
����������
�������

Citation: Molnár, B.; Benczúr, A. The

Application of Directed

Hyper-Graphs for Analysis of

Models of Information Systems.

Mathematics 2022, 10, 759. https://

doi.org/10.3390/math10050759

Academic Editor: Frank Werner

Received: 31 January 2022

Accepted: 21 February 2022

Published: 27 February 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

The Application of Directed Hyper-Graphs for Analysis of
Models of Information Systems
Bálint Molnár *,† and András Benczúr *,†

Faculty of Informatics, Eötvös Loránd University, ELTE, Pázmány Péter 1/C, 1117 Budapest, Hungary
* Correspondence: molnarba@inf.elte.hu (B.M.); abenczur@inf.elte.hu (A.B.)
† These authors contributed equally to this work.

Abstract: Hyper-graphs offer the opportunity to formulate logical statements about their components,
for example, using Horn clauses. Several models of Information Systems can be represented using
hyper-graphs as the workflows, i.e., the business processes. During the modeling of Information
Systems, many constraints should be maintained during the development process. The models
of Information Systems are complex objects, for this reason, the analysis of algorithms and graph
structures that can support the consistency and integrity of models is an essential issue. A set of
interdependencies between models and components of architecture can be formulated by functional
dependencies and can be investigated via algorithmic methods. Information Systems can be perceived
as overarching documents that includes data collections; documents to be processed; and representa-
tions of business processes, activities, and services. Whe selecting and working out an appropriate
method encoding of artifacts in Information Systems, the complex structure can be represented using
hyper-graphs. This representation enables the application of various model-checking, verification,
and validation tools that are based on formal approaches. This paper describes the proposed rep-
resentations in different situations using hyper-graphs, moreover, the formal, algorithmic-based
model-checking methods that are coupled with the representations. The model-checking methods
are realized by algorithms that are grounded in graph-theoretical approaches and tailored to the
specificity of hyper-graphs. Finally, the possible applications in a real-life enterprise environment
are outlined.

Keywords: hyper-graph; information systems; enterprise architecture; horn clause; business process
modeling; formal representation of processes

MSC: 68U35; 68M99; 05C65; 97M99; 68Q85

1. Introduction

The notion of Information Systems looks back for decades; nonetheless, it is difficult
to define, because of the complexity of such systems and their diverse application area.
This is different from the General Systems Theory, which states

“A system can be defined as a complex of interacting elements.” [1], p. 55.

A suitable definition is necessary for Information Systems in an enterprise envi-
ronment. Based on the enormous relevant literature, we can conceptualize Information
Systems as follows: Information Systems based on Information Technology operate in
an organizational and human environment to achieve well-defined objectives through
processing, storing, retrieving, disseminating, and transferring data to yield information
for the end-users (cf. [2]).

An information system has various facets, aspects, perspectives, and views. We can
investigate the services of Information Systems from the point of Service Science, i.e.,
what kind of services are provided by Information Systems [3,4]. Several types of Infor-
mation Systems are typically embedded into the Service Systems of an Enterprise. In

Mathematics 2022, 10, 759. https://doi.org/10.3390/math10050759 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10050759
https://doi.org/10.3390/math10050759
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0001-5015-8883
https://orcid.org/0000-0002-8678-3346
https://doi.org/10.3390/math10050759
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math10050759?type=check_update&version=3

Mathematics 2022, 10, 759 2 of 47

the Service Economy, Service Systems can be ameliorated through correct and accurate
information management of Information Systems, which are the workhorses of Company
Operation. Service Systems, and the underlying Information Systems, can be perceived as
socio-technical systems because of their strong interactions with the human environment.
Service innovation that is based on ICT (Information and Communication Technologies)
requires a disciplined design approach between the carbon (human) and silicon (ma-
chine/computer) agents [5]. Designing a proper human–machine interaction is a challenge,
as the major players can be cyber-physical systems, IoT (Internet of Things), sensors, ac-
tuators, edge computing, Cognitive Information Systems, or Decision Support Systems
based on advanced Data Science [6]. To make the services that are yielded by Information
Systems better, there is a need for an elaborated model for both the carbon and silicon
agents. One of the issues that should be handled is the adaptive capability that the system
should have to be prepared for prompts and unexpected stimuli from the human side.
Service providing through Information Systems demands considering disciplines such
as psychology, cognitive sciences and societal sciences [7,8]. An effective and efficient
methodology for Information Systems Analysis and Design should take into account the
issues of interactions between the carbon (human) and silicon (computational equipment).
The discrepancies between the two sides can be partly handled by the notion of Cognitive
Resonance [9,10]. The method for Information Systems Analysis and Design that wants to
buttress Service Systems covers the broad spectrum that starts with cyber-physical systems
and Edge Computing, through to Enterprise Resource Planning Systems, Decision Support,
and Cognitive Information Systems incorporating the recent developments of Machine
Learning, Computational Intelligence, and Data Science. Since various scientific disciplines
play a role in socio-technical systems, the challenges can be surmounted by a common
mathematical language that can be managed by Business Analysts, Systems Analysts and
Designers, Data and Cognitive Scientists, and Systems Constructors and Implementers.

We can analyze the architecture of Information Systems—that provide services—by
considering the architecture continuum of the generic solutions through to the sector-
specific standards to their actual, particular implementation [11]. One dimension of the
spectrum of Architecture Description deals with stakeholders, individuals who play im-
portant roles in the environment of Information Systems, e.g., Business Analysts, System
Analysts/Designers, Software Developers, Implementers, and Operators that can have
related well-defined views of the system, consisting of a set of models. The other dimension
deals with the perspectives that embody the facets of an information system, namely data,
process, placement, time/events, motivation/business rules, and people, i.e., the users
of the system [12]. There is a schema which originated from the standards of database
management systems that can describe the various facets of Information Systems (see
Figure 1) [13–15].

