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Abstract: Precise vertebrae segmentation is essential for the image-related analysis of spine patholo-
gies such as vertebral compression fractures and other abnormalities, as well as for clinical diagnostic
treatment and surgical planning. An automatic and objective system for vertebra segmentation is
required, but its development is likely to run into difficulties such as low segmentation accuracy
and the requirement of prior knowledge or human intervention. Recently, vertebral segmentation
methods have focused on deep learning-based techniques. To mitigate the challenges involved, we
propose deep learning primitives and stacked Sparse autoencoder-based patch classification modeling
for Vertebrae segmentation (SVseg) from Computed Tomography (CT) images. After data prepro-
cessing, we extract overlapping patches from CT images as input to train the model. The stacked
sparse autoencoder learns high-level features from unlabeled image patches in an unsupervised
way. Furthermore, we employ supervised learning to refine the feature representation to improve
the discriminability of learned features. These high-level features are fed into a logistic regression
classifier to fine-tune the model. A sigmoid classifier is added to the network to discriminate the
vertebrae patches from non-vertebrae patches by selecting the class with the highest probabilities.
We validated our proposed SVseg model on the publicly available MICCAI Computational Spine
Imaging (CSI) dataset. After configuration optimization, our proposed SVseg model achieved im-
pressive performance, with 87.39% in Dice Similarity Coefficient (DSC), 77.60% in Jaccard Similarity
Coefficient (JSC), 91.53% in precision (PRE), and 90.88% in sensitivity (SEN). The experimental results
demonstrated the method’s efficiency and significant potential for diagnosing and treating clinical
spinal diseases.

Keywords: stacked sparse autoencoder; deep learning; unsupervised learning; CT images; vertebrae
segmentation; SVseg; image patch; MICCAI-CSI dataset; sigmoid classifier

1. Introduction

Vertebrae segmentation is an essential step for spine image analysis and modeling
such as spinal abnormalities identification, image-based biomechanical model analysis,
vertebrae fracture detection [1], intervertebral disc labeling, and image-guided spine inter-
vention [2]. Spine analysis requires precise vertebral segmentation; for example, image-
guided vertebrae intervention often involves precision to the submillimeter level. Manual
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segmentation of vertebrae is a subjective and time-consuming process, so fully automatic or
semi-automatic techniques are needed for many clinical applications. In the diagnosis and
treatment of spinal diseases, medical imaging techniques have been used extensively [3].
When assessing spinal health, computer tomography (CT) and magnetic resonance imaging
(MRI) are usually the first option to give better spinal anatomy views. However, segmenting
individual vertebrae from 3D scans is a tedious and time-consuming process. Computa-
tional techniques can be used for automatic quantitative analysis of spine images to enhance
physicians’ capability to improve spinal healthcare. Recently, many vertebrae segmentation
methods for computed tomography (CT) have been proposed [4]. However, it remains a
challenging task due to the architectural variation of the spine across the population, the
complex shape and pathology, the same structures being in close vicinity, and the spatial
relationships between the ribs and vertebrae.

To handle this challenge, several approaches for segmenting vertebrae have been
proposed. For example, vertebrae segmentations were obtained by many methods of
unsupervised learning, such as region-based segmentation like a watershed, graph-cut,
and boundary adjustment, region growing, and adaptive threshold. Level set techniques
have been used to deal with the topologically merging complexity and break in the ver-
tebrae. Willmore flow [5] is included in a level set method in guiding surface modeling
evolution. The combination of region and edge-based level set functions for CT vertebrae
segmentation is proposed in [6]. The authors of [7] used the watershed algorithm, curved
reformation, a vertebral template, and a directed graph to segment the spinal column.
Another approach [8] employed watershed and mathematical morphology for vertebrae
segmentation. Kim and Kim [9] presented a fully automatic method based on 3D fence
construction to separate vertebrae. Then a final segmentation was obtained by applying
a region-growing algorithm within a constructed 3D fence. Many methods incorporated
prior knowledge about vertebrae anatomies like geometric models, a probabilistic atlas,
and statistical shape models that estimate the vertebrae mean shape and variation from a
segmented training set. These approaches are often sensitive at calculating the initial pose,
which is performed either automatically or manually. Automatic initialization has been
presented via detecting the vertebrae and intervertebral disk in [7]. The manual initializa-
tion is achieved by pacing seeds within the vertebral body [10] or drawing a bounding box
to confine the searching range [11]. A single framework has also been proposed integrating
the vertebrae’s identification, detection, and segmentation [12]. The technique in [13]
was based on the detection of the edge and fair registration methodology of a deformed
surface for the vertebrae in the thoracic region. The method in [14] was proposed to incor-
porate statistics on shape and pose in a multivertebrae model for lumbar segmentation.
Kadoury et al. [15] presented an articulated spine model of each vertebra using high-order
Markov random fields. A landmark-based shape representation model was built using
transportation theory for CT vertebrae, and alignment to a specific vertebra was obtained
using game theory in [16]. Zhang and Wang [17] proposed the vertebrae segmentation
method from CT images in three parts: an adaptive threshold filter;, Point++-based single
vertebrae segmentation, and edge information based converge segmentation that enhances
the segmentation accuracy.

