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Abstract: In a real Hilbert space, we aim to investigate two modified Mann subgradient-like methods
to find a solution to pseudo-monotone variational inequalities, which is also a common fixed point of
a finite family of nonexpansive mappings and an asymptotically nonexpansive mapping. We obtain
strong convergence results for the sequences constructed by these proposed rules. We give some
examples to illustrate our analysis.
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1. Introduction

Let the (-,-) and || - || represent the inner product and induced norm in a real Hilbert
space H, respectively. We denote by P the nearest point projection from H onto C, where
© # C C Hand Cis convex and closed. Given T : C — H a nonlinear mapping, we denote
by Fix(T) the fixed point set of T, i.e., Fix(T) = {x € C: x = Tx}. Let the R, — and —
indicate the set of all real numbers, the strong convergence, and the weak convergence,
respectively. A self-mapping T : C — C is referred to as being asymptotically nonexpansive
if I{Pn} C [0, +00) s.t. limy o0 P, = 0 and

[T =Tyl < lx =yl + ullx —yll Vn>1,xyeC (1)

and T is nonexpansive when ¢, = 0.
Given a continuous mapping A : H — H, a variational inequality problem (denoted
by (VIP)) is:
find z* € C such that (Az*,z—2z") >0 Vz € C.

Let us denote the set of the solution VIP by VI(C, A). In 1976, Korpelevich [1] put forth the
extragradient method, which has been one of the most effective approaches for solving

the VIP:
{ Yn = Pc(xn — {Axn), (2)
Xnt1 = PC(xn - gA]/n) Vn >0,

for ¢ € (0, %) with L being the Lipschitz constant of A. Weak convergence results of (2)
have been obtained in studies [2-22] and references therein.

The extragradient method (2) involves solving a minimization problem over C at each
iteration when P¢ has no closed-form solution. This could make the extragradient method
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(2) computationally expensive. In study [6], Censor et al. modified (2) and introduced the
subgradient extragradient:

{ Yn = Pc(xn — CAXy),
D,={veH: (xp—JAxy —Yn,v —yn) <0}, (3)

Xp+1 = Pp, (xn — CAyn),

for € (0, %) with L being the Lipschitz constant of A. Thong and Hieu [19] added an
inertial extrapolation step to (3): xp, x1 € H,

Uy = Xp + an<xn - xnfl)/

Yn = Pc(vn — (Awn), (4)
D, ={ve H: (v, — AWy — Yn,v—yn) <0},

xp41 = Pe, (on — gA]/n)r

for ¢ € (0, %) with L being the Lipschitz constant of A, and the weak convergence being
obtained. In study [22], Reich et al. suggested the modified projection-type method for
solving the VIP with the pseudo-monotone and uniformly continuous mapping A, given a
sequence {a, } C (0,1) and a contraction f : C — C with constant ¢ € [0,1). For any initial
x1 € C, the sequence {x,} is constructed below.

Furthermore, it was proven in study [22] that the sequence {x,, } generated by Algorithm 1
converges strongly. Subsequently, Ceng, Yao and Shehu [21] proposed a Mann-type method
of (2) to solve pseudo-monotone variational inequalities and the common fixed point prob-
lem of many finitely nonexpansive self-mappings {T;}¥, on C and an asymptotically
nonexpansive self-mapping Ty := T on C. Given a contraction f : C — C with constant
0€(0,1),let{o,} C [0,1] and {an}, {Bn}, {7vn} C (0,1) withay, + By +vn =1Vn > 1and
Ty := Tymodn- For any initial x; € C, the sequence {xy, } is constructed below (Algorithm 2).

Algorithm 1 (see study [22]). Initialization: Given u > 0, I € (0,1), A € (0, %)

Iterative Steps: Given the current iterate x;,, calculate x, 11 as follows:

Step 1. Compute v, = Pc(x, — AAxy) and 7y (x,) := Xy — yn. I 1y (x) =0,
then stop. x, is a solution of VI(C, A). Otherwise;

Step 2. Compute wy, = x; — Cnr/\(xn), where {,, := Iin and jn is the smallest nonnegative
integer j, satisfying (Ax, — A(x, — Ury(xn)), A (x4)) < %||rA(xn)||2;

Step 3. Compute x,, 11 = &, f(xy) + (1 — ay)Pc, (x4), where C,, := {x € C : hy(x,) <0}
and Ji, (x) = (Awy, x — x) + 52|72 (x0) |-

Under suitable conditions, it was proven in study [21] that the sequence {x,} con-
verges strongly to x* € Q = NN, Fix(T;) N VI(C, A) if and only if limy—co (|| xn — %11 +
llxn — ynl|) = 0 provided T"z, — T"*'z, — 0, where x* = Pq(I — pF + f)x*.

In a real Hilbert space H, let the VIP and CFPP represent the pseudo-monotone
variational inequality problem with uniformly continuous mapping A, the common fixed
point problem of a finite family of nonexpansive mappings {T;}Y ;, and an asymptotically
nonexpansive mapping Ty := T, respectively. Inspired by the above research works, we
propose and analyze two modified Mann subgradient-like extragradient algorithms with
the line-search process for solving the VIP and CFPP. The proposed algorithms are based
on the Mann iteration method, (3) method with the line-search process, and the viscosity
approximation method. Under some conditions, we establish some strong convergence
results for the sequences constructed by these proposed rules. Finally, our main results are
applied to handle the VIP and CFPP in an illustrated example.
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Algorithm 2 (see study [21]). Initialization: Given u > 0, I € (0,1), A € (0, %)

Iterative Steps: Given x;, compute

Step 1. Set w, = (1 — on)xy + 04Tyxy, and compute y, = Pc(w, — AAw,) and
ra(wy) := wy — Yun;

Step 2. Compute t, = w, — {u7)(wy), where (,, := i and jn is the smallest nonnegative
integer j,

satisfying (Aw, — A(w, — lfrA(wn)),wn —Yn) < %Hm(wn)ﬂz;

Step 3. Compute z, = Pc, (wy) and X411 = anf (xn) + BuXn + 1T 20,
where Cy, := {x € C: hy(x) <0} and hy,(x) = (Aty, x — wy) + %Hm(wn)ﬂz.

Again set n := n + 1 and go to Step 1.

The structure of the article is specified below. In Section 2, we first recall some
concepts and basic results. Section 3 explores the strong convergence analysis of our
proposed methods. Finally, in Section 4, an illustrated example is given. Our results
complement related results by Ceng, Yao, and Shehu [21]; Reich et al. [22]; and Ceng
and Shang [9]. Indeed, it is worth emphasizing that our problem of finding an element
x*e Q= ﬂfio Fix(T;) N VI(C, A) is more general and more interesting than the corre-
sponding problem of finding an element x* € VI(C, A) in study [22]. Moreover, our
strong convergence theorems are more advantageous and more clever than the corre-
sponding strong convergence ones in studies [9,21] because the conclusion x,, — x* €
Q & ||xn — xy41]| + |20 — yu|| = 0 (n — o) in the corresponding strong convergence
theorems [9,21] is updated by our conclusion x;,, — x* € (). Without question, the strong
convergence criteria for the sequence {x,} in this paper are more convenient and more
beneficial in comparison with those of studies [9,21].