This formal approach based on hyper-graphs can be applied to Enterprise Architec-
tures and Information Systems (see Table 1). The model checking and analysis can be
operationalized through appropriate executable languages at the XML level and using
graph algorithms [16–19].

Mathematics 2022, 10, 759 3 of 47

Figure 1. A Conceptual Architecture. Template for Information Systems Analysis and Design.

Table 1. Representation of Enterprise Architecture by Hyper-graph.

Concept of Enterprise
Architecture

Representation of Concept in the Domain of
Hyper-Graph Theory

Information System (IS)

This consists of various models that depict the system from
different aspects. The models and their constituents can be
mapped onto a generalized hyper-graph to reflect the hierarchy
of the models and their components.

A vertex in a hyper-graph
A vertex can represent a model element that can be characterized
by constraints, pre- and post-conditions, and business rules
formulated in logical statements.

Edge in a hyper-graph
An edge corresponds to a traditional edge in graphs, which
connects two vertices in hyper-graphs. A simple edge designates
the binary relationship between model components.

Hyperedge
A hyperedge represents a relationship among a specific group of
vertices, e.g., models and their artifacts that are constituents of
specific architecture layers.

System graph

This is a hyper-graph dedicated to describing the whole
Information System; it contains hyperedges and their vertices,
which represent models and their artifacts. It includes a
disjointed node to denote the surrounding environment.

Sub-system

A specific module or well-defined part of an Information System.
A set of hyperedges representing a sub-system composed of
models and their artifacts belonging to this specific part of
the system.

As we can see from the Zachman framework/ontology a universal language for
modeling Information Systems does not exist. The models that are represented in the cells
of the Table 2 are depicted in various field-specific languages [20]. However, the disparate
modeling languages can be represented by the language of mathematics, especially graphs
and related linguistic approaches. There are meta-modeling languages that support the

Mathematics 2022, 10, 759 4 of 47

classification, grouping, and analysis of the properties of modeling languages devoted to
Information Systems [21]. In the representation through models of Information Systems, the
Finite State Machines/Automaton occurs, especially in the time dimension taking events
into account. However, the models of data collections and processes are strongly coupled
to the actual state of the specific information systems (Figure 2, and the “why/motivation
column” of Table 2). The “who column” of Table 2 primarily refers to organizations and
their constituents; however, the contemporary Information Systems are more general, e.g.,
climate systems, autonomous systems/vehicles, or even chess or go games, etc. [22,23].

Figure 2. Information System Architecture based on Zachman’s and Blokdijk’s approaches [12,24].

The columns of Table 2 try to answer the questions starting in English with “W” [25,26].
These six facets of Information Systems are important to create a consistent and integrated
model, i.e.:

— Who are the stakeholders, end-users?
— What are the stimuli, events when the system is used?
— What are the entities, concepts, things that are specified in models within the system?
— How could the system be used by the members of the ecosystem?
— What is the goal of the system, motivation? Why the system is used?

Mathematics 2022, 10, 759 5 of 47

Table 2. Zachman architecture and current Information Systems’ model [12].

Aspects/Model
Tier What How Where Who When Why Viewpoints

of Actors
Viewpoints

of Roles

Extent of
Business
Domain

Facts, documents Governance of
Business Processes

Workflows for
Business
Processes

Organigram Strategic Plan Fundamental
Objectives

Strategic
Planner

Enterprise
Architect

Notions of
Business

Notional level data
model of Data

Collections
(Directed Graph)

Process Model
(Directed Graph)

Locations
connected to

Process Model
(Graph)

Actor, Role
coupled to

Process Model
(Graph)

Project Chart of
Program (Directed

Graph)

Association of Ideas
and Objectives

(Graph)

Business
Analyst
System
Analyst

Business
Architect and

Process
Architect

Logical Model
of System

Logical Model for
Data Collections
(Directed Graph)

Logical model of
Activities and Tasks

(Directed Graph)

Logical Model of
Components and

Placement for
Communication

(Graph)

Actor, Role joined
to Activity and

Task Model
(Graph)

Event and timing
model (Directed

Graph)

Business Rule
(RDF/OWL Directed

Graph)

System
Designer

Insight
Architect

Technology
and Physical

Physical Data
model (Graph)

Executable/
Interpretable Process/

Activity Model
(Directed Graph)

Communication
structure

represented by
deployed

components
(Graph)

Components for
Access Rights and

Roles (Directed
Graph)

Choreography and
Orchestration

depicted by State
Machines and

Automaton (Directed
Graph)

Executable/
Interpretable Rule
Design (Directed

Graph)

Program
Designer and

Developer
IT Architect

Assemblies of
Constituents

Data in the physical
implementation

of DBMS

Code for Executable/
Interpretable Process/

Activity Model
(Directed Graph)

Code for
Communication

structure
represented by

deployed
components

(Graph)

Code for Access
Rights and Roles
(Directed Graph)

Code for State
Machines and

Automaton (Directed
Graph)

Code for Executable/
Interpretable Rule
Design (Directed

Graph)

System
Builder and

Implementer

System
Architect

Functioning
Enterprise Data Function Network Organization Schedule Strategy Staff Service

Architect

Mathematics 2022, 10, 759 6 of 47

The Enterprise Information Systems were considered to be a well-defined, stable
structure regarding Business Processes. If the Business Process and their task could be
organized in well-defined workflows, then their behaviors would be perceived as successful
from the viewpoints of end-users—despite their high complexity, the behaviors of the
systems could be kept in hand. Notwithstanding this, the Web Information Systems
introduced a new factor, namely, that the interaction with users cannot be defined in detail
in advance [27]. The Zachman architecture/ontology provides a description framework
for grasping the static and dynamic facets of the system, along with the utilization of the
system by the stakeholders. Apart from the traditional end-users and analysts, designers,
new roles are currently emerging (see Figure 2) (cf. [28]). The various roles of architects,
besides analyst and designer, convey an overarching view about the requirements of the
organization that are formulated at the different architecture levels. The models within
the architecture describe disparate aspects and serve distinct aims. The common goal is
to yield a conceptual and technical view that effectively and systematically represents all
models and architecture levels in a cohesive representation. The application of graphs
as descriptive languages of models offers the opportunity to deal with the artifacts of
models in a unified and uniform manner. A graphical representation allows us to depict
the resources of the systems as interrelated components that were originally conceived in
distinct formats [29] (see Figure 2).