One limitation of the approaches described above is that they were trained using
hand-crafted features such as local intensity features, which are incapable of encoding more
representative features of vertebrae images. As a result, they may be unable to handle more
complicated cases where spine pathologies and curvatures are present. In recent years, deep
learning has become a research hotspot in medical image analysis [18] because of its high
feature extraction ability [19–24]. Deep neural networks (DNNs) often use successful tools
as an extractor of high-level features. Sekuboyina et al. [25] developed a multilabel FCN
model for segmentation of lumbar vertebrae. Probability maps are generated using CNN,
which indicates the vertebral body’s location and then used these maps to guide a deformed
model in [26]. A method [27] is proposed to detect the vertebrae centroids by using an FCN
to get a probability map for each vertebra, which is the message-passing technique to extract
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the plausible set of centroids. Chen et al. [28] used CNN to detect vertebrae and trained
the model with a technical loss term to distinguish neighboring vertebra. A deep learning-
based methodology for spine segmentation from CT images was proposed for thoracic and
lumbar segmentation, and features were directly learned from image patches in [29,30]. A
statistical model for CT cervical vertebra segmentation was proposed in [31] to reconstruct
the boundary between adjacent vertebrae by an intervertebral fence model, and a VGG-Net
like convolutional network was used to train the model. Similarly, the segmentation of
cervical vertebra was achieved using the FCN in [32]. A deep learning-based method was
proposed in [33] to identify and localize vertebrae that used FCNN to extract short-range
contextual information and RNN to extract long-range contextual information.

Related Work

Recently, advancements in deep learning (DL) have led to increased use of DL al-
gorithms [34], particularly stacked sparse autoencoders (SSAEs) for automated medical
image segmentation, classification [35], and detection [36–41]. The deep-stacked autoen-
coder (SAE) framework of deep learning was used for liver segmentation in [42]. SSAE
was used to develop breast cancer segmentation [43] from histopathological images and
prostate segmentation from MRI in [44]. The liver disease diagnosis method was presented
from ultrasound images by feature representation with a stacked sparse auto-encoder
(SSAE) in [45]. Although state-of-the-art approaches have produced acceptable results in
vertebrae segmentation, they have complicated network designs that are computationally
expensive [46]. So, we need to further improve vertebrae segmentation results by reducing
complex network architecture. In this study, we propose a stacked sparse autoencoder-
based Vertebrae segmentation (SVseg) model from CT images. We extract overlapping
patches from CT images as input to train the model. The stacked sparse autoencoder
learned high-level features from unlabeled image patches in an unsupervised way. To
enhance the learned features’ discriminability, we further refined the feature representa-
tion in a supervised learning fashion. These high-level features were fed into a logistic
regression classifier to fine-tune the model. A sigmoid classifier was added to the network
to discriminate the vertebrae patches from nonvertebrae patches by selecting the class
with the highest probabilities. To summarize the abovementioned works, unsupervised
pretraining and supervised fine-tuning optimize deep-learned features for a specific task,
such as vertebrae segmentation, thereby improving final performance.

To the best of our knowledge, our proposed SVseg Model was used here for the
first time to segment CT vertebrae images. Transfer learning (TL) [47] can be used to
analyze medical images. Pretraining a deep learning network on the source domain [48]
and fine-tuning it based on the target domain’s instances is a common transfer learning
strategy. Transfer learning, on the other hand, requires a sufficient amount of training data
to avoid overfitting. Additionally, transfer learning cannot substitute for the necessary data
collection, which may be ineffective at improving the performance of a classification task.
Hence, SSAE + sigmoid classifier-based modeling is the best choice in our work. Unlike
convolutional neural net (CNN)-based feature representation, which contains subsampling
and convolutional tasks for feature extraction, our proposed SVseg method has a full
connection model to learn high-level features. The method has an encoder–decoder archi-
tectural structure, where the encoder network presents pixels’ intensity as modeled through
lower dimensionality attributes, while the decoder portion reconstructs the intensity of the
original pixel by using lower-dimensional features. SSAE is a full connection methodology
that extracts a single global weight matrix for feature representations, while CNN is a par-
tial connection technique to stress the importance of locality. For our application, the size
of vertebrae and nonvertebrae patches was set to 32 × 32 pixels—useful for building a full
connection model. We used SSAE rather than CNN for our classification-based vertebrae
segmentation modeling. The method is evaluated using a dataset from the CSI MICCAI
workshop on spine and vertebrae segmentation [49]. The experimental performance shows
that the proposed method is more efficient and accurate than earlier presented methods.
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The main contributions of our paper are:

• To create the overlapping patches, spine CT images are divided into square patches
of the same size. To address the issue of class imbalance, we generated a balanced
training set using a random undersampling function for negative samples (nonverte-
brae patches).

