvoul 0.29257863 0.29258103 0.29257869 0 0.98

Brute 0.36131449 0.36131449 0.36131449 0 0

PSO 0.29257863 0.29257863 0.29257863 0 1

SPGD 0.29257863 0.29257876 0.29257863 0 1

F7
(Tripod)

BH 0 2.000000008 0.820000004 0.84972984 0.46

SHGO 1.00000001 1.00000001 1.00000001 0 0

DualAnn 0 1.000064264 0.620001309 0.49031536 0.38

DiffEvoul 0 2.000000694 0.80000008 0.75592899 0.4

Brute 1.00003641 1.00003641 1.00003641 0 0

PSO 0 2.000000003 0.56000000 0.61145527 0.5

SPGD 0 0.0870175274 0.0051437912 0.01680644 0.04

F8
(Colville)

BH 0 0 0 0 1

SHGO 0 0 0 0 1

Dual_Ann 0 0 0 0 1

DiffEvoul 0 0 0 0 1

Brute 0 0 0 0 1

PSO 0 7.84998268 0.6040938 1.3746632 0.46

SPGD 0 0 0 0 1

F9
(Griewank)

BH 0.24868915 132.830121 17.4293518 22.128654 0

SHGO 0 0 0 0 1

DualAnn 0 0.066493 0.0220203 0.0154676 0.1

DiffEvoul 0 0.05662099 0.0136467 0.0106129 0.14

Brute 1.19740690 1.19740690 1.19740690 0 0

PSO 0.00985728 0.30542824 0.08472009 0.0560294 0

SPGD 0 0.12318531 0.00808213 0.02397737 0.74

F10
(Michaelwicz)

BH # −4.74614390 −3.33129293 −4.38273363 0.3484707 0.1

SHGO −3.53609746 −3.53609746 −3.53609746 0 0

DualAnn −4.68765817 −4.68765817 −4.68765817 0 1

DiffEvoul −4.68765817 −4.3748963 −4.6408507 0.0651459 0.38

Brute −4.6876580 −4.6876580 −4.6876580 0 1

PSO −4.64589536 −2.6401023 −3.8328507 0.5415107 0

SPGD −4.6876581 −3.22626745 −4.2453005 0.3777910 0.1

Mathematics 2022, 10, 800 20 of 24

Table 6. Cont.

Function Id Algorithm Best Worst Mean SD SR

F11
(Rosenbrock)

BH 0 0 0 0 1

SHGO 0 0 0 0 1

DualAnn 0 0 0 0 1

DiffEvoul 0 3.98658234 0.55812114 1.3973353 0.86

Brute Memory Error

PSO 0.62903529 458.440177 53.6217016 93.8592738 0

SPGD 0 2.33355643 0.05058394 0.33060934 0.96

F12
(Rotated Hyper

Ellipsoid)

BH 0 0 0 0 1

SHGO 0 0 0 0 1

DualAnn 0 0 0 0 1

DiffEvoul 0 0 0 0 1

Brute Memory Error

PSO 0 0.03187133 0.00107759 0.005112 0.76

SPGD 0 0 0 0 1

F13
(Zakharov)

BH 0 0 0 0 1

SHGO 20.5109595 20.5109595 20.5109595 0 0

DualAnn 0 0 0 0 1

DiffEvoul 0 0 0 0 1

Brute Memory Error

PSO 0 1.26451010 0.09737653 0.21157360 0.02

SPGD 0 0 0 0 1

F14
(Rastrigin)

BH 4.97479528 26.8638491 11.541520 4.2641043 0

SHGO * Maximum Time Limit Exceeded

DualAnn 0 0 0 0 1

DiffEvoul 8.95463151 46.7629849 21.2125049 7.7342163 0.0

Brute Memory Error

PSO 28.4366707 98.5430492 55.253022 15.376534 0

SPGD 0 0 0 0 1
The minima location found is out of bounds. We ignore these results. * After 6 h of processing time, no output is
printed even for a single run, and hence terminated.

Table 7. The list of test functions for which each algorithm yields an SR greater than 0.9.