2. Preliminaries
Wesay that T:C — His

(a) L-Lipschitz continuous (or L-Lipschitzian) if 3L > 0 such that ||[Tu — To|| <
L|ju —v|| Yu,v € C;

(b) Monotone if (Tu — Tv,u —v) > 0Vu,v € C;

(c) pseudo-monotone if (Tu,v — u) > 0= (Tv,v —u) > 0Vu,v € C;

(d) @-strongly monotone if 3@ > 0 such that (Tu — To,u — v) > @||u — v||> Vu,v € C;

(e) Sequentially weakly continuous if V{u, } C C, we have u,, — u = Tu, — Tu.

One can see that (b) implies (c) but the converse fails. Given v € H, there exists a
unique nearest point in C, denoted by Pcv (Pc is called a metric projection of H onto C),
such that ||v — Pco|| < ||v —z|| Vz € C. According to reference [17], we know that the
following hold:

(@) (u — v, Pcu — Pcv) > ||Pcu — Pcol|? Yu,v € H;

(b) (u — Pcu,v— Pcu) <0 Yu € Hv € C;

(©) [lu = o> > [lu — Pcul]* + |lo — Pcul|* Yu € H,v € C;

(@) [lu =0l = [[u]]* - ol|* — 2(u — v,0) Yu,v € H;

(e) |Au+ uol|? = Al|u|> + ul|o||? — Au|lu —v||> Yu,o € H, VA, u € Rwith A +pu = 1.

Lemma 1. (see reference [4]). Let Hy and Hy be two real Hilbert spaces. Suppose that A : Hy —
H, is uniformly continuous on bounded subsets of Hy and M is a bounded subset of Hy. Then,
A(M) is bounded.
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It is easy from the subdifferential inequality of 1|| - ||:
lu+v|? < ||ul|®+2(v,u+v) Yu,ove H.

Lemma 2. (see reference [23]). Let h be a real-valued function on H and define K := {x € C :
h(x) < 0}. If K is nonempty and h is Lipschitz continuous on C with modulus ¢ > 0, then
dist(x, K) > ¢~ max{h(x),0} Vx € C, where dist(x, K) denotes the distance of x to K.

Lemma 3. (see reference [6], Lemma 2.1). Assume that A : C — H is pseudo-monotone and
continuous. Then u* € C is a solution to the VIP (Au*,u —u*) > 0Vu € C, if and only if
(Au,u —u*) > 0Vu € C.

Lemma 4. (see reference [24]). Let {b, } be a sequence of nonnegative numbers satisfying: b1 <
(1 = 6n)bn + Gnyn Yn > 1, where {gn} and {7yn} are sequences of real numbers such that (i)
{¢n} C [0,1] and Y571 ¢n = oo, and (ii) limsup, ., vn < 00r Yoy [Gnyn| < co. Then

limn_M)o bn - 0.

Lemma 5. (see reference [25]). Let X be a Banach space which admits a weakly continuous duality
mapping, C be a nonempty closed convex subset of X, and T : C — C be an asymptotically
nonexpansive mapping with Fix(T) # @. Then I — T is demiclosed at zero, i.e., if {x,} is a
sequence in C such that x, — x € Cand (I — T)x, — 0, then (I — T)x = 0, where I is the
identity mapping of X.

Lemma 6. (see reference [26]). Let {T'; } be a sequence of real numbers such that there exists {T',, }
of {T'n}, satisfying T, < T, 41 for each integer k > 1. Define

n(n) =max{k <n:Tj <Ti1},

where integer ng > 1 and {k < ng : Ty < Tj1} # @. Then (i) 5(ng) < n(ng+1) < --- and

n(n) — oo; (i) T <Tym)+1 and Ty <T)yq V1 > ng.

n(n) 1(n)

3. Our Contributions

Assume that

T : C — Cis an asymptotically nonexpansive mapping and T; : C — C is a nonexpan-
sive mapping for i = 1,..., N such that the sequence {T},}$7_, is defined as in Algorithm 1.

A : H — H is pseudo-monotone and uniformly continuous on C, s.t. [|Az| <
liminf, e || Axy|| for each {x,} C C with x,, — z.

f : C — Cis a contraction with constant ¢ € [0,1), and Q = NN, Fix(T;) N VI(C, A) #
Qwith Ty :=T.

{an}, {Bn}, {7n} € (0,1) and {0, } C [0,1] such that

Dan+PBn+yn=1YVn>1land ) ;a, = o0;

(i) im0 @ = 0 and lim,, o0 £2 = 0;

(iii) 0 < liminf, ;e vy < limsup, ., v < 1;

(iv) 0 < liminf, e 0y < limsup, , oy < 1.

.. . 2
Lemma 7. The Armijo-type search rule (5) is well defined, and consequently M < (Awy, rr(wy)).
Proof. From [ € (0,1) and uniform continuity of A on C, one has lim]-_m(Awn — A(wy, —
Ury(wy)),ra(wy)) = 0. If ry(wy) = O, then j, = 0. If r) (wy,) # 0, then 3 (integer) j, > 0,
satisfying (3.1). By the firm nonexpansivity of Pc, one obtains |x — Pcy||> < (x —y,x —
Pcy) Vx € C,y € H. Putting y = w, — AAw, and x = w,, one gets ||w, — Pc(w, —

AAwy)||* < AMAwy, wy, — Pe(wy, — AAwy)), and hence M < (Awp,rr(wy)). O
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Lemma 8. Let p € Q) and assume the function hy, is formulated as (3.2). Then, h,(w,) =
%Hr/\(wn)ﬂz and hy,(p) < 0. In addition, if r) (wy,) # 0, then hy(wy,) > 0.

Let {u, } be the sequence constructed in Algorithm 3.

Algorithm 3 Initialization: Given u >0, I € (0,1), A € (0, %) Pick u; € C.

Iterative Steps: Given u,, compute

Step 1. Set wy, = (1 — oy)uy + 0,T"u,, and compute y, = Pc(w, — AAwy,) and
rA(wn) = Wn — Yns

Step 2. Compute t, = w, — {u7\(wy), where (,, := i and jn is the smallest nonnegative
integer j,
satisfying

(Awy — A(wy — lj”A(wn))rwn —yn) < %”U(wn)ﬂz )

Step 3. Compute z, = Pp, (wy,) and u, 1 = anf(un) + Bnttn + YnTnzn,
where Dy, := {x € C: hy(x) <0} and

ha(x) = <Atn,x—wn)+§—/"\||m(wn)\|2. (6)

Again set n := n + 1 and go to Step 1.