• Image patches are transformed into the matrix. The SVseg model is capable of learning
high-level structural information from a large number of unlabeled image patches
in an unsupervised way by SSAE. Thus, SSAE is capable of converting input pixel
intensities to structured vertebrae or nonvertebrae representations.

• We constructed a four-layer SSAE architecture with a logistic regression classifier to
fine-tune the model in a supervised manner. The results were produced in the form of
a matrix containing values of 1 and 0, indicating whether or not the associated patches
are vertebrae.

• We validated our proposed SVseg model on the publicly available MICCAI CSI dataset,
which achieved the highest performance of 87.39% in DSC, 77.60% in JSC, 91.53%
in PRE, and 90.88% in SEN, compared with classical segmentation approaches and
well-known vertebral segmentation methods.

The remainder of this paper is structured as follows. Section 2 presents a brief descrip-
tion of the proposed methodology, composed of four procedures. Section 3 describes the
experimental setup, dataset, and evaluation metrics. Section 4 contains the experimental
results and a discussion. Finally, Section 5 concludes the work and gives suggestions for
future work.

2. Methodology

As shown in Figure 1, the proposed method is composed of four procedures: (i) data
preprocessing; (ii) SVseg model pretraining; (iii) SSAE + SC for supervised SVseg model
designing; and (iv) testing.

2.1. Data Preprocessing

In the data preprocessing, the noise of the whole CT volume was filtered out by ap-
plying a rough threshold window. On the dataset, a slice-by-slice process was performed.
The vertebrae have higher intensities in images than other tissues but are similar to dif-
ferent bone structures like ribs, so the algorithm learned the difference between vertebrae
structures from other bony structures. A Gaussian filter with a sigma value of 1.5 was
applied to control CT images’ smoothness as a preprocessing step for obtaining accurate
segmentation and attenuating the effects of noisy pixels. The CT images of the spine were
divided into 32 × 32 pixel overlapped patches. To create the overlapping patches, we used
certain stride pixels. An image patch contains a total of 1024 pixels, and if these pixels are
equal to or greater than 50%, then the patch is labeled 1 (vertebra patch); otherwise, it is
labeled 0 (nonvertebra patch). There was an imbalance in the number of training patches
between the two classes used for classification. Most training patches are labeled “0” be-
cause the vertebrae area in the images is smaller than the background area, which can lead
to background bias. To solve this dilemma, it is necessary to strike a balance between the
sizes of the positive and negative training image patches. We generated a balanced training
set using a random undersampling function for negative samples (nonvertebrae patches).
This improves the network’s accuracy and convergence rate during model training [50].
Figure 2 illustrates the data preprocessing.

2.2. SVseg Model Pretraining

In this work, we introduced a stacked sparse autoencoder [51] (SSAE) for high-level
feature learning from overlapping image patches during training. An SSAE is an unsu-
pervised technique of deep learning that contains basic layers for feature learning. In the
following section, we first discuss the basic feature learning algorithm by sparse autoen-
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coder and then introduce the stacking of sparse autoencoder; finally, we used a sigmoid
classifier layer with unsupervised SSAE for fine-tuning the SVseg model.
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ArgMinW,b, Ŵ,b̂

N

∑
i=1

∣∣∣xi − (Ŵ(σ(Wxi + b)) + b̂)
∣∣∣ 2

2
. (1)
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In Equation (1), w, b, and σ are the weights, biases, and activation function of autoen-
coder parameters. Given an input vector xi, the autoencoder first encodes this input into
the representation hi = σ(Wxi + b), where hi is the xi responses of hidden-layer neurons
and h is the dimension that corresponds to the number of neurons in the hidden layer.
The autoencoder decodes the original input from the encoding learning throughout the
decoding process, Ŵhi + b̂. For effective feature extraction from input image patches,
the autoencoder requires that the hidden layer dimension be less than the input layer’s
dimensions; otherwise, error minimization would lead to a trivial solution. The authors
of [52] determined that the feature learning of the autoencoder is similar to that of PCA.
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ArgMinW,b,Ŵ,b̂

N

∑
i=1

∣∣∣xi − (Ŵ(σ(Wxi − b)) + b̂)
∣∣∣ 2

2
+ δ

M

∑
j=1

KL(ρ|ρj) (2)

KL
(

ρ
∣∣∣ρj

)
= ρ log

ρ

ρj + (1− ρ) log
1− ρ

1− ρj , (3)

where δ shows the balancing parameter between sparsity and reconstruction and the di-
mensions of the hidden layer are defined by M. The term KL