The contribution of our paper is an apt encoding of the models, model elements,
artifacts, and components of Information Systems. This makes it possible to represent an
Information System in hyper-graphs in such a way that the graph-theoretic algorithms, in
tandem with model-checking methods, can be applied to these representations to produce
reasonable and useful analysis results. Furthermore, we showcase a transformation of
the hyper-graph representing an Information System into simplicial complexes. This
transformation enables the investigation of similarities and differences between existing
and newly created business processes by exploiting matrix algebra and homology groups.
Moreover, this transformation opens up the pathway to apply the tool-set of Data Science
to these issues extensively and intensively. Our proposal differs from previous attempts, in
that we take into account the heterogeneity of the components of an Information System.
We can depict the heterogeneous component by exploiting the flexibility of the generalized
hyper-graph by differentiating the properties of vertices and hyper-edges.

The structure is our paper is as follows: in Section 2 we provide an overview of the
mathematical background, as well as definitions that are relevant to the representation of
Information Systems. In Section 3, a qualitative literature review is provided about the
related works. In Section 4, we present our models and representations of Information
Systems in hyper-graphs and simplicial complexes; furthermore, the model-checking meth-
ods and algorithms that operationalize the methods in the digital universe are discussed.
In Section 5, we discuss and compare our models and model-checking methods to other
approaches and outline possible future research directions. In Section 7, we provide the
accessible software code-base that was created in the projects that were related to the results
presented in the paper. In Section 8, we close our paper by summarizing our results.

2. Hyper-Graph Representation of Information Systems

In this section, we overview the necessary theoretical, mathematical basis of hyper-
graphs, then we showcase the proposed representation of Information Systems. The
generalized hyper-graphs are apt tools to represent complex structures; nevertheless,
the hyper-graphs are graphs, therefore the graph analysis tools that are grounded in
mathematics, along with a set of algorithms out of Computer Science, are readily available
for use in this area [30]. This approach can be considered to be a conceptual language for the
description of Information Systems; however, the technical level of representation can be
interpreted easily by the machine, and the description can be understood by humans too. As
we have seen up to this point, both collections in Information Systems and their constituents
(“things”, artifacts, entities, objects, relationships, etc.) have structure. What structure

Mathematics 2022, 10, 759 7 of 47

description and representation formal language can be used for analyzing Information
Systems? We propose the hyper-graphs for descriptive purposes and the transformation of
hyper-graphs into appropriate graphs for computationally effective and efficient handling.
There have been various attempts to grasp phenomena, some examples of these are when
the collection of “things” (“entities”) and the “things” (entities) themselves have their
internal structures, these examples include :

— Assemblages Sawyer et al. consider Information Systems as digital “assemblages”
that are the interconnections among parties participating in the information exchange
of business and information flows among institutions. The Information Technology
underpins and yields models for these configurations [31–33]. Following this view-
point, we may take into account the properties of both individuals and groups of
some things.

— Granules In the first cut, we can think of granules as equivalence classes. However,
other structures of granules are well-known, e.g., within Soft Computing [34]. A
granule as an entity may have properties that induce the clustering of various in-
dividuals into specific clusters considered to be similar to granules. However, it is
allowed that the same element may occur in disparate granules depending on the
actual perspective. Following this approach, both granules and the elements of the
granules may have their own specific properties.

— Connections There are several examples, e.g., most recently, social media where the
avatars, the digital personas, and any defined communities possess a diverse set of
properties. Similarly, the network of roads or rail tracks together with the gas and
rail stations showcase similar structures. Thus, the links and essential entities of the
system, the higher-level organization of elements, hold a distinct set of properties [35].

2.1. Graph Models of Systems

Generic graphs include the mathematical construction of networks that formulate
various constraints and restrictions. The graphical representation means that the domain
of discourse is represented by tuples and the relationships among them [36]. In the In-
formation Systems field, we can typically encounter deterministic constraints that can
be described by variables, logical statements depicting integrity constraints, consistency
assumptions, and security conditions. Each single graph model has its own inquiries of
the problem that are formulated as queries in a language apt to the specific context. The
task is to find a solution in the form of assignments of variables to satisfy the queries and
constraints. We can perceive a graph model as a set of functions whose arguments consist
of a subset of variables. The variables transmit information about constraints, restrictions,
and preferences in a deterministic manner.

We follow the convention of how to define a graph model: A graph model G_M =
[Ξ, ∆, Φ,

⊕
]consists of a set of variables, domains, and functions.

Ξ = {ξ1, ξ2, ..., ξn} variables, (1)

∆ = {δ1, δ2, ..., δn} is the set of domains of data types that care for the values of variables,

Φ = {ϕ1, ϕ2, ..., ϕk} this designates the set of functions that may have a subset

of variables as their arguments,

Var_Arg = {σ1, σ2, ..., σk}, where {ξi1 , ξi2 , ..., ξin} = σi ⊂ Ξ the subset of variables

that are input arguments to functions ϕi,

the aggregation operator
⊕

in case of logical statements and Horn clauses

can be the Boolean functions
⊕

= 〈∧| ∨ |
⊗
〉,

in the case of functions with ranges in real or discrete domains
⊕

= 〈∏ |∑ | on |n |o〉.