Algorithms Functions Number of Functions

BH F2, F4, F5, F8, F11, F12, F13 7

SHGO F1, F2, F4, F5, F8, F9, F11, F12 8

DAE F1, F2, F4, F5, F6, F8, F10, F11, F12, F13, F14 11

DE F1, F2, F4, F5, F6, F8, F12, F13 8

Brute F2, F4, F5, F6, F8, F10 6

PSO F1, F2, F4, F5, F6 5

SPGD F1, F4, F5, F6, F8, F11, F12, F13, F14 9

Mathematics 2022, 10, 800 21 of 24

F7 is non-differentiable, is discontinuous, has a sizeable parametric search space, and
has two local minima at (x1 = −50, x2 = 50) and (x1 = 50, x2 = 50) with corresponding
function values as 1 and 2 [67]. The global minimum is located at (x1 = 0, x2 = −50).
SR of SPGD for F7 is very low compared to other algorithms, but SPGD outperforms all
other algorithms in worst, mean, and SD. If we look at the worst value of F7 for all other
algorithms, it is either 1 or 2, implying that those algorithms have been trapped in one of the
two local optima. The worst value of SPGD for F7 is 0.0870175274 (occurs at x1 = 0.08701752,
x2 = −50, which is very close to the global minima location). This shows that SPGD does
not get caught in the local minima even in a single run. Though SPGD locates the valley
containing the global minima in every single run, it fails to pinpoint the exact location of the
global minima (since the gradient information obtained through numerical differentiation
is unreliable as the function is non-differentiable and discontinuous); this is the reason
behind the low SR. Nevertheless, F7 supports the claim that SPGD has a highly competitive
capacity to escape local optimums, thus exhibiting a good balance between exploration
and exploitation.

To summarize, considering the positive performance for the functions F3, F7, and F9,
SPGD gives a competitive performance to other OP algorithms of the SciPy suite. It is ac-
knowledged that if the hyperparameters of these SciPy algorithms are tuned appropriately,
they might yield much better performance and can outperform SPGD. Nevertheless, as
discussed, we venture for a ”practical comparison”, in which SPGD indeed fares well.

3.3. Discussion

The extensive numerical experiments performed in this section show that the proposed
algorithm is robust enough to solve various OP problems. In the comparison with SciPy’s
advanced OP algorithms, SPGD is only bested by DAE. DAE outperforms SPGD for
F2 and F10 in terms of SR. For F2, SPGD yields an SR of 0.86, which is relatively high,
whereas F10, as discussed earlier, is fundamentally difficult for gradient-based algorithms.
However, upon closer observation, it can be seen that even SPGD outperforms DAE for
some functions like F9 and F7 (except SR) in terms of all the metrics. This indicates that
DAE does not entirely overshadow SPGD, and it is a close call between SPGD and DAE.
We re-emphasize that our motivation is to develop a quick-start, easy-to-understand OP
algorithm that is competent enough to be used in practice. We believe that SPGD indeed
caters to this.

The algorithm proposed in this paper runs multiple parallel instances of vanilla
gradient descent guided by the “DCA” paradigm and inspired by the human search party
metaphor. Simple vanilla GD obtains practical efficacy when run under the paradigm of
DCA. Further, owing to the simplicity of the constant learning rate GD and the relatable
human search party metaphor, we believe the proposed SPGD algorithm is arguably simple
but robust enough to be used in solving OP problems.

4. Conclusions

A sheer number of global OP algorithms have been published in the literature. Most
of them strive to give the best performance possible. Amidst this, our goal was to propose
an OP algorithm that is simple (few straightforward hyperparameters), familiar, and easier
to comprehend while satisfactory enough to be used in practice. Effectively, this would
be an OP algorithm that can be used as a quick-start solution, but with the knowledge of
what is happening under the hood. Constant learning rate GD is one of the preliminary OP
algorithms, which is easier to understand [32]. SPGD coordinates multiple GD instances
running parallel to find the global optimum based on the human search party metaphor.
The numerical experiments have demonstrated SPGD’s potential to solve problems, and
we believe they provide enough evidence for its existence.