Proof. The first claim of Lemma 8 is evident. Let us show the second claim. In fact, for
p € Q, by Lemma 3 one has (At,, t, — p) > 0. So, one obtains that

() = (Aba, p—wn) + S5 lra(@n)]? < ~Lal Aty ra(on)) + 2 ra@n) P (7)
Furthermore, from (5) one has (Aw, — Aty, r)(wy)) < 5||ra(wy) | Thus, by Lemma

7 we get

(Ao, 1r0)) 2 (A ra @) = Sl @)l 2 (5 = Dlin@)?. ®)
Combining (7) and (8) arrives at
n(p) < =55~ W)@ <0 ©)

O

Lemma9. Let {uy} be the sequence constructed in Algorithm 3, s.t. uy — Y — 0, Uy — Uy —
0, up — T"uy — 0, uy — Tyun — 0. Suppose that T"u, — T uy, — 0 and I{uy, } C {un}
s.t. uy, — z. Then z € Q).

Proof. Using Algorithm 3, one obtains w, — u, = n(T"uy, — uy) Vn > 1, and hence
[lwn — un|| < ||T"un — uy||. Using the hypothesis u,, — T"u,, — 0, we have

nhj{}o lwn — un|| =0, (10)
which together with the hypothesis u,, — y, — 0, implies that
[wn = ynll < [[wn = unll + tn = yull =0 (1 — c0).

Besides this, combining w,, — u;, — 0 and u,, — z yields w,, — z. [
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Let us show that limy_e0 ||ty — Tjun|| = 0 for i = 1,...,N. In fact, note that for
i=1,...,N,

lun — Toyivnll - < |ltn — Xpill + 1 %n4i = Tugidnsill + I Toixngi — Togitinl|
< 2uy — Xppill + %npi — TugiXnpill-

By uy — uy11 — 0 and u, — Tyu, — 0, we get limy, oo |4y — Tpypjity|| = 0 fori =
1,...,N. This immediately arrives at

lim [|u, — Tjuy|| =0 fori=1,..., N. (11)
n—o0

Moreover, we claim that u,, — Tu, — 0is as n — oco. In fact, combining the hypotheses
uy — T"uy — 0and T"u, — T"u, — 0, guarantees that

g = Tun|| < Jlun — T"un || + | T — T || 4 [ Tty — Tty |
<l = T || + | T — T || + (14 1) [ T — | (12)
= 2+ ) |lun — TMun|| + | T"up — T"Huy|| -0 (n — o).

Next, let us show z € VI(C, A). In fact, since C is convex and closed, from {u,} C C
and u,, — z we getz € C. In what follows, we consider two cases. If Az = 0, then it is
clear that z € VI(C, A) because (Az,x —z) > 0Vx € C. Assume that Az # 0. Then, it
follows from wy, — v, — 0 and w,, — z that y,, — z. Using the assumption on A, instead
of the sequentially weak continuity of A, we get 0 < ||Az|| < liminfy_,« || Ayy,||. So, we
could suppose that || Ay, || # 0 Vk > 1. Furthermore, from y, = Pc(w, — AAw,), we have
(wy — AAwy — yn, u — yn) < 0Vu € C. Thus,

1

X<w” —Yn, U — Yn) + (AWn, yn — wn) < (Awy, u —w,) Yu e C. (13)
According to the uniform continuity of A on C, one knows that { Awy, } is bounded (due to
Lemma 1). Note that {y;, } is bounded as well. Then, by (13) we have lim infy_, o (Awy,, u —
wy,) > 0Vu € C. To show that z € VI(C, A), we pick {ex} C (0,1) s.t. g, | 0 as k — co. For
each k > 1, let m; be the smallest natural number, such that

(Awn, u—wp;) +e >0 Vj = my. (14)

Since {¢;} is nonincreasing, it can be readily seen that {m} is increasing. Noticing that
Awpy,

Awy, # 0Vk > 1 (due to {Awy, } C {Awy,}), we set ppm, = ”Mz)vi"uz, and we get
mk

(Awp,, i) = 1. By (14), it gives (Awp,, u + expm, — Wy, ) > 0. The pseudomonotonicity
of A then gives (A(u + expim, ), U + explm, — Wm,) > 0, 1.,

(Au,u —wy ) > (Au— A(U+ explmy ), X + extlm, — Wi ) — (AU, P ) (15)

Observe that w,, — z, {wy, } C {wy } and g | 0as k — oco. So it follows that

. BT €k limsup; _, . &k _
0 < limsupy_,, llexptm, || = limsup;_, TAwm ] < liminfk%ooﬂ)AwnkH = 0. Hence, we get

expm, — 0ask — oco.

Next, we show that z € Q). Passing to the limit as k — oo in (15), we have (Au,u —z) =
liminfy_,(Au, u — wy,) > 0Vu € C. Using Lemma 3, z € VI(C, A). Furthermore, for
i=1,..,N,since Lemma 5 guarantees the demiclosedness of I — T; at zero, from u,, — z
and uy, — Tjuy, — 0 (due to (11)) we deduce that z € Fix(T;). Thus, z € ﬂf\il Fix(T;).
Hence, from u,, — z and wu, — Tu,, — 0 (due to (12)), we obtain that z € Fix(T).
Therefore, z € Q).

Lemma 10. Assume {w,} in Algorithm 3 is such that {y||r\(wy)||*> — 0asn — co. Then,
wy — Yn — 0.
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Proof. On the contrary, suppose that limsup, . ||wy — yx|| = a > 0. Then, 3{n;} C {n}
s.t.
]}Lfgonnk*?/nkH =a>0. (16)

Note that limy_,e, {n, |72 (ws, ) ||* = 0. In what follows, we consider two cases. [

Case 1. liminfy_,, i, > 0. In this case, we might assume that 3¢ > 0s.t. {,, > ¢ >
0 Vk > 1. Then, it follows that ||w,, — yn||* = ﬁgnkﬂwnk —yn|? < % T lra(wn) |12,

which hence yields
. . 1
0<a® = fim [y, — gy > < Jim |2 oy llraon) ] = 0. (17)

This reaches a contradiction.
Case 2. liminfy_,o, (s, = 0. In this case, there exists a subsequence of {(, }, still
denoted by {, }, such that limy_,, s, = 0. Putting v,, = %@nkynk +(1- %gnk)wnk, we

get vy, = wy, — %an(wnk — Yn, ). Since limy, e Znllra(wy)||> = 0, we have
1
. 2 . 2
kh_)n; ”Unk - lek” = kh—l;?o fzgnk : anHwnk - ]/nkH =0. (18)

From the step size rule (5) and the definition of v,,, it follows that
(Awp, — Avy, Wy, — Yny) > %Hwnk — Y, || (19)

Using the uniform the continuity of A on C, from (18) we deduce that limy_,«, || Aw,, —
Avy, || = 0, which together with (19) leads to limy_,, ||wy, — yn, || = 0. Thus, this contra-
dicts with (16). Consequently, limy, e ||wn — yx|| = 0.