The graph models contain various graphs as fundamental layers that represent the
knowledge in the models. Typically, it depicts the dependencies and independencies among

Mathematics 2022, 10, 759 8 of 47

the disparate constituents of models, as well as the constraints and restrictions, with the
help of variables and functions. An entire graphical model G_M can be perceived as
an overarching function with the input arguments, variables, Ξ. The manifestation of the
overarching function is the combination of all available functions of the graphical model
G_M in the form of

⊕n
i=1 ϕi. The set of single functions determines the graphical model and

implicates the behavior of the whole model. The overarching function yields the meaning of
the entire graphical model. The calculation of the overarching function is computationally
intensive and complex; nevertheless, it is tractable in the case of Information Systems [37,38].
All problems that can be raised can be formulated relative to the overarching function.
For example, we look for a valuation of all variables in logical statements that a logical
value is true. In other cases, we search for solutions that satisfy the constraints specified in
the model.

Definition 1. A primal graph (independence map) is an undirected graph that represents the
variables as the vertices of the graph, and the edges designate that the connected vertices representing
the variables belong to the same function [39–41].

2.2. The Fundamentals of Hyper-Graphs

The various artifacts of models within the architecture are formulated in XML, JSON,
or newer descriptive languages to represent documents [42,43]. These languages can be
considered to be graphs that depict processes, tasks, workflows, events, organizations, and
data collections. The generalized hyper-graph can be applied to represent these documents
and artifacts.

The hyper-edges in a hyper-graph may contain any number of vertices.

Definition 2. Let (G (V, E) be a hyper-graph, where V represents a finite set of vertices, and E
stands for the set of hyperedges e.A hyperedge e ∈ E, e ⊂ V is a subset of V.

A directed hyper-edge or hyper-arc is an ordered pair, E = (X, Y), of (possibly empty)
disjointed subsets of vertices; X is the tail of E, while Y is its head. The tail and the head of hyper-arc
E can be denoted by T(E) and H(E), respectively, or alternatively a hyper-arc −→e i ∈

−→
H =

(V;
−→
E =

{−→e i
∣∣i ∈ I

}
) can be perceived as an ordered pair −→e i =

(−→
e+i =

(
e+i ; i

)
;
−→
e−i =

(
e−i ; i

))
,

where e+i ⊆ V is the set of vertices of
−→
e+i , and e−i ⊆ V is the set of vertices

−→
e−i . The elements of

−→
e+i

(hyperedges and/or vertices) are called tail of −→e i, while the elements of
−→
e−i are called head [44].

The incidence matrix for the directed hyper-graph
−→
H is a n×m matrix

aij =

−1, if vi ∈ T(ej) =

−→
e+j ,

1, if vi ∈ H(ej) =
−→
e−j .

0, otherwise.

(2)

Figure 3 depicts a directed hyper-graph that represents the document flow containing
documents and the roles that are responsible for manipulating them. The direction of
the flow and the relationship between the roles is described by the tails and heads of the
hyper-arcs.

Mathematics 2022, 10, 759 9 of 47

Figure 3. An example of s Directed Hyper-graph.

Definition 3. A hyperedge, e , may also consist of both vertices and hyperedges in a generalized
form.The hyperedge comprises other, distinct hyperedges, i.e., the hyperedge e that contains other
hyperedges should be different from e [44].

Figure 4 shows a simple, generalized hyper-graph as an illustration. Table 3 describes
the incidence matrix that represents the hyper-graph in Figure 4.

Figure 4. Representation of a Generalized Hyper-graph.

The incidence function of a hyper-graph is given by H(V, E) inc : E −→ ℘(V). This
definition allows for a number of edges to contain the same set of vertices, i.e., being

Mathematics 2022, 10, 759 10 of 47

incident, and any edge may contain an empty set of vertices. The incidence function can be
represented by an incidence matrix.

Table 3. Incidence matrix for the generalized hyper-graph example.

v1 v2 v3 edge1 edge2 edge3

edge1 1 1 0 0 0 0
edge2 0 1 1 1 0 0
edge3 1 1 1 1 1 0

2.3. Operationalization and Implementation

There are a lot of approaches and formulations in mathematics about how graphs can
be represented. There are many representational approaches, even for hyper-graphs. Model
verification and validation and executable code generation impose certain constraints on
an adequate faithful mapping. Therefore, if we want to achieve these goals, we need a
mode of representation that allows us to represent hyper-graphs as conventional graphs.
This approach to hyper-graph representation permits the hyper-graph to be stored in a
common graph database without any loss of information (Figure 5). One of the best-known
hyper-graph-to-graph mappings is when the hyper-graph is displayed as a bipartite graph.

Thus, (Gh(Vh, Eh), a hyper-graph, can be represented by a bipartite graph, Gbip(V ∪
V′, EGbip), ∀ei ∈ Eh −→ veibip

, i.e., for each hyper-edge, a corresponding vertex is ordered to

in the bipartite hyper-graph, thereby a set of vertices is created: V′ = {veibip
|ei ∈ Eh}. This

bipartite graph is denoted as being the incidence graph of the hyper-graph, (Gh(Vh, Eh),
and can be represented by an incidence matrix (see Table 4). If x ∈ V ∪V′ and e ∈ Eh, then
they are adjacent in Gbip iff. x ∈ Eh [44].

As such, the hyper-edges are represented as labeled vertices, and, when a hyper-
edge contains a graph vertex or another hyper-edge, the vertices in the bipartite graph
representing them are connected. Figure 6 shows how the same hyper-graph can be
represented as a hyper-graph and bipartite graph [19,45–47].

Figure 5. Representation at the implementation level of vertices in a hyper-graph.