Mathematics 2022, 10, 800 22 of 24

Author Contributions: Conceptualization, A.S.S.S.H.; Formal analysis, A.S.S.S.H. and N.R.; Investi-
gation, A.S.S.S.H. and N.R.; Methodology, A.S.S.S.H. and N.R.; Software, A.S.S.S.H.; Supervision,
N.R.; Validation, A.S.S.S.H. and N.R.; Writing—original draft, A.S.S.S.H.; Writing—review and edit-
ing, A.S.S.S.H. and N.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. D’Angelo, G.; Palmieri, F. GGA: A modified genetic algorithm with gradient-based local search for solving constrained optimiza-

tion problems. Inf. Sci. 2021, 547, 136–162. [CrossRef]
2. Zhu, C.; Byrd, R.H.; Lu, P.; Nocedal, J. Algorithm 778: L-BFGS-B: Fortran subroutines for large-scale bound-constrained

optimization. ACM Trans. Math. Softw. (TOMS) 1997, 23, 550–560. [CrossRef]
3. Cong, Y.; Wang, J.; Li, X. Traffic Flow Forecasting by a Least Squares Support Vector Machine with a Fruit Fly Optimization

Algorithm. Procedia Eng. 2016, 137, 59–68. [CrossRef]
4. Mashwani, W.K. Comprehensive survey of the hybrid evolutionary algorithms. Int. J. Appl. Evol. Comput. (IJAEC) 2013, 4, 1–19.

[CrossRef]
5. Ferreiro, A.M.; García-Rodríguez, J.A.; Vázquez, C.; e Silva, E.C.; Correia, A. Parallel two-phase methods for global optimization

on GPU. Math. Comput. Simul. 2019, 156, 67–90. [CrossRef]
6. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
7. Wu, H.S.; Zhang, F.M. Wolf pack algorithm for unconstrained global optimization. Math. Probl. Eng. 2014, 2014, 465082.

[CrossRef]
8. Mohamed, A.W.; Hadi, A.A.; Mohamed, A.K. Gaining-sharing knowledge based algorithm for solving optimization problems:

A novel nature-inspired algorithm. Int. J. Mach. Learn. Cybern. 2020, 11, 1501–1529. [CrossRef]
9. Dorigo, M.; Maniezzo, V.; Colorni, A. Ant system: Optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.

Part B (Cybernetics) 1996, 26, 29–41. [CrossRef]
10. Pourpanah, F.; Wang, R.; Lim, C.P.; Yazdani, D. A review of the family of artificial fish swarm algorithms: Recent advances and

applications. arXiv 2020, arXiv:2011.05700. Available online: https://arxiv.org/abs/2011.05700 (accessed on 10 February 2022).
11. Mirjalili, S. Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm. Knowl. Based Syst. 2015, 89, 228–249.

[CrossRef]
12. Zhao, R.Q.; Tang, W.S. Monkey algorithm for global numerical optimization. J. Uncertain Syst. 2008, 2, 165–176.
13. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
14. Yang, X.-S. A New Metaheuristic Bat-Inspired Algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010);

Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.
15. Das, S.; Biswas, A.; Dasgupta, S.; Abraham, A. Bacterial Foraging Optimization Algorithm: Theoretical Foundations, Analysis,

and Applications. Auton. Robot. Agents 2009, 3, 23–55.
16. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
17. Karaboga, D.; Akay, B. A comparative study of Artificial Bee Colony algorithm. Appl. Math. Comput. 2009, 214, 108–132.

[CrossRef]
18. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci. Numer. Simul. 2012,

17, 4831–4845. [CrossRef]
19. Rao, R. Review of applications of TLBO algorithm and a tutorial for beginners to solve the unconstrained and constrained

optimization problems. Decis. Sci. Lett. 2016, 5, 1–30.
20. Kashan, A.H. League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships.