Theorem 1. Suppose that the sequence {uy } is constructed by Algorithm 3. Then, u, — u* € Q
provided T"u, — T"u, — 0, where u* € Q) is the unique solution to the VIP: (I — f)u*,p —
u*) >0 VpeQ.

Proof. First of all, since 0 < liminf, e v, < limsup, . 7» < 1and lim, .« f—: =0, we

may assume, without loss of generality, that {y,} C [4,b] C (0,1) and ¢, < M Vn > 1.
Clearly, Pn o f : C — Cis a contraction. Hence, there exists u* € C, such that u* = P f(u*).
Therefore, u* € Q = NN, Fix(T;) N VI(C, A) of the VIP

(I— ', p—u) >0 Vpeq. (20)

Next, we show the conclusion of the theorem. With this aim, we consider the following
steps.

Step 1. We claim that the following inequality holds:
120 = pI* < [lwn — pl|* = dist?(wn, Du) Vp € Q. (21)
Indeed, one has

20 = I = |Poyon = pIP < = pl2 = [|Poyzws — w0y
— s — p|[2 - dist(wn, D),

which immediately yields

lzn = pll < lwn —pl| Vn>1. (22)
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Thus

< (1 —ou)llun — pll + oul| T"un — pl|

< (T —ou)llun — pll + ou(1+ ¢n) |lun — pl|
<

(1 +¢n)[[un — pll,
which together with (22), yields

lwn = pll

lzn = pll < llwn —pll < (T4 @) lun — pll Vn =1 (23)
Thus, from (23) and &y, 4+ B + vn = 1 Vn > 1 it follows that

lins1 — pll < @ullf (un) = pll + Balltn — pll + 1al| Tuzn — p|
Swn(IIf(un)—f(P)II+IIf(P)—PII)H%nIIun—pII+vn(1+¢n)||1un—PH
Swn(@Iqu—PIIJrIIf(P)—P|\>+ﬁn|\un—PII+7nIIun p||2+“" ) ||y, — p
= [1— 202wy — pl| + an ]l f(p) — pll < max{]||un — pl|, 2LE *’”}

Thus, ||uy, — p|| < max{|lu; — p|l, %)Q—pl\} Vn > 1. This {u,} is bounded, and so are

{wn}, {yn} Azn}, A f(un) }, {Atn}, {T" tn }, {Tuzn }-

Step 2. Let us obtain

Y| (1= )it = T2 4 120 — wal2] + Buyallun — Tz
< tn = pI2 = asr = I + 9K 4 200 (f 1) = p, s = p)

for some K > 0. To prove this, we first note that

|tns1 — P”2 llewn (f (un) — p) + Bu(ttn — p) + Yn(Tuzn — P)”z
< | Buun —p) +vu(Tuzn — P)Hz + 200 (f () — p, thny1 — p) (24)
< Ballun — P”2 +Ynllzn — P”z = Bnyallun — Tnzn||2 + 200 (f (Un) — P, thny1 — p)-

On the other hand, by Algorithm 3 one has

1z = pII* = [1Pp,wn — plI*> < lwn = plI* = llzn — wall?
= (1= 0n)|[un — plI* + oul T"un — plI* = (1 = ow)oul[un — T"uun[|* — |20 — wnl|? (25)
< (T ¢u)?llun — plI? = (1= ou)oulun — T"un||> — |20 — wal|*.

Substituting (25) into (24), one gets

s = pl2

< Bultn = pIP + 7 [ (L )24 = plI? = (1 = G)ollitn — T2 = 1z — 2]
— Buynllttn — Tuza||* + 200 (f (tn) — p,ttni1 — p)

< (1= a)lltn = pI2 = 70 [ (1= o)l = T2 + 1|2 — ]
+ P (2 + ) lun — PHZ — Bnynlltn — Tnzn||2 + 20, (f (tn) — p, 1 — p)

< flun = pI2 = 7| (1 = )ollin = Tl + 1z = wall2] = Bayalln — Tzl
+ YnK + 20, (f (1n) — p,ttnt1 — p),

where sup, -1 (2 + ¥, ||un — p||* < K for some K > 0. This immediately implies that
| (1= )0l — TP + 1z = wul2| + Bvauen — Tz
< lun = pI? = lunsr = pl* + uK + 20 (f (un) = p, wnr1 = p)-
Step 3. We show that

Tn {zinL

2
IIM(wn)IIZ} < ltw = pI? = lnsr = pl? + ull f(un) = plI? + uK.
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Indeed, we claim that for some L > 0,

@I2]" (26)

len — pl> < llwon — pIP — [ 52

Thanks to the boundedness of { Aty }, we know that 3L > 0s.t. ||At,|| < LVn > 1, which
arrives at

1 (u) =l (0)| = [(Atn, u — 0)| < [[At]|[|u — 0l| < Lllu —o[| Vu,0 € Dy.

This hence ensures that h,(+) is L-Lipschitz continuous on D,,. By Lemmas 2 and 8, one ob-
tains
Cn

2AL

dist(wn, D) > 1 () = 7 o) (27)

Combining (21) and (27) immediately yields

2
len — Pl < lon = pIP — [52ra o) 7]

From Algorithm 3, (23), and (26) it follows that

1 = pI2 < anllf () = I + Bullun = pI2 + 7l Taza — p2
<l F ) — Pl Bl — I + 7l (L4 9)2llen — pI = [ lira () 2] )
<l F () — I + (1= )l — I+ 2 ) — I [ G oo 2]
<l Fan) — Pl K+ e — pI2 = [ e 2]

This immediately yields

g 2
Yo [ 32l (@a) 2] < lltn = pI? = atnsn = pI? + il £ (1) = pI? + K.

Step 4. We show that

2(f(p) —puns1—p) , Yu K } (28)

ltner = pIP < (1= an(1 = @) n — pI2 +an(1—0) | P K

1-0 x, 1—op
Indeed, from Algorithm 3 and (23), one has

luns1 = pl? = llaa(f (un) = £(p)) + Bu(ttn = p) + Vu(Tuzn = p) + an(f(p) = p)|I?
< [Jan( ( 1) = f(P)) + Bu(ttn = p) + Yn(Tuzn — p)|I> + 20 (f(p) — p, 1 — P)
< | f(un) = F(P)I1? + Bullw = pI1? + Vullzn — pII? + 200 (£ (p) = p, ttns1 = p)
< | f(un) = f(P)lI2 + Bulltn = pI? + 1 (14 ¥u)?llun = plI> + 200 (£ (p) = p, tins1 = p)
< Qan|un — plI> + Bulltn — plI> +yulln — plI* + u (2 + ) [ un — p|I?