Table 4. Incidence matrix for the bipartite graph example in Figure 6.

v1 v2 v3 v4 v5

edge1 1 1 0 0 0
edge2 1 1 1 0 0
edge3 0 0 1 1 1

Mathematics 2022, 10, 759 11 of 47

Figure 6. Bipartite graph.

2.4. Implementation Details in Graph Databases

Exploiting the hyper-graph mapping into a bipartite graph, the similarities between
model elements can be analyzed. Once the hyper-graphs representing the model elements
and design artifacts have been mapped to even graphs, it becomes possible to perform an
analysis with the available algorithm set.

One possibility is to use Smith Normal Form to find similar models and design artifacts,
and then to perform further analysis. The Smith Normal Form is a matrix representation
that can be defined for any matrix over integers Z. According to ring theory, the elements of
the matrix that is to be transformed into Smith Normal Form can generally be in a principal
ideal domain (PID), thus the statements about the Smith Normal Formal hold, but the ring
of integers Z is sufficient in Computer Science applications [48,49], p. 479. The incidence
matrix of a graph or a hyper-graph can be transformed into Smith Normal Form; thereby,
the integer programming methods and algorithms can be exploited [50]. Thus, there were
efforts to create a computationally feasible approach that could be utilized to discover
hyper-graph features and their representations [51,52].

2.5. Hyper-Graph Representation by Simplicial Complexes

For further analysis, a hyper-graph can be mapped onto a simplicial complex. The basic
principle for this transformation is that, if a hyper-edge is a part of a simplicial complex,
then any subset of vertices belonging to the hyper-edge is a part of the simplicial complex.
This property of simplicial complexes representing hyper-graphs provides the opportunity
to study complex relationships among the elements of systems, i.e., systems that can contain
a large number of elements with a high number of interconnections, but it also allows for
low-order interrelationships. The notion of simplicial complexes allows for differentiating
the underlying structures of hyper-graphs.

Definition 4. An abstract simplicial complex ASC = (V, S) is where V is the set of vertices,
S = {Sk ⊆ V| Sk 6= ∅ } , and ∀ i, j Ski

∈ S, Skj
⊂ Ski

⇒ Skj
∈ S. Thus, a σ

k-simplex is σk = {v0, v1, . . . , vk} ∀i, j vi, vj ∈ V, vi 6= vj ∀i, j i 6= j . A face of σk
k-simplex is a (k-1) simplex σk−1 = {v0, . . . , vi−1, vi+1, . . . , vk}.

Thus, a S simplicial complex consists of non-empty subsets of V vertices, and it is
closed under the subset set-algebraic operation. Simplicial complexes can be visualized

Mathematics 2022, 10, 759 12 of 47

in a geometric space with enough dimensions. For instance, a 0-dimension simplex is a
vertex, a 1-dimension simplex is a line, a 2-dimension simplex is a triangle, a 3-dimension
simplex is a tetrahedron, etc. The 1-dimensional simplicial complexes are networks or
graphs; 2-dimensional simplicial complexes can describe the interrelationships among
several vertices. Generally, a simplicial complex with dimension d ≥ 2 can indicate
interconnections among d + 1 vertices. Thereby, simplicial complexes can depict complex
networks of interactions represented by hyper-graphs. Thus, simplicial complexes can
efficiently and effectively outline the interactions among any arbitrary number of “things”.
An abstract simplicial complex ASC comprises simplices in such a way that, if σ ∈ ASC,
then all faces of σ belong to ASC.

2.6. Homology and Similarities

The other approach that has proved useful to describe hyper-graphs is the usage of
simplicial complexes. Since we are interested in similarities and dissimilarities between the
representations of models within Information Systems, the algebraic topology application
seems apt to highlight invariants of the representation that could interest to pinpoint
problems and phenomena.

Reduced homology groups are topological invariants, which means if two algebraic
topological spaces are homeomorphic, i.e., homotopy equivalent, then their associated
homology groups are isomorphic.

Definition 5. A C ⊂ G clique C of a graph G = (V, E) exists if ∀vi, vj ∈ C, i, j = 1, . . . n,
{vi, vj} ∈ E . A clique C is a k-clique C if |C| = k.

Definition 6. A clique complex is a simplicial complex that is mapped from the cliques of a graph,
i.e., ∀ C ⊂ G, C ∈ C = {C ⊂ G|C isk− simplex k = 1, . . . n}, onto k− 1 simplices that are
construed by the vertices of C. As a simple example, a three-clique transformed into a two-simplex
(i.e., a full triangle).

Definition 7. Informal definition of Homology Groups: Homology Groups are defined mathe-
matically and precisely in algebraic topology [53]. Hk(ASC) is an algebraic group of an abstract
(k + 1)-dimension simplicial complex; it is a set of the equivalence classes of k-cycles. The k-cycles
are linked to k-dimensional holes. For instance, the homology group H1(ASC) depicts 2-dimensional
non-bounding cycles, i.e., a hole, it is not filled-in, that are bounded by one-dimensional cycles.
H2(ASC) characterizes 3-dimensional holes that are bounded by 2-dimensional cycles, and so
on [54–56].

A homology group is a topological invariant that can describe a topological space by
what kind of and how many dimensional holes it has, and, moreover, it determines the
dimensions of holes, more exactly the boundary cycles that are non-bounding, i.e., within
the boundary, there is a void. By a hole, we mean a part of a given abstract topological
space that has a boundary but is not filled, i.e., the part within the boundary does not
belong to the simplicial complex under consideration. The dimension of a hole is directly
related to the dimension of its boundary. The boundary of a two-dimensional hole is a
one-dimensional circle, a cycle; the 3-dimensional interior of a polyhedron is bounded by
a 2-dimensional surface; etc. We start from a hyper-graph representation of information
system models in hyper-graphs and map generalized hyper-graphs to simplicial complexes.
In the case of models for Information Systems, the connections among the elements are
the prime interesting feature. The defining metrics for models to apply algorithms of
Data Science and Computational Intelligence do not seem an adequate approach, it is
unnatural to define artificial distances, since the essential information is qualitative in such
an abstract space that contains hyper-graphs and their simplicial complex representations.
For that reason, the algebraic topology approach seems to fit the purpose of exploring
the connections along with cycles and higher dimension constructions within the abstract
space. Therefore, the application of algebraic topology methods, homologies, and related

Mathematics 2022, 10, 759 13 of 47

invariants seems a useful approach to investigate the models and their representations
qualitatively. The properties of the relationships between vertices and edges in the case of
hyper-graphs and the associated simplicial complexes are not dependent and not sensitive
on the selected metrics. Thereby, the topological methods are appropriate when examining
phenomena where the quantitative values of distance metrics are not relevant [57].