(
ρ
∣∣ρj), known as the Kullback–

Leibler equation [53] (Equation (3)), shows the divergence in two Bernoulli distributions
that have the probability ρ and ρj. The sparsity is minimized when ρj is close to ρ for
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each hidden neuron j. From the image patches of vertebrae, the low-level features can
be learned by SAE. However, due to variations in the appearance of vertebrae, low-level
feature learning is insufficient. In contrast, abstract high-features are more robust to CT
images’ inhomogeneity. Based on human perception, we applied SSAE for high-level
feature learning based on low-level feature representation. The stacking of multiple SAEs,
known as SSAE, contracts deep hierarchies. To learn abstract high-level features from input
images patch, we stacked the SAE to feed the low-level SAE output layer as an input layer
for the high-level SAE. This SSAE network uses an unsupervised method for pretraining
the SVseg model. From input overlapping patches, the SSAE was trained without utilizing
the label data.
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2.3. SSAE + SC for Supervised SVseg Model Designing

Since SSAE is trained in an unsupervised manner, the high-level feature representation
is only data-adaptive, and not necessarily discriminative enough for separating the vertebra
from background patches. To discriminate learned features [54,55], a supervised fine-tuned
approach SSAE+SC (sigmoid classifier) [56] was used, as shown in Figure 4.

The proposed SVseg model contains four network layers: one input layer, two hidden
layers, and one sigmoid layer. The training procedure consists of different stages. Firstly,
a sparse autoencoder (SAE) was imposed on the overlapped patches in training data
for primary feature learning h(1)(x) by the adjustment of weight W1. After that, input
pixels were given to this trained SAE for representation activations h(1)(x). The secondary
presentation h(2)(x) learning was obtained by using the primary representation as an input
to the other SAE by the adjustment of the W2 weight. These secondary representations
h(2)(x) were used for the sigmoid layer as input and to learn the mapping of h(2)(x) to
labels by the adjustment of the W3 weight. Finally, one input and two hidden layers were
stacked for making SSAE and a final sigmoid layer was added an output layer capable
of detecting the vertebrae from the background. The SVseg model included the bottom-
up training of SSAE in an unsupervised way, followed by a sigmoid classifier that used
supervised learning for top layer training and fine-tuned the entire deep framework.



Mathematics 2022, 10, 796 8 of 19

Mathematics 2022, 10, x FOR PEER REVIEW 8 of 20 
 

 

2.3. SSAE + SC for Supervised SVseg Model Designing 
Since SSAE is trained in an unsupervised manner, the high-level feature representa-

tion is only data-adaptive, and not necessarily discriminative enough for separating the 
vertebra from background patches. To discriminate learned features [54,55], a supervised 
fine-tuned approach SSAE+SC (sigmoid classifier) [56] was used, as shown in Figure 4. 

 
Figure 4. Illustration of unsupervised SSAE fine-tuned by adding a sigmoid classifier (output layer) 
for the supervised SVseg model design to classify the image patches into vertebrae or nonvertebrae. 

The proposed SVseg model contains four network layers: one input layer, two hid-
den layers, and one sigmoid layer. The training procedure consists of different stages. 
Firstly, a sparse autoencoder (SAE) was imposed on the overlapped patches in training 
data for primary feature learning ℎ(1)(𝑥𝑥) by the adjustment of weight 𝑊𝑊1. After that, in-
put pixels were given to this trained SAE for representation activations ℎ(1)(𝑥𝑥). The sec-
ondary presentation ℎ(2)(𝑥𝑥) learning was obtained by using the primary representation 
as an input to the other SAE by the adjustment of the 𝑊𝑊2 weight. These secondary rep-
resentations ℎ(2)(𝑥𝑥) were used for the sigmoid layer as input and to learn the mapping 
of ℎ(2)(𝑥𝑥) to labels by the adjustment of the 𝑊𝑊3 weight. Finally, one input and two hid-
den layers were stacked for making SSAE and a final sigmoid layer was added an output 
layer capable of detecting the vertebrae from the background. The SVseg model included 
the bottom-up training of SSAE in an unsupervised way, followed by a sigmoid classifier 
that used supervised learning for top layer training and fine-tuned the entire deep frame-
work. 

The number of nodes in the sigmoid layer was determined to be equal to the number 
of labels. The sigmoid layer in our method had two nodes, one for vertebra and the other 
for the background. The sigmoid layer predicts the likelihood of the label of the input data 
𝑥𝑥𝑖𝑖 based on learned features, the second hidden layer representation ℎ𝑖𝑖

(2). Other classifi-
ers such as SVM and MLP can also be used. The SVM classifier calculates a posterior prob-
ability score for a pixel belonging to the target or background class. A probability image 
was created by reconstructing the score vector, which requires a high degree of generali-
zation. On the other hand, a multilayer perceptron (MLP) is a feedforward neural network 
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for the supervised SVseg model design to classify the image patches into vertebrae or nonvertebrae.