+ 200 (f(p) = P ttns1 = p)
< ottnl|un — plI* + Bullun — plI> + Yullttn — pI1> + YuK + 200 (f(p) = p, ttns1 — p)
= [1—an(1 = @)]llun = plI* + puK + 200 (f (p) — p, ttus1 — p)
= (1= wa(1 = ) tn — pII? + wa(1 — ) LB twr=P) 4 o K],

Step 5. We obtain the strong convergence to u* € (), satisfying (20).

Indeed, putting p = u*, we deduce from (28) that

||un+l_u*||2 (1_0611(1_ ))||un—u*||2+txn(1—9) {2<f(u*)_u*run+l_u*> _’_ﬂi} (29)

1-9 oy, 1—o9

Setting T’ = ||uy, — u*||2 weshow I'; — 0 (n — o0). O



Mathematics 2022, 10, 779

10 of 20

Case 1. Assume there exists ny > 1 such that {I', } is nonincreasing. Thus, lim, e ['y =
h < +oco and limy e (I'y —T'41) = 0. Putting p = u*, from Step 2 and {v,,} C [a,b] C
(0,1), we obtain

al(1 = on)ou||ttn — T"un > + |20 — wn||*] + (1 — an — b)al|un — Tuzal|?
< | (1= 0ot — T + llz — wal ] + Buyallun — Tuzal
< ot — w2 = [fsnr — 0 [|> 4+ YK + 200 (f (1) — u*, 1 — 1%

< T = Toga + puK o 2000 | f () — |||t — w7

Since 0 < liminf; ;0 0y < limsup,_, o, <1,¢, =0, 2y -+ 0and I, — T, 11 — 0, from
the boundedness of {u,} one has

lim |luy, — T"uy|| = Um ||uy — Tyzy| = lim [|w, —z,]| = 0. (30)
n—o0 n—o0 n—oo

So, it follows from Algorithm 3 and (30) that
lwn —un|l = oul| T"un — unl] < |T"un —unl| =0 (n — o0),

and
luns1 —unll < anllf(un) = vnl + vnl| Tuzn — uan|| (31)
< an|lf(un) — unl| + | Tuzn — unl| =0 (n — o0).

Putting p = u*, from Step 3 we obtain

2
Yo | R Ira@a)lP] < it = 012 = ot = 0711 + £ 10) = 7|2 + K
=T — Tng1 + YuK + o || f (un) — w2

Since 0 < liminf,—eo ¥Yu, Y — 0, &y = 0and I'; — T, — 0, from the boundedness of
{u,} one gets

: Cn 2]% _
Jim [ e (wa) 2] = 0.

Hence, by Lemma 10 we deduce that

nlg{}o [wn —yul =0,

which immediately yields
[ = yull < llun = wnl] +[lewn = yull =0 (1 = c0) (32)

From the boundedness of {u,}, it follows that there exists a subsequence {uy, } of {u,}
such that
limsup(f(u*) —u*,uy —u*) = Uim (f(u*) — u*, up, —u*). (33)

n—00 k—oo

Since H is reflexive and {u,} is bounded, we may assume, without loss of generality, that
uy, — X. Thus, from (33) one gets

tim sup {f () — ey —u) = Jim (F(u) = o, = )
— () ' T ).

Furthermore, by Algorithm 3 we get u,+1 — zy = an(f(tn) — 2zn) + Bn(tn — zn) +
Yn(Tuzn — 2y ), which immediately yields

(34)

Yull Tnzn — zn|l < [tng1 — znll + an (| f(un) | + 1zall) + Bullun — zul|
< lungr — tn|l +2(l[ttn — wall + [[wn — zall) + an (|| f () | + [1za])-
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Since u, —up41 — 0, wp —uy, - 0, wy —z, = 0, &y, — 0, liminf, oy, > 0 and
{un},{zn} are bounded, we obtain lim, e ||zx — Tuzx|| = 0, which together with the
nonexpansivity of each Tj, arrives at

lun — Tuunll < llun — znll + |20 — Tuzn |l + [ Tuzn — Tatin||
< 2[|uy — zy|| + ||Zn - Tnzn”
< 2(|lun — wal| + lwn — zal|) + |zn — Tuzall = 0 (n — o0).

Since uy —yn — 0, uy — tyy1 — 0, uy — T"upy — 0, uy — Tyupy — 0 and u,, — X, by
Lemma 9 we infer that X € (). Hence from (20) and (34) one gets
limsup(f(u*) —u*,uy —u*) = (f(u*) —u*,x —u*) <0, (35)

n—oo

which immediately leads to

limsup(f(u*) — u*, up 1 —u*)
n—o0

= lim sup {(f(u*) — U U1 — Un) + (f(U5) — 0", Uy — ”*>} (36)

n—oo
< timsup| || (%) = | llwa 1 = teall + (F(u7) = %, = )| < 0.
n—,oo

Note that {a,(1—0)} C [0,1], Y57 n(1 — ) = oo, and

. 2(f(u*) —u*, upy —u*) | ¢Pn K
1 Yo 2 1<
im sup | = e T

Consequently, applying Lemma 4 to (29), one has lim; e [Jun — u*||?> = 0.
Case 2. Suppose that I{T,, } C {I'y} s.t. Ty, < Ty 41 Vk € N, where N is the set of
all positive integers. Define the mapping 77 : N — N by

n(n) :=max{k <n:Tx <Tr1}.
By Lemma 6, we get
Ty < Tyen1 and T < Ty

Putting p = u*, from Step 2 we have

8 (1 = )Ty 1ty = TPty ) I + 20y — 0 1]
+ (1= ey = D)allyiny = Ty zy(n 12
< Yy | (1= )Ty ity = T 002+ 1z ) = 0y )
+ By Yy Nty n) = Ty 2y 12
< Ty = Tymy1 & Py K+ 2000y (F () = 07 Xy ()1 — 47
< Py (n) K 4 20 () | f (g )) — 0 |12 ()11 — "),

which immediately yields

B ) — T7 | = o (i) = Ty 2y | = Bm[[wy ) = 2y [} = 0.