2.7. Modeling and Verification of Information Systems

The information system consists of three different aspects. The three facets are as
follows: event (time), data/information, and functions. The integrity and consistency
between the three aspects must be ensured by reconciling the dichotomies between the
aspects by clarifying and reconciling the differences in the dichotomy and counterpoints
between the aspects.

— Information and Data: The integrity and consistency in the Information and Data
collection is vital for the operation of Information Systems. The Information and Data
collection can be implemented by various structuring approaches, namely, relational
and NoSQL databases, XML (Document Object Model), JSON, etc. [29,40,42,43,58–61].
The data collections can be manipulated by the Data Manipulation Language of
relational calculus and SQL. The documents described in XML can be handled by
XPATH and XQuery. The data stored in other NoSQL databases can be managed
by the native and system-specific languages. The Data Definition Language in
Relational Database Management Systems (RDBMS) and the same brethren in other
Data Base Management Systems offer the possibility to define integrity constraints.
The normalization that was originally defined for relational databases has been
extended to XML and object-oriented data collections [62–65]. Thereby, the entity
(entity↔ identity), referential, and business integrity can be interpretable for tuples
of data collections and not only for relational databases.

— Processes, Events and Entities: Events are intimately coupled to Business Processes
and Workflows. Activities in Business Processes and Workflow are initiated by either
external or internal events. The chain of activities and the state changes exerted by
the event-triggered activities can be semi-formally represented in Business Process
Modeling Notation (BPMN), Event Process Chain (EPC), or in Petri nets [66–69]. The
formal ground are the process algebra and finite-state machines [70–72], respectively.
The descriptive, syntactic representation of Business Processes, Workflow, Petri Nets,
and their activities is realized in XML nowadays [73]. The behavior of the Information
System and its dynamic constituents is described by processes and activities, which
are represented typically in XML; therefore, they can be grasped as documents. The
events represented within diagrams of BPMN, EPC, Petri net, or UML Activity cause
state-transition of entities, objects, or “things” in the data collections [74]. The entity-
relationship diagrams, or object class diagrams, which describe the relationships
among entities of data collections, are inherently hierarchic so that some entities
are subsumed into other entities. There are two aspects of effects that are exerted
by events on entities. One aspect is when the chain of events is tracked through
the life cycle of an entity in the form of the Entity Life History or UML State Chart
[14,75]. The accurate and formal description can be specified by Finite State Machines.
The other aspect is when the alteration of several entities and their attributes is
traced through the elements of the data collection; this flow of actions incorporates
a long transaction, i.e., the chain of consecutive transformations [14,76]. The model
of exerted impacts of an event can be represented in Finite State Machines. The two
sets of models of Finite State Machines—namely the life cycles of entities and the
long transactions of events— are orthogonal to each other. One of them meticulously
pursues the fate of an entity, the other follows how an event affects the entities and
their attributes within a data collection. These two sets of models embody the various
integrity constraints of business processes that describe the behavior of the system
and the state transitions of the constituents of the system. Due to the hierarchical

Mathematics 2022, 10, 759 14 of 47

nature of the model of a data collection, the behavior of a “super-entity” and the
interdependencies of its subsumed entities along with the event-coupled constraints
emerges as integrity constraints, which should be consistent and reconciled. For the
sake of unified and uniform representation and handling of constraints and distinct
models of the system, a hyper-graph can incorporate the diverse models and their
representation, including the Finite State Machines [77] (see Figure 7).

— The system responds to a stimulus, i.e., an organizational-level event, that originates
from the external environment of the organization and triggers the functions of the In-
formation System through interfaces including User Interfaces (UI). The interfaces can
be perceived as documents that are represented in document-describing languages
(XML, XHTML, JSON, etc.).

— Integrity rules The entity integrity rules that ensure identity are implemented in
the various database management systems efficiently and effectively so that the
enforcement of these integrity rules is straightforward in any representation, for
instance, hyper-graph representation of data collections that are realized in any
database management system. The entity integrity concentrates on the validity and
correctness of the “tuples”, the data items, and the values of the attributes in the
data-containing structure. The referential integrity depicts the data dependencies
among tuples and entities in a hierarchy within data collections (Figure 8). The
specification of business- or enterprise-level integrity constraints can be realized at
the data-collection level as static rules or as business rules of activities of processes
that are initiated by events.

— The realization of integrity constraints happens finally in the Conceptual Model of
the Systems (Figure 9). The consistency of the system can be achieved through the
maintenance and enforcement of constraints. The hyper-graph makes it possible
that the various models that contain the integrity constraints can be represented in a
uniform theoretical environment. Furthermore, the hyper-graph representation offers
the opportunity for the unified management of model-checking exercises.

Event_effect1= 𝐴 →𝐵

A

B

C

D

E

Event_effect2

Event_effect1

Event_effect2

Event_effect3

A

B

C

D

E

Event_effect2= (𝐴&𝐵)→(𝐷&𝐶)

Event_effect3= 𝐷→𝐸 Event_effect1

Event_effect3

A

B

Entities={A,B,C,D}

Event

Hypergraph (Euler-diagram) Hypergraph -> Bipartite graph

Event_effect1

Event_effect2

C

D E

Event_effect3

Effect-correspondence diagram

AB

C
D

E

Simplicial Complex -
diagram

Figure 7. Navigation path: correspondence network of effects of events.