Appl. Soft Comput. 2014, 16, 171–200. [CrossRef]
21. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic optimization method for

solving constrained engineering optimization problems. Comput. Struct. 2012, 110, 151–166. [CrossRef]
22. Cuevas, E.; Cienfuegos, M.; Zaldivar-Navarro, D.; Perez-Cisneros, M.A. A swarm optimization algorithm inspired in the behavior

of the social-spider. Expert Syst. Appl. 2013, 40, 6374–6384. [CrossRef]
23. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the 2009 World Congress on Nature & Biologically Inspired

Computing (NaBIC), Coimbatore, India, 9–11 December 2009.
24. Moghdani, R.; Salimifard, K. Volleyball premier league algorithm. Appl. Soft Comput. 2018, 64, 161–185. [CrossRef]
25. Rand, D.; Greene, J.D.; Nowak, M.A. Spontaneous giving and calculated greed. Nature 2012, 489, 427–430. [CrossRef] [PubMed]

http://doi.org/10.1016/j.ins.2020.08.040
http://doi.org/10.1145/279232.279236
http://doi.org/10.1016/j.proeng.2016.01.234
http://doi.org/10.4018/jaec.2013040101
http://doi.org/10.1016/j.matcom.2018.06.005
http://doi.org/10.1155/2014/465082
http://doi.org/10.1007/s13042-019-01053-x
http://doi.org/10.1109/3477.484436
https://arxiv.org/abs/2011.05700
http://doi.org/10.1016/j.knosys.2015.07.006
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1016/j.advengsoft.2016.01.008
http://doi.org/10.1016/j.amc.2009.03.090
http://doi.org/10.1016/j.cnsns.2012.05.010
http://doi.org/10.1016/j.asoc.2013.12.005
http://doi.org/10.1016/j.compstruc.2012.07.010
http://doi.org/10.1016/j.eswa.2013.05.041
http://doi.org/10.1016/j.asoc.2017.11.043
http://doi.org/10.1038/nature11467
http://www.ncbi.nlm.nih.gov/pubmed/22996558

Mathematics 2022, 10, 800 23 of 24

26. Grossack, M.M. Some effects of cooperation and competition upon small group behavior. J. Abnorm. Soc. Psychol. 1954, 49, 341.
[CrossRef]

27. Forsyth, D.R. Group Dynamics; Cengage Learning: Boston, MA, USA, 2018.
28. Schwartz, S.H. Individualism-collectivism: Critique and proposed refinements. J. Cross-Cult. Psychol. 1990, 21, 139–157. [CrossRef]
29. Khalil, A.M.; Fateen, S.-E.K.; Bonilla-Petriciolet, A. MAKHA—A New Hybrid Swarm Intelligence Global Optimization Algorithm.

Algorithms 2015, 8, 336–365. [CrossRef]
30. Ruder, S. An overview of gradient descent optimization algorithms. arXiv 2016, arXiv:1609.04747. Available online: https:

//arxiv.org/abs/1609.04747 (accessed on 10 February 2022).
31. Watt, J.; Borhani, R.; Katsaggelos, A.K. Machine Learning Refined: Foundations, Algorithms, and Applications; Cambridge University

Press: Cambridge, UK, 2020; Chapters 3, 3.5, 3.6.
32. Wang, X. Method of steepest descent and its applications. IEEE Microw. Wirel. Compon. Lett. 2008, 12, 24–26.
33. Wu, X.; Ward, R.; Bottou, L. Wngrad: Learn the learning rate in gradient descent. arXiv 2018, arXiv:1803.02865. Available online:

https://arxiv.org/pdf/1803.02865.pdf (accessed on 10 February 2022).
34. Search Party Definition and Meaning. Available online: https://www.dictionary.com/browse/search-party (accessed on

4 January 2022).
35. Dion, K.L. Group cohesion: From “field of forces” to multidimensional construct. Group Dyn. Theory Res. Pract. 2000, 4, 7.

[CrossRef]
36. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2009.
37. Cohen, J.D.; McClure, S.M.; Yu, A.J. Should I stay or should I go? How the human brain manages the trade-off between

exploitation and exploration. Philos. Trans. R. Soc. B Biol. Sci. 2007, 362, 933–942. [CrossRef]
38. Volchenkov, D.; Helbach, J.; Tscherepanow, M.; Kühnel, S. Treasure Hunting in Virtual Environments: Scaling Laws of Human

Motions and Mathematical Models of Human Actions in Uncertainty. In Nonlinear Dynamics and Complexity; Springer International
Publishing: Cham, Switzerland, 2014; pp. 213–234.