Putting p = u*, from Step 3 we get

é n *
Vo) B NA @) I < Ty = Tyny1 + Qg L () — w117 + ) K

< l:bn(n)K + D‘q(n)”f(”q(n)) - u*||2r

which hence leads to

o 2
Tim [22 ()] = 0.
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Utilizing the same inferences as in the proof of Case 1, we deduce that
nlgl;lo ||wr](n) ~ Yy H = nlgrolo ||w;7(n) - ur](n)” = nlgl;lo Huiy(n)—i-l — Uy(n) H =0,

and
limsup(f(u*) —u*, ()41 —u*) <0.

n—o0

On the other hand, from (29) we obtain

<f(u*)7u*/” n 7”*> lIJ n
0 (1= Ty < Ty = Ty + &y (1— @) et E
2(f (uw*)—u*u Y Py
< “q(n)(l - Q) [ 1— g< — + aZ:n)) ’ %}
which hence arrives at
2<f(u*) —u’, Uym)y+1 — u*> 1P;7(n) K
i <l . <0.
hmsupTW(n) _hmsup[ -0 + . 1 Q] <0

n—o0 n—o0

Thus, limy, e ||u u*||? = 0. Furthermore, note that

n(n) —

R R

~ 3 g1 = gy ) = 07D+ Lty oy 41 = a1
< 2||u;7(n)+1 — Uy(n) ” ”uiy(n) - M*H + Hury(n)-i-l — Uy(n) ”2 —0 (Tl - oo)

Thanks to T, < 1",7(”)+1, we get

loan — w1 < [ty uy 1 — |2
< ”ury(n) - u*Hz +2||u77(n)+1 - un(n)””un(n) - M*H + Huiy(n)-i-l - 1"17(71)”2 —0 (1’1 - oo)

Thatis, u, — u* asn — oo.
Theorem 2. Suppose T : C — C is nonexpansive and {uy } is constructed by: u; € C,

wy = (1 —0p)uy + 04 Tuy,

Yn = PC(wn - AAwn),

tn = (1 = Cn)wn + Cnyn,

zy = Pp, (wn)/

Upt1 = "‘nf(“n) + Buttn + YnTuzn,

where for each n > 1, D, and {,, that are chosen as in Algorithm 3, then u, — u* € Q), where
u* € Q) is the unique solution to the VIP: ((I — f)u*,p —u*) >0 Vp € QL.

Proof. Step 1. {u,} is bounded. Indeed, using the same arguments as in Step 1 of the
proof of Theorem 1, we obtain the desired assertion.
Step 2.

Tn [(1 — )0 [ttn — Tut||* + [|z0 — wnHZ} + Bunynllun — Tuzal?
< [fun = pl? = Nttnsr = pI1? + 200 (f (un) = p, ttns1 — p)-
Indeed, using the same arguments as in Step 2 of the proof of Theorem 1, we have the

result.
Step 3.

{ﬁan(wn)n } < it — plI? =ttt — pI2 + sl f ) — plI-
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The same arguments in Step 3 of the proof of Theorem 1 give the conclusion.
Step 4.

2(f(p) = p w1 —p)
1-¢

ltnn = pI? < (1= an(1 = @) lun = plI* +au(1-0) -

The results follow from the same arguments as in Step 4 of the proof of Theorem 1.
Step 5. {u,} converges strongly to u* € ), which satisfies (20), with Ty = T as a
nonexpansive mapping. Letting p = u*, we deduce from Step 4 that

2<f(u*) _ u*/un+1 - ”*> . (37)

lotn = )2 < (1= an (1 = @))[Jun — 0 [|* + an(1 = ) - -0

Setting T, = ||y, — u*||?, we show I'; — 0 (n — o) by considering the two cases
below. [

Case 1. If there exists an integer ny > 1 such that {I';} is nonincreasing, then
lim, ;0 Iy = B < +o0 and limyeo(T'y — T41) = 0. Putting p = u*, from Step 2 and
{n} C [a,b] C (0,1) we obtain

a[(1 — )0 | un — Tutn||* + |20 — wn|?] + (1 — a0 — b)al|un — Tuzy?

< Y[ (1 = 0w)ullitn — Tutal P + 1120 — wn 2] + Bayallu — Tuza 2

<I'y—-Tun +2"‘n<f(un) — U, Uy — u*>
< Ty — Ty + 2an || f(un) — w¥|[[[unr1 —u*]],

which hence yields
lim |y, — Tu,| = lim |juy, — Tyzy|| = lim ||w, — 24| = 0. (38)
n—oo n—oo n—oo

Putting p = u*, from Step 3 we obtain

2
Y | R Ira@a)l] < T = Tuga + all f () — [,

which immediately leads to

[ Gn 2% _
Jim | S Gwn)|P]” = 0.

By inference, as in Case 1, of the proof of Theorem 1, we deduce

nlgr.}o |[wn —yull = nlgr.}o |[wn —un|| = nlgr.}o ltns1 —unl =0, (39)
and
limsup(f(u*) — u*, uy1 —u*) <O0. (40)
n—oo

Consequently, applying Lemma 4 to (37), one has limy, o ||ty — u*[|? = 0.
Case 2. Suppose that I{T, } C {T} s.t. Ty, < Ty 11 Yk € N, where N is the set of
all positive integers. Define the mapping 77 : N' — N by

n(n) :=max{k <n:Tp <Tyi1}.
By Lemma 6, we get
o = Tyoyr and Tn < Ty

The conclusion follows using same arguments as in Case 2 of the proof of Theorem 1.
We introduce a viscosity extragradient-like iterative method.
We point out that Lemmas 7-10 still hold for Algorithm 4.
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Algorithm 4 Initialization: Given u > 0, I € (0,1), A € (0, %) Let 1 € C be arbitrary.

Iterative Steps: Given u,, calculate

Step 1. Set w, = (1 — oy)uy + 0,T"u,, and compute y, = Pc(w, — AAwy,) and
rA(wy) == wy — Y.

Step 2. Compute t, = w, — {u7)(wy), where (,, == I and jn is the smallest nonnegative
integer j,

satisfying ‘

(Awy — Ay — Br(wn)), @i — yu) < & lra () 2 (41)

Step 3. Compute z, = Pp, (wy) and w1 = &y f(Un) + BnwWn + YnTuzn,
where Dy, :== {x € C: hy(x) <0} and

I () = (At x = 0n) + 53 2 (wn) |2 (42)

Theorem 3. Suppose {u,} is constructed by Algorithm 4. Then, u, — u* € Q provided
T"uy — T uy, — 0, where u* € Q) is the unique solution to the VIP: ((I — f)u*,p — u*) >
0VpeQ.