Mathematics 2022, 10, 759 15 of 47

Relationship1={A,B,C,D}

Relationship2={A,E}

Relationship3={C,E}

Transformation to graph
May lose some information A B

DC

E

C

E1

E2

E3

A

B

C

D

E

Transformation to

bipartite graph

Relevant information

 maintained

Relationship1=E1

A
B

C D

E

Relationship2=E2

Relationship3=E3

A

B C

D E

Simplicial Complex -
diagram

Figure 8. Hyper-graph representation of essential building blocks of the architecture of an IS Rela-
tionships among entities (group of attributes of data collections).

Events (Time)

Conceptual Model of Information and
Processing

Figure 9. Dichotomy among the Three Facets of Information Systems.

3. Literature Review—Related Works

In this section, we provide an overview of the possible applications of hyper-graphs.
We survey the hyper-graph-based modeling in the field of document and Information
Systems modeling. We provide an outlook of the issues of Enterprise Architectures and the
graph-based modeling in this case too.

Mathematics 2022, 10, 759 16 of 47

3.1. Hyper-Graph Application Domains

The fundamentals of representation of knowledge and data are grounded in hyper-
graph theories in reality, since the description of the notion that is relevant to a domain
contains complex relationships that can be depicted by hyper-networks or hyper-graphs.
Bretto [44] provides a good overarching picture of hyper-graph theories that can be used
in applied sciences with mathematical rigor. In recent years, hyper-graphs have been
broadly used in different studies and different fields. In this section, we describe these
distinct fields to explain the importance of the hyper-graph in the modeling of Information
Systems. The authors of Ref. [78] used a hyper-graph for clustering by using a clique
average to transform the hyper-graph into a simple graph. In addition, hyper-graphs
are also used in the field management of data structures [78], in multi-label classification
through hyper-graph spectral learning [79]. In image representation and segmentation, the
researcher of Ref. [80] formulates the task of image clustering as a hyper-graph partitioning
issue. Each piece of the image and its nearest neighbors constitute two separate types
of edges that are defined by their descriptors of shape and appearance. Furthermore,
hyper-graphs are used to solve many difficulties in the field of image processing [81].
In Computer Vision and Image Processing, high-order relations and patterns exist that
can be depicted by hyper-graphs, where the patterns can be defined as similarities by a
given metric between vertices and edges in hyper-graphs to detect edges and highlight
noise. The researchers of Ref. [82] described a semi-supervised learning method called
Hyper-Prior that uses labeling and edge-weighting methods in hyper-graph to find the
optimal arrangement. The method exploits a priori biological knowledge as a constraint on
achieving an optimal categorization.

3.2. Documents and Information Systems

Ref. [83] analyzes the use of semi-structured and active documents represented in XML
format. The analysis is extended to cover a methodology for designing for web-based
applications . Ref. [84] describes a design methodology for websites; this method follows a
meticulous, disciplined, systemic design process that is based on the fundamental concept
of documents. Rossi in Ref. [85] worked out a design methodology that is dedicated to Web
Information Systems (WIS). Both user interfaces of WIS and the other communication media
for the information transfer between the core of WIS and the external environment realize
the information interchange through various documents. The design methodology and the
perception of WIS according to this paper help to grasp the behavior of WIS.

3.3. Enterprise Architecture and Information Systems

There are several Enterprise Architecture definitions and even standards; however, the
Zachman ontology and TOGAF de facto standard are apt to describe Information Systems
in an organizational environment. Moreover, the heterogeneous models, stakeholders’
viewpoints, and views can be handled in a uniform framework [11,12]. The Service-
Oriented economy led to the service orientation of business units and consequently the
service orientation of Information Systems. The functions of Information Systems that
support the activities of an organization are perceived as a service of Information Systems
[3]. At the technology and software architecture levels the Service-Oriented Architecture
(SOA) was developed. The realization of SOA at the platform architecture level pursues
two directions. One of them is the industry standard definition (defined by the Object
Management Group), the other is based on the REST/RESTFUL approach that is grounded
in the HTTP protocol of the Internet. Moreover, the SOA embraces the recent technologies
of microservices as well [86–88].

Therefore, SOA can be considered as a reference architecture, so that SOA can support
the utilization of software technology at the platform architecture level in companies that
should interchange information among partners. Thus, SOA is an architecture guideline for
the design of services and their information interaction in Information Systems founded on
the concept of “service” or “Web service” [89,90]. The software architecture paradigms of SOA

Mathematics 2022, 10, 759 17 of 47

and Cloud Computing use the concept of services as a common ground for interaction with
end-users and with other partners/systems. In past decades, various input data formats
have been elaborated that are usable for the interchange of data with services [91–93].

Some research has tried to arrange the disparate aspects of Information Systems into a
unified framework to keep them under the umbrella of the concept of behavior of Informa-
tion Systems [27,94]. The application of enterprise architecture frameworks offers a tool-set
for the conceptual integration of disparate viewpoints [11,12]. The Blokdijk information
system modeling framework provides guidelines to grasp the structural constituents of
Information Systems[24]. The axiomatic design paradigm can be tailored for Information
Systems. This design approach is mathematically grounded and provides guidance for
theoretical modeling aspects but also supports the practice used to create Information Sys-
tems [95]. The Enterprise Architecture, along with disciplined Business Process modeling
methods [66], are flexible tools to model business processes, concepts, entities, and data
types. The correct representation of the Business Processes, Workflows, ontologies, struc-
tures of concepts, and data in Information Systems profoundly influences the success of the
design and development phase. These frameworks help to understand the behavior of the
systems and proffer opportunities to utilize the graph-theoretical approaches for model
checking, verification, and validation. One of the fruitful approaches is the document-centric
perception of all constituents since the graph-theoretical representation can be deduced
easily from document structures that describe the interfaces of functions and services, the
data collections and structures that are included in the information flow, and the data
collections that are placed at the core of Information Systems [11,12,24,92,96].