The number of nodes in the sigmoid layer was determined to be equal to the number
of labels. The sigmoid layer in our method had two nodes, one for vertebra and the other
for the background. The sigmoid layer predicts the likelihood of the label of the input data
xi based on learned features, the second hidden layer representation h(2)i . Other classifiers
such as SVM and MLP can also be used. The SVM classifier calculates a posterior probability
score for a pixel belonging to the target or background class. A probability image was
created by reconstructing the score vector, which requires a high degree of generalization.
On the other hand, a multilayer perceptron (MLP) is a feedforward neural network with a
large number of layers and many nodes in each layer that cannot overcome the problem of
overfitting and are stuck in local minima. However, sigmoid logistic regression allowed us
to optimize the whole deep framework jointly through fine-tuning. The sigmoid classifier
that generalizes logistic regression is shown in the below equation:

σ(x) =
1

1 + e−x , (4)

where x is the input and σ is the sigmoid output function [56] in Equation (4). For fine-
tuning, the weights and biases of the sigmoid layer and SSAEs were optimized together,
and the sigmoid layer was used for classification. The cost function can be minimized
using a gradient descent-based model [51]. For every input xi, the two output values
are calculated and these values are the classification probability of the input. This paper
considers two class classification problems, and the label of the patch is {0, 1}, where 1 and
0 refer to vertebrae and nonvertebrae patches, respectively. It should be noted that the label
information is not used in the SSAE learning procedure because SSAE learning is a method
of unsupervised learning. After the high-level feature learning, the sigmoid layer (output
layer) is fed the learned high-level representation of vertebrae structures along with its
label (Figure 4). The trained model is then fed test patches, which return a 0 or 1 value
indicating whether the input image patch represents a vertebra or not.
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2.4. Testing

After training, the SVseg model is ready to test unseen vertebrae patches for model
validation. Test image patches were fed to the SVseg model and produced a predicted value
of one or zero, interpreted as the probability of corresponding to vertebra or background.
Based on these results, a binary segmented image was obtained after reconstruction of
the predicted patches. Due to the high contrast between vertebra, ribs, and other skeletal
structural tissues, some background pixels were misclassified as vertebrae, while some
vertebrae pixels were misclassified as background. Thus, these outliers were removed
by applying morphological operations [57] such as dilation, erosion, and hole filling to
improve the segmentation accuracy in postprocessing.

3. Experimental Setup

We intended to compare our proposed SVseg model with other segmentation algo-
rithms. Our model’s performance was evaluated on the public dataset of segmentation
challenge in MICCAI Computational Spine Imaging (CSI) 2014 [49].

3.1. Dataset

The datasets were collected at the Medical Center at the University of California,
Irvine (Orange, CA, USA) [49]. The dataset contained a total of 15 CT images, 10 CT
images (5595 slices) for the training, and five CT images (3418 slices) for the testing. Each
CT scan covered the whole lumbar and thoracic spine and included complete vertebrae
segmentation masks. The scanning settings were: slice thickness of 0.7–2.0 mm, voltage of
120 kVp, a kernel for soft tissue reconstruction, and intravenous contrast. The axial in-plane
resolution varied between 0.3125 and 0.3613 mm2.

3.2. Experiments

A given set of hyperparameters initialized the SSAE network. These parameters
included framework parameters, weights of the sigmoid layer, number of layer’s hidden
neurons, target activation ρ for hidden neurons, sparsity penalty β, and L2 regularization λ.
A random search [58] was used to find the optimal network structure in terms of perfor-
mance. First, we tried to define the spectrum of hyperparameters, and then we selected
the values randomly. We trained our framework with these selected values and repeated
this process until we found the best productivity. For evaluation, the dataset was split
into three subgroups Itrain, Ivalid, and Itest. From the 20 training CT images, we generated
651,712 overlapping image patches (325,856 vertebrae patches + 325,856 nonvertebrae
patches). We randomly selected 80% of the patches for I_train and 20% for I_valid. The size
of each slice was about 512 × 512 pixels. Training set I_train and I_valid contained 525,568
and 126,144 sample patches, respectively, which were used to train the SVseg model. The
mini-batch size was set to 64 for efficient training, and I_train was divided into 8212 mini-
batches and I_valid into 1971 mini-batches. The proposed method contained four network
layers: one input layer with 1024 neurons; two hidden layers with 729 and 196 hidden
neurons, respectively; and one sigmoid layer consisting of two neurons corresponding to
the number of classes. Many experiments were conducted to determine the SVSeg model’s
number of hidden layers and the number of nodes in each hidden layer. The performance of
the models was monitored in each experiment until the SVseg model achieved its optimal
performance (two hidden layers, the first with 729 nodes and the second with 196 nodes).