Proof. By 0 < liminf, e ¥y < limsup, ., v» < 1and lim; f—;’ = 0, we have, without

loss of generality, that {y,} C [a,b] C (0,1) and ¢, < w Vn > 1. By the same
arguments as in the proof of Theorem 3.1, we have u* € () = ﬂilio Fix(T;) N VI(C, A).
Next, we show the conclusion of the theorem. With this aim, we divide the rest of the
proof into several steps.
Step 1. {u,} is bounded. Using the same arguments as in Step 1 of the proof of
Theorem 3.1, we have inequalities (21)-(23). Thus, from (23) and &, + By + ¥ =1Vn > 1,
it follows that

[0 — pll < an (][ f(u

n) = F(P)I+ 1 f(p) —pl) + Bullwn — pll + Ynllzn — pll
< an(ellun —pll+Ilf(p)—p
p)—p
)—p

p
)+ Bullwn — pll + vnllwn — pl|

< an(ellun —pll + I £( )+ (B + 1) (14 ) [Jun — p

< an(ellun = pll + 11 £(p) = pl) +

= (1 = - pl + 2

< max{||un — p||, 2Hf PH}

n(1—
+ (B + 1) l|n = pll + 52 [l —

|
|
|
(1-9) . 2llf(p)—rl
1-¢

Inducting, we obtain ||u, — p|| < max{||u; —p||, %)Q_”H} Vn > 1. Thus, {u, } isbounded,

and so are the sequences {wy }, {yn}, {zn}, {f(un)}, {Atn}, {T"un}, {Tuzn}.
Step 2. We show that

Y| (1= 0)ulitn = T2 4 12 = w0 2] + Buyall s — Tozal
< Mlun = plI* = lltns1 = plI* + $uK + 200 (f () = p, a1 — p)

for some K > 0. To prove this, we first note that

- PHZ = |lan(f(tn) — p) + Bn(wn — p) + Yu(Tuzn — P)Hz
< |1Bn(wn = p) + vu(Tuzn — p)II* + 200 (f () — P, tns1 — p) (43)
< Bullwn — pl* + vallza — pII*> = Buvnllwn — Tuzu||? + 200 (f (4n) — p, ttng1 — p)-

On the other hand, using the same inferences as in (25) one has

lzn = plI* < (L4 ) llun — P = (1 = 0u) |t — T | — l|zn — 70> (44)
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Substituting (44) into (43), one gets

ltni1 — pl1?
< Bu(L4 ) llun — pl* + vl + ) Jtin — plI* — (1 — o) oullutn — T un|* — ||z — wa?]

— Buyullwn — Tzl + 20, (f (un) — p, iy — p)

< (1 —an)[Jun — PH2 = Yn[(1 = on)on|lun — T””nHz + ||z — wnHZ]
+ Pu(2+ Pu) |n — pII> — Buvallwn — Tuznl? + 20 (f (un) — p, ting1 — p)

< Jtn = pI? = u [ (1 = Gu)llun = T2+ 120 = wil12] = Buyallaon — Tzl
+ YK+ 200 (f (Un) — p, thus1 — p),

where sup, 1 (2 + ¢n)|[un — p||?> < K for some K > 0. This immediately implies that

Yul(1 = ) llutn — T"un||? + |20 — wal|*] + Buynllwn — Tuzal?
< lun = plI*> = lluns1 — plI> + uK + 200 (f (4n) — p, i1 — p)-

Step 3. We show that

g 2
[z Ira(n)2] < fen = pI2 =l = pI2 + nll f 1) = pI? + K

Indeed, using the same argument as that of (26), we obtain that for some L > 0,

" 2
len — Pl < lwon = pIP — [522 ra o) 7] (45)

From Algorithm 4, (23), and (45) it follows that
11 =PI < anllf(un) = pI? + Bullwn = pI? + yullza — pI?

< | f (un) = plI*> + Bullwn — plI* + valllwn — pl|* — [2%& 72 (wn)[12]]
< aull f(un) = P12+ (14 )|l — I — vl 72 (wn) )2

2
< aallf () = pII? + [t = I + K = 7| Ira(eon) 2],

which hence yields the desired assertion.

Step 4. We show that

2(f(p) =pttnyr —p) | ¥n K

—ll2 < (1— _ 12 - n+ Yn K
i1 = pI? < (= (1= 0)) = pI2 + (1= 0)| = T
Indeed, from Algorithm 4 and (3.19), one has

11— plI?

< lan(f(un) = f(p)) + Bu(wn = p) + Yu(Tuzn — p) || 4+ 200 (f (p) — p, hn1 — p)

< Qan|un — plI* + Bullwn — plI* +vullzn — plI* + 200 (f (p) = p, ttns1 — p)

< oanllun — plI* + (1 = an) ||wn — pl|> + 200 (f (p) = p, tins1 — p)

< oanlun — pl* + (1 — &) un — plI* + $u(2+ ) lun — plI* + 200 (f (p) — p, ttys1 — p)
< [1—an(1 = Q)llun — plI* + puK + 20n{f (p) = p, a1 — p),

which hence leads to the desired assertion.
Step 5. {u,} converges strongly to the unique solution u* € (), which satisfies (20).
This follows the argument in Step 5 of the proof of Theorem 1. [
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Theorem 4. Suppose T : C — C is nonexpansive and {uy } is constructed by: u; € C,

wy = (1 — o)ty + 0y Tuy,

Yn = PC(wn - )\Awn)/

th = (1= Cu)wn + CnYn,

Zp = PD,, (wn)/

Upy1 = “nf(un) + ﬁnwn + Y Tnzn,

where for each n > 1, Dy, and {;, are chosen as in Algorithm 4, then u,, — u* € Q, where u™ € Q)
is the unique solution to the VIP: ((I — f)u*,p —u*) >0 Vp € Q.

Proof. Step 1. By Step 1 of the proof of Theorem 2, we see that {u,} is bounded.
Step 2. By the same arguments as in Step 2 of the proof of Theorem 2, we have

Yu[(1 = )0 ||ttn — Tun||® + [|z0 — wal|?] + Buvallun — Tuzal?
<l = plI? = g1 — pl* + 200 (f (un) — p,ttns1 — p),

for some K > 0.
Step 3. Step 3 of the proof of Theorem 2 gives

2
[ o] < lew = plI2 = s — pI @l ) — I

Step 4. Step 4 of the proof of Theorem 2 gives

2(f(p) = p w1 = p).

1 = pI? < (1= an(1 = @) llun = plI* + au(1-0) - -0

Step 5. By arguments as in Step 5 of the proof of Theorem 2, we have that {u,}
converges strongly to the unique solution u* € (), satisfying (20). O

Remark 1. Compared with the corresponding results in Ceng et al. [21], Reich et al. [22], and
Ceng and Shang [9], our results improve and extend them in the following aspects.