4. The Application of Graph-Theoretic Approaches in the Context of
Information Systems

In this section, we look over the experimental design and development that were
carried out in the context of Information Systems, as well as document-oriented approaches
to exploit the graph-theoretical foundations for model checking and to support the problem-
solving in system analysis and design.

4.1. Model Checking for Dynamically Modified Business Processes

Recently, the companies that own Information Systems have been pursuing the ag-
ile management and system development paradigms [97,98]. Information technology
infrastructure management prescribes disciplined IT service and systems development.
However, the dynamically changing external environment enforces the violation of the sys-
tem development rules in the short term. The correction and mitigation of possible errors
may happen later after the modifications have been carried out. To support agility and to
maintain integrity and consistency, a method and a related business process to realize it is
needed to fulfill the requirements. To achieve that purpose, a model that is proposed by
us has been elaborated. Recently, the models of Business Processes have been described
in document format, typically in XML. The business processes describing documents are
represented in a hyper-graph structure dedicated to business-process representation. The
hyper-graph representation is able to reflect the complexity of the relationships among the
components of Business Processes. To exploit algorithms that were developed for graphs,
the hyper-graph representation transformed into bipartite graphs.

The important components of representations of Business Processes that describe
the control and information/document flow are as follows: multiple merge; multiple-choice;
parallel; exclusive choice; AND split/join; XOR split/join; sequence; cycle; and compensation
arc/flow, (see Figure 10) [66,99]. These cover the events that trigger activities, e.g., ingesting
information/document, modifying their actual content and the state of data, executing
the inputting and outputting acts as bulk feed; load; download; remove; create. Besides the
manipulation of data collection and the control- and information flow-properties, the
process instances are described by the following features process id; process type; process cost;
execution time; and user role.

Mathematics 2022, 10, 759 18 of 47

name

name

AND split-join
XOR split-join based on the in the flow

Figure 10. Some examples of possible constructions of information and control flow of Business
Processes.

The analysis of the performance of the algorithm requires a reasonable amount of
empirical data. One of the best practices is to generate synthetic data to have a sound
foundation for the data analytics, in order to verify the model of the data analysis [100].
Therefore, it is a feasible approach to generate a set of data that represents Business
Processes that can be categorized as well-formed or with erroneous behavior. The first step
was to generate Business Process descriptions in XML. The second step was to transform
the Business Process Description into a bipartite graph. This step was a technical one,
as the initial transformation of the Business Process representation into a bipartite graph
was much more comfortable from a computational point. Then, the bipartite graph was
transformed into a hyper-graph. The reason behind this step is that the hyper-graph
representation fits the formal analysis and representation of complex relationships, so, the
domain of the analysis was placed into a theoretical framework that offers several tools.
After the transformation of Business Processes into graph format, the Smith Normal for
each representation of Business Processes was calculated (see Section 2.4). The similarity
of incidence matrices in Smith Normal Forms indicates a similarity of the graphs we
investigated to a degree that is satisfactory for our analysis [101] p. 93, [102,103]. We
made use of accessible implemented algorithms to calculate the hyper-graph and simplicial
complex representations of Business Processes [55,103]. To explore interesting similarities
and dissimilarities, we considered the hyper-graph representation of Business Processes
and simplicial complexes. Exploiting the available implemented algorithms, the starting
point was the incidence matrix of the hyper-graph. Then, the calculation of the homology
groups of simplicial complexes that describe hyper-graphs was the next step. The goal
was to discover the properties of Business Processes that can be used for classification to
highlight discrepancies, suspicious behaviors, and deviations from adequate standards.

Thus, for example, if the triple {A, B, D} is in a simplicial complex, so are all pairs {A,
B}, {B, D}, {A, D}, all singular sets {A}, {B}, {D}, and for mathematical reasons also ∅; they
form a simplicial complex Simplex (A, B, C, D) (see Figure 11). However, even if all three
pairs (and thus all three singular sets) are in a simplicial complex, this does not imply that
the triple{A, B, D} is also in the simplicial complex. If we think of the simplices in terms
of geometric simplicial complexes, a triple may form a filled triangle, whereas the three
pairs form the three sides, and the singles form the vertices. The triangle can be filled or
not, depending on whether the triple belongs to it or not. Whether the triangle is filled
in or not causes a topological difference, which is determined by the homology groups
and the corresponding algebraic invariants, namely the Betti numbers (see Section 2.6).
Holes and voids within abstract simplicial complexes of various dimensions refer to a
structure where some discrepancies, anomalies, or a dearth of connections among elements
may exist, i.e., between the representations of Business Processes. In a hyper-graph,
subsets |S| = k + 1 are perceived as a vector space Vk, Z2; therefore, the content of the
hyper-edges and relationships within hyper-edges is transformed into abstract simplicial

Mathematics 2022, 10, 759 19 of 47

complexes. The modulo 2 calculation is the same as creating the symmetric difference
of the adequate sets. The boundary of k simplex is a collection of |k − 1| dimensional
faces; a k chain is a formal sum of boundaries of the appropriate simplices. If we have an
ordering relation of |k− 1| and |k| simplices, the boundary of a |k|-chain can be computed
by a linear transformation, namely, the linear mapping that is described by the incidence
matrix is applied to the vector that describes the |k|-chain vec(vk). It can be seen that
the |k|-chain is a formal structure, neither the vector components, nor the coefficients
have geometrical meaning if we perceive