39. Maroti, A. RBED: Reward Based Epsilon Decay. arXiv 2019, arXiv:1910.13701. Available online: https://arxiv.org/abs/1910.13701
(accessed on 10 February 2022).

40. Numpy.Random.Triangular.—NumPy v1.21 Manual. Available online: https://numpy.org/doc/stable/reference/random/
generated/numpy.random.triangular.html (accessed on 27 December 2021).

41. Kotz, S.; Van Dorp, J.R. Beyond Beta: Other Continuous Families of Distributions with Bounded Support and Applications; World
Scientific: Singapore, 2004; Chapter 1.

42. Hesse, R. Triangle distribution: Mathematica link for Excel. Decis. Line 2000, 31, 12–14.
43. Leng, J. Optimization techniques for structural design of cold-formed steel structures. In Recent Trends in Cold-Formed Steel

Construction; Woodhead Publishing: Sawston, UK, 2016; pp. 129–151.
44. Hong, T.P.; Wang, H.S.; Lin, W.Y.; Lee, W.Y. Evolution of appropriate crossover and mutation operators in a genetic process. Appl.

Intell. 2002, 16, 7–17. [CrossRef]
45. Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99. [CrossRef]
46. Jamil, M.; Yang, X.-S. A literature survey of benchmark functions for global optimisation problems. Int. J. Math. Model. Numer.

Optim. 2013, 4, 150–194. [CrossRef]
47. Surjanovic, S.; Bingham, D. Virtual Library of Simulation Experiments: Test Functions and Datasets. 2013. Available online:

http://www.sfu.ca/~{}ssurjano (accessed on 25 December 2021).
48. Nathanrooy. Landscapes/Single_Objective.Py at Master Nathanrooy/Landscapes. GitHub. Available online: https://github.

com/nathanrooy/landscapes/blob/master/landscapes/single_objective.py (accessed on 27 December 2021).
49. Tansui, D.; Thammano, A. Hybrid nature-inspired optimization algorithm: Hydrozoan and sea turtle foraging algorithms for

solving continuous optimization problems. IEEE Access 2020, 8, 65780–65800. [CrossRef]
50. Abiyev, R.H.; Tunay, M. Optimization of High-Dimensional Functions through Hypercube Evaluation. Comput. Intell. Neurosci.

2015, 2015, 967320. [CrossRef]
51. Tenne, Y.; Armfield, S.W. A memetic algorithm using a trust-region derivative-free optimization with quadratic modelling for

optimization of expensive and noisy black-box functions. In Evolutionary Computation in Dynamic and Uncertain Environments;
Springer: Berlin/Heidelberg, Germany, 2007; pp. 389–415.

52. Molga, M.; Smutnicki, C. Test functions for optimization needs. Test Funct. Optim. Needs 2005, 101, 48.
53. Cho, H.; Olivera, F.; Guikema, S.D. A derivation of the number of minima of the Griewank function. Appl. Math. Comput. 2008,

204, 694–701. [CrossRef]
54. Blanchard, A.; Sapsis, T. Bayesian optimization with output-weighted optimal sampling. J. Comput. Phys. 2020, 425, 109901.

[CrossRef]
55. Optimization and Root Finding (Scipy.Optimize)—SciPy v1.7.1 Manual. Available online: https://docs.scipy.org/doc/scipy/

reference/optimize.html (accessed on 27 December 2021).
56. Pypi Stats. PyPI Download Stats—SciPy. 2021. Available online: https://pypistats.org/packages/scipy (accessed on