Figure 5 shows the visualization of the first and second hidden layers’ feature pre-
sentations by the four-layered SSAE based on the visualization model [59]. These features
demonstrate that the model is capable of revealing vertebrae and nonvertebral structures
from training patches. The learned feature representation in the first hidden layer (with
729 (27 × 27) nodes) indicates the vertebrae’s detailed boundary features and other struc-
tures as shown in Figure 5a, while feature representation in the second hidden layer (with
196 (14 × 14) nodes) expresses the high-level feature learning of vertebrae as shown in
Figure 5b. The 6 × 6 zoomed image of the SSAE’s first hidden layer indicates weights at
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the left side, and the boundary and corner of vertebrae at the right side in Figure 6. Each
square represents the weight between a single hidden node and the corresponding pixel in
the original image. In the weight matrix, a gray pixel represents zero, whereas a white pixel
represents a positive value. According to these findings, SVseg appears to be capable of
learning useful high-level features that can be used to better describe vertebrae structures.
The hyperparameters were selected to minimize the discrepancy between input and its
reconstructions. In our work, this disparity was calculated as the mean square error (MSE).
MSE is calculated between the input and reconstructed input from the AE decoder. Its
gradually decreasing values relate to its saturation with respect to the number of epochs
during the training phase.
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Figure 5. Visualization of high-level feature presentation extracted from input pixel intensities of our
proposed two-hidden-layer SVseg model with sparsity constraint of 0.15 and sparsity regularization of
0.20. (a) The learned feature representation in the first hidden layer with 729 nodes. The learned high-
level feature representation in the second hidden layer with 196 nodes is shown in (b). As anticipated,
(a) illustrates detailed border features of vertebrae and other tissue, whereas (b) illustrates high-level
vertebral features.

Figure 7 shows the SVseg model pretraining learning curve in an unsupervised fashion,
where 100 epochs are used and no label data are provided. After the pretraining, the
supervised SVseg model learning curve, MSE of training, and validation corresponding
to a number of epochs are shown in Figure 8. Figure 8a shows the best fit curve for our
model training with MSE of 0.034 for training and MSE of 0.038 for validation. The learning
curve diverges rapidly before 700 epochs and then stabilizes after 2500 epochs. Figure 8b
depicts the problem of overfitting caused by a deviation in the validation curve from the
training curve. Figure 8c,d shows the poor training MSE graph with a low learning rate
and small batch size, respectively. The heuristic approach was used to obtain the correct
training curve, as illustrated in Figure 8a. Therefore, initialization of weight is important in
deep learning.
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3.3. Evaluation Metrics

In this study, the Dice similarity coefficient (DSC) [60], Jaccard similarity coefficient
(JSC) [61], precision (PRE), and sensitivity (SEN) were used as quantitative assessment
metrics to evaluate segmentation performance [20,29]. We evaluated true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) by comparing the true
labels with predicted labels:
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DSC =
2|A∩ B|
|A|+ |B| =

2TP
2TP + FP + FN

(5)

JSC =
|A∩ B|
|A∪ B| =

TP
TP + FP + FN

(6)

Precision =
TP

TP + FP
(7)

Sensitivity =
TP

TP + FN
. (8)
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Figure 8. Learning curves of SSAEs model during different experiments. (a) Best fit curve for our
model training with MSE of 0.034 for training and MSE of 0.038 for validation; 4000 epochs were
used and the mini-batch size was set to 64 for efficient model training. The learning curve diverged
rapidly before 700 epochs and then stabilized after 2500 epochs; (b) depicts the problem of overfitting
caused by a deviation in the validation curve from the training curve; (c,d) show poor training MSE
graphs with a low learning rate and small batch size, respectively.

4. Results and Discussion

To demonstrate the efficiency of the SVseg model, the model was compared to five
other state-of-the-art models. We, therefore, compared the SVseg to other models to
evaluate the segmentation efficiency. The training procedures of AE + SC, StAE + SC,
SAE + SC, 3SAE + SC, and 4SAE + SC were similar to the techniques used for SVseg, as
shown in Figure 4.

(i) Autoencoder plus sigmoid classifier (AE + SC): The sparsity constraint on the
hidden layer of AE as controlled by the parameter σ in Equation (2). If the sparsity constraint
was removed by σ = 0 in Equation (2), the sparse AE was transformed into a single-layered
AE. The input x of the sigmoid classifier in Equation (4) was learned via single-layer AE,
and the SC was trained for model fine-tuning. Then, SC was used with AE to determine if
a vertebra was present or absent inside each image patch.
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(ii) Stacked Autoencoder plus sigmoid classifier (StAE + SC) is a neural network
composed of many layers of basic AE with each layer’s outputs connected to the inputs
of the subsequent layer. StAE is a two-layered fundamental AEs model. SC’s input x
in Equation (4) is a feature learned from the pixel intensities of an image patch using a
two-layer AEs.