(i) Although the same problem of finding an element of N, Fix(T;) N VI(C, A) as
considered in this paper was studied in reference [21], our strong convergence theorems are
more advantageous and more subtle than the corresponding strong convergence ones in
reference [21] because the conclusion u, — u* € Q < ||uy — tyi1|| + ||tn — yul| = 0 (n —
o) in the corresponding strong convergence theorems [21] is updated by our conclusion
uy, — u* € Q). Without doubt, the strong convergence criteria for the sequence {u,} in this
paper are more convenient and more beneficial in comparison with those of reference [21].
In addition, to overcome the weakness of the strong convergence criteria in reference [21]
(i-e., limy oo (||ttn — tps1|| + ||ttn — yul|) = 0), we make use of Maingé’s technique (i.e.,
Lemma 6) to derive successfully the conclusion u;,, — u* € Q).

(ii) Our results reduce to the results in reference [22] when T; = I, where [ is the
identity mapping fori = 0,1, ..., N.

(iii) The operator A in reference [9] is extended from being Lipschitz continuous and
sequentially weak in continuity mapping to A being uniformly continuous with || Az|| <
liminf, e ||Auy|| for each {u,} C C with u, — z € C. Furthermore, the hybrid inertial
subgradient extragradient method with the line-search process in reference [9] is extended
in this paper. For example, the original inertial technique w;,, = Tyuy + an(Tutty — TXy—1)
is replaced by our Mann iteration approach w, = (1 — 0y, )u, + 0,T"u,, and the original
iterative step 11 = Buf(Un) + Ynttn + ((1 — yu)I — BupF)T"z, is replaced by our simpler
iterative one u, 11 = anf (Uy) + Pntn + YnTnzn. It is worth mentioning that the definition
of z;, in the former formulation of u, 1 is very different from the definition of z, in the
latter formulation of u,, 1.
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(iv) We intend to apply the SP-iteration studied in reference [27] to the problem of
finding an element of NY, Fix(T;) N VI(C, A) considered in this paper in our next project.
As part of our future project, we will apply our results to the appearance of fractals using
ideas given in reference [28].

4. Applications
In what follows, we give the following illustrated example. Puty =1 =\ = 1, 0, = %,

dn = 3 and'ynzf

n+1 , Bn = n+1)
We flrst provide an example of Lipschitz continuous and pseudo-monotone mapping
A, asymptotically nonexpansive mapping T and nonexpansive mapping T; with () =
Fix(Ty) NFix(T) N VI(C,A) # @. Let C = [-3,3] and H = R with the inner product
(a,b) = ab and induced norm || - || = | - |. The initial point u; is randomly chosen in C.
Take f(u) = uVu € Cwithg = 1. Let A: H— Hand T, T : C — C be defined as
Au = m 1+1|u\' Tu := % sinu, and Tiu :=sinu for all u € C. We now claim that A

is pseudo-monotone and Lipschitz continuous. Indeed, for all u,v € H we have

‘ [lo)|—]jull | + ‘ || sino||—|| sin u]] ‘

(I+{ulD@+{ol) (1+] sinul[) (1+] sino]])
l|lo—u + || sinv—sinu||

(L+[[ul) (T+[loll) (14| sinu]]) (1+]] sinv]|)

|lu—o| + | sinu —sinv| <2|ju—v|.

||Au — Av]|

ININCIA

This implies that A is Lipschitz continuous. Next, we show that A is pseudo-monotone.
For each u,v € H, it is easy to see that

1 1 1 1
- —u)>0=(Av,v—u) = - —
1+ |sinul 1+|u|)(0 u)z (Ao, 0 —u) (1+|smv| 1+ |7

(Au,v—u) = ( )(v—u) > 0.
Besides, it is easy to verify that T is asymptotically nonexpansive with ¢, = ()" Vn >
1, such that || T"*1z, — T"z,|| — 0 as n — 0. Indeed, we observe that

2 _ 2
IT"u =Tl < 2 [|T" " u tu—T" | < < ()"l =vl = @+ u)llu —of,
and

2., 2
T oty — T | < (5)" U T?un — Tun || = (3

2 2 2
n—1 o T < ~\n
5) ||5s1r1(Tun) SSm”nH 72(5) — 0.

It is clear that Fix(T) = {0} and

 Yn (2/5)"
B = T30 1)

In addition, it is clear that Tj is nonexpansive and Fix(T;) = {0}. Therefore, ) =
Fix(T1) NFix(T) N VI(C,A) = {0} # @. In this case, Algorithm 3 can be rewritten as
follows:

wy = %un + %T”un,

Yn = Pc(wy — %Awn),

th = (1 = Cn)wn + Cnln, (46)
Zp = PD,, (wn)

Upt1 = 3(n1+1) éun + 3(n+1) Up + 3T12n Vn > 1,

where for each n > 1, D,, and (,, are chosen as in Algorithm 3. Then, by Theorem 1, we
know that {u, } converges to 0 € Q) = Fix(T;) N Fix(T) N VI(C, A).
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More so, since Tu := % sin u is also nonexpansive, we consider the modified version of
Algorithm 3, that is,

wy = %un + %Tun,

Yn = Pc(w, — %Awn),
th = (1 — Zu)wn + Cnyn,
Zn = PDn (wn)/

Upy1 =

(47)

.%un_i_ n

2
mun—‘—ngzn \V/n 2 ].,

3(n+1)
where for each n > 1, D, and (;, are chosen as above. Then, by Theorem 2, we know that
{un} converges to 0 € 3 = Fix(Ty) NFix(T) N VI(C, A). In particular, we compare the
performance of the new algorithm (4.2) with the Reich et al. [22] method using similar
parameters as above. We choose the following initial input and take ||u,, ;1 — 1| < 5E~>
as the stopping criterion:
Casel:u; =2; Casell:u; =exp(3?); Caselllu; =3m; CaselViug =7.

The numerical results are shown in Table 1 and Figure 1. One can observe from the
table and figures that our proposed Algorithm 1 outperforms the method proposed by
Reich et al. [22] based on our test example.

Table 1. Numerical results showing performance of our new method and the Reich et al. [22] method.

New Algorithm Riech et al. [22] alg.
Iter. Time Iter. Time
Casel 17 0.0082 72 0.0176
Case Il 24 0.0079 168 0.0717
Case I1I 58 0.0131 71 0.0166
Case IV 119 0.0298 164 0.0455

25

——New algorithm
——Riech et al. alg.

30 40 50
Iteration number (n)

60 70 80

——New algorithm
——Riech et al. alg.

30 40 50
Iteration number (n)

60 70 80

30

—=—New algorithm
——Riech et al. alg.

40 60 80 100 120
Iteration number (n)

140 160 180

——New algorithm
——Riech et al. alg.

&

40 60 80 100 120
Iteration number (n)

140 160 180

Figure 1. Computation result showing performance of our new method and the Reich et al. [22]
method: Top Left: Case I; Top Right: Case II; Bottom Left: Case III; Bottom Right: Case IV.
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