27 December 2021).

http://doi.org/10.1037/h0054490
http://doi.org/10.1177/0022022190212001
http://doi.org/10.3390/a8020336
https://arxiv.org/abs/1609.04747
https://arxiv.org/abs/1609.04747
https://arxiv.org/pdf/1803.02865.pdf
https://www.dictionary.com/browse/search-party
http://doi.org/10.1037/1089-2699.4.1.7
http://doi.org/10.1098/rstb.2007.2098
https://arxiv.org/abs/1910.13701
https://numpy.org/doc/stable/reference/random/generated/numpy.random.triangular.html
https://numpy.org/doc/stable/reference/random/generated/numpy.random.triangular.html
http://doi.org/10.1023/A:1012815625611
http://doi.org/10.1023/A:1022602019183
http://doi.org/10.1504/IJMMNO.2013.055204
http://www.sfu.ca/~{}ssurjano
https://github.com/nathanrooy/landscapes/blob/master/landscapes/single_objective.py
https://github.com/nathanrooy/landscapes/blob/master/landscapes/single_objective.py
http://doi.org/10.1109/ACCESS.2020.2984023
http://doi.org/10.1155/2015/967320
http://doi.org/10.1016/j.amc.2008.07.009
http://doi.org/10.1016/j.jcp.2020.109901
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://docs.scipy.org/doc/scipy/reference/optimize.html
https://pypistats.org/packages/scipy

Mathematics 2022, 10, 800 24 of 24

57. Varoquaux, G.; Gouillart, E.; Vahtras, O.; Haenel, V.; Rougier, N.P.; Gommers, R.; Pedregosa, F.; Jędrzejewski-Szmek, Z.;
Virtanen, P.; Combelles, C.; et al. Scipy Lecture Notes. Zenodo, 2015, 〈10.5281/zenodo.31736〉. 〈hal-01206546〉. Available online:
https://hal.inria.fr/hal-01206546/file/ScipyLectures-simple.pdf (accessed on 24 January 2022).

58. Nunez-Iglesias, J.; Van Der Walt, S.; Dashnow, H. Elegant SciPy: The Art of Scientific Python; O’Reilly Media, Inc.: Sebastopol, CA,
USA, 2017.

59. Basinhopping. Scipy.Optimize.Basinhopping—SciPy v1.7.1 Manual. Available online: https://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.basinhopping.html (accessed on 27 December 2021).

60. SHGO. Scipy.Optimize.Shgo—SciPy v1.7.1 Manual. Available online: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.shgo.html (accessed on 27 December 2021).

61. Dual_Annealing. Scipy.Optimize.Dual_Annealing—SciPy v1.7.1 Manual. Available online: https://docs.scipy.org/doc/scipy/
reference/generated/scipy.optimize.dual_annealing.html (accessed on 27 December 2021).

62. Differential Evolution. Scipy.Optimize.Differential_Evolution—SciPy v1.7.1 Manual. Available online: https://docs.scipy.org/
doc/scipy/reference/generated/scipy.optimize.differential_evolution.html (accessed on 27 December 2021).

63. Brute. Scipy.Optimize.Brute—SciPy v1.7.1 Manual. Available online: https://docs.scipy.org/doc/scipy/reference/generated/
scipy.optimize.brute.html (accessed on 27 December 2021).

64. PSOPy. PyPI. Available online: https://pypi.org/project/psopy/ (accessed on 24 December 2021).
65. Stefan Endres (MEng, BEng (Hons) in Chemical Engineering. “Shgo”. Available online: https://stefan-endres.github.io/shgo/

(accessed on 25 December 2021).
66. Aly, A.; Weikersdorfer, D.; Delaunay, C. Optimizing deep neural networks with multiple search neuroevolution. arXiv 2019,

arXiv:1901.05988. Available online: https://arxiv.org/abs/1901.05988 (accessed on 10 February 2022).
67. Yang, E.; Barton, N.H.; Arslan, T.; Erdogan, A.T. A novel shifting balance theory-based approach to optimization of an energy-

constrained modulation scheme for wireless sensor networks. In Proceedings of the 2008 IEEE Congress on Evolutionary
Computation (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp. 2749–2756.

https://hal.inria.fr/hal-01206546/file/ScipyLectures-simple.pdf
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.basinhopping.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.shgo.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.shgo.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.dual_annealing.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.differential_evolution.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.brute.html
https://pypi.org/project/psopy/
https://stefan-endres.github.io/shgo/
https://arxiv.org/abs/1901.05988

	Introduction
	SPGD Algorithm
	Divide, Conquer, Assemble, and Repeat (DCA)
	Exploration vs. Exploitation
	Defining the Algorithm
	A GA Perspective to SPGD

	Numerical Experiments
	Empirical Analysis of SPGD Parameter Sensitivity
	Comparison
	Discussion

	Conclusions
	References