(iii) Sparse autoencoder plus sigmoid classifier (SAE + SC): In this approach, the input
x of SC in Equation (4) is a feature learned from the pixel intensities of an image patch
using a single layer of Sparse AE.

(iv) Three-layer sparse autoencoder plus sigmoid classifier (3SAE + SC): This model is
composed of three Sparse AE layers, with the outputs of each layer connected to the inputs
of the subsequent layer. The first and second hidden layers have the same nodes as in our
SVseg, and the third layer has 49 hidden nodes.

(v) Four-layer sparse autoencoder plus sigmoid classifier (4SAE + SC): This network
is composed of four sparse AE layers and has the same parametric settings as the SVseg
model but the third and fourth layers have 49 and 16 hidden nodes, respectively. An SC
layer is attached at the end of network for fine-tuning. The 4SAE + SC model uses the same
method for training as shown in Figure 4.

The quantitative performance of SVseg and different models was analyzed using the
metrics in Equations (5)–(8), respectively. Table 1 indicates the means of DSC, JSC, PRE, and
SEN of SVseg and comparative models. Table 1 shows that the SVseg model results give
superior segmentation performance compared to the other models in all metrics. While
the results tend to favor “deeper” architecture over “shallow” architecture in encoding
high-level features from pixel intensities, the 3SAE + SC and 4SAE + SC models’ poor
performance compared to the SVseg model suggests that adding more layers may cause an
overfitting problem. Figure 9 shows the visualization of vertebrae segmentation results,
randomly selected from five test cases based on our SVseg model.

Table 1. Performance evaluation metrics (DSC, JSC, PRE, and SEN) of SVseg with various models
AE + SC, StAE + SC, SAE+SC, 3SAE + SC, and 4SAE for vertebrae segmentation on MACCAI
CSI dataset.

Methods DSC (%) JSC (%) PRE (%) SEN (%)

AE + SC 78.91 65.17 82.57 79.61
StAE + SC 83.39 71.51 88.17 85.71
SAE + SC 81.41 69.65 85.83 78.63
3SAE + SC 85.12 74.09 90.59 88.41
4SAE + SC 84.73 73.51 85.33 90.13

SVseg (proposed) 87.39 77.60 91.53 90.88

4.1. Computational Cost

The experiments were carried out on a 1.80 GHz i7 CPU, 32 GB RAM, NVIDIA
GeForce MX250 GPU using MATLAB 2018a environment. In this study, we compared
SVseg’s computational efficiency to that of five other state-of-the-art approaches. Table 2
shows the execution times for each model. Regarding training time, the two autoencoder-
based models that do not include sparsity required less training time than the three models
with sparsity. In addition, as the number of layers in the architecture increased, more time
was needed for training. In terms of run-time execution, our proposed SVseg model was
more efficient than the other five models.
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Table 2. The execution time of AE + SC, StAE + SC, SAE + SC, 3SAE + SC, and 4SAE + SC trained on
the training dataset and the time required to evaluate them on a test image of 512 × 512 pixels.

Methods Training Time (h) Segmentation Time (s)

AE + SC 21.05 16
StAE + SC 22.16 19
SAE + SC 23.07 13
3SAE + SC 26.47 23
4SAE + SC 37.22 23

SVseg Model 22.35 12

4.2. Discussion

As shown in Table 3, we also compared our SVseg model with classical segmentation
algorithms including U-Net [62], DeepLabv3+ [63], MultiResUNet [64], Densely-UNet [65],
and other well-known vertebrae segmentation methods. Table 3 indicates that the proposed
SVseg model outperformed all the other models in terms of DSC and JSC. Compared
with the classical U-Net [62], DeepLabv3+ [63], MultiResUNet [64], Densely-UNet [65],
SpineParseNet [20], Mask R-CNN [66], and multiscale CNN [67] our SVseg model was
significantly better by (3.79, 5.78), (13.86, 19.46), (1.90, 3.05), (4.23, 6.43), (0.07, 0.11), (18.19,
24.45), (0.89, 2.93) on average (DSC%, JSC%), respectively.

The SVseg model also achieved the best results compared with well-known vertebrae
segmentation methods. For example, a mean 86.17% DICE score was reported for vertebrae
segmentation using (D-TVNet) based on U-Net [68]. The experimental results showed
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that D-TVNet was unable to determine the critical points for measuring the spine curve
angle using segmented bones. Additionally, when the noise was significant, and the bones
not sharp, this method was ineffective at identifying them. While the D-TVNet method
is capable of removing some noise from images, it can also accidentally remove relevant
bones in some cases. In [29], a deep learning approach was proposed for automatic CT
vertebra segmentation and achieved a 86.1% DICE score. The starting thoracic vertebrae
have a lower DICE due to the influence of the ribs and intervertebral discs. This method
segmented several bones not seen in the label annotations, resulting in misclassification
and a low DICE score. These variables contributed to error segmentations. A deep learning
patch-based technique for cervical vertebra segmentation in X-ray images was proposed
in [32] with a DICE score of 84%, but this framework has a number of flaws. By eliminating
outlier centers away from the vertebral curve, the center localization structure can be
strengthened even further. The current framework for center localization was limited by
the fact that it does not know which center belongs to which vertebra. In another paper [69],
a DICE score of 87% was obtained using a deep learning approach on the thoracolumbar
spine from CT images, but this approach omits information about a spine’s structural
consistency. The result is odd behavior in which this method fails to segment parts of a
vertebra, or, in some cases, entire vertebrae at the beginning or end of a spine. It should
be investigated how such global systemic regularity can be imposed during the training
phase. Table 3 shows that SVseg achieved the highest mean DSC and JSC for segmentation
of vertebrae compared to all methods.

Table 3. The SVseg model achieved the highest mean DSC (%) and JSC (%) compared with classical
segmentation algorithms and also other vertebrae segmentation methods.

Methods Backbone DSC (%) (JSC) (%)

Classical U-Net [62] U-Net 83.60 71.82
DeepLabv3+ [63] DeepLabv3+ 73.53 58.14

MultiResUNet [64] U-Net 85.42 74.55
Densely-UNet [65] 3DU-Net 83.16 71.17
SpineParseNet [20] 3D-GCSN, 2DResUNet 87.32 77.49
Mask R-CNN [66] ResNet 101 69.20 53.15

Multiscale CNN [67] FCN 86.50 74.67
D-TVNet [68] U-Net 86.68 76.49
PaDBN [29] DBN 86.10 75.59

S. Al Arif et al. [32] U-Net 84.00 72.41
A. Sekuboyina et al. [69] U-Net 87.00 76.99
SVseg Model (proposed) SSAE 87.39 77.60

The above results and discussion prove that our proposed approach has the benefits
of automatically learning high-level features from data images, rather than relying on
handcrafted feature extraction, which often necessitates advanced engineering skills. SSAE
differs from an autoencoder (AE) because it imposes sparsity on the mapped features,
preventing the problem of trivial solutions when the dimensionality of hidden features
exceeds the dimensions of input features. After stacking, SSAE can learn high-level features,
similar to other deep learning techniques. Our SVseg model has the ability of high-level
feature extraction by unsupervised learning, followed by training the sigmoid classifier
in a supervised manner. The model was evaluated on a publicly CSI MICCAI dataset for
training and testing.

As a result, the SVseg model achieved excellent segmentation of the vertebrae from
CT images. To avoid potential issues caused by the limited amount of training data, we
pretrained the model layer-by-layer, which allowed it to learn the hierarchy of features one
layer at a time. Specifically, the previous layer’s learned features were fed into the next layer
during each layer’s training. Secondly, the entire model was refined by only a few iterations
during the fine-tuning stage, which is important for mitigating the overfitting problem.
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Thus, our model enhanced the accuracy and practicality of segmentation findings, enabling
spine clinical diagnosis to be supported without relying on a complex network design.

We can also use transfer learning to avoid overfitting problems [47,70]. We can use
other human organs’ CT images to initialize our model in the unsupervised pretraining
process, obtaining a more general CT image appearance. We believe that, by performing
this initialization, we will be able to improve the fine-tuning process and, as a result,
overcome the small sample problem. In the fields of machine learning and computer vision,
similar methods have been commonly used [47,70]. However, our model takes a long
time to segment the vertebrae since it is implemented in MATLAB. Using Keras with a
TensorFlow backend in Python is an option to improve the time efficiency of our approach.
This will result in a decrease in computational time.

5. Conclusions

In conclusion, we proposed the SVseg model for CT image-based vertebrae segmenta-
tion. To overcome the difficulties of robust feature presentation caused by the large diversity
of vertebra appearance, we proposed deep feature extraction by the SSAE architecture. The
supervised sigmoid classifier fine-tunes the learned features from pretraining to estimate
the target image’s vertebrae likelihood map. In this study, we found that the supervised
fine-tuning step was positively impacted by sparsity regularization during training. The
sparsity target forced the filters to collect more distinct features from image patches during
the training phase. Our proposed method was tested on the publicly available CSI MIC-
CAI dataset. When compared to other classical segmentation algorithms and well-known
vertebrae segmentation methods, our model performed better in terms of segmentation
accuracy. Finally, the SVseg model outperformed a variety of state-of-the-art methods in
terms of vertebrae segmentation accuracy, both qualitatively and quantitatively. To better
characterize vertebrae, we intend to extend our proposed model to other imaging modali-
ties in the future and incorporate it with other deep learning feature extraction methods.
Additionally, further validation, improvement, and implementation of our approach for
additional applications like 3D medical image segmentation and multiclass classification
will be our future focus.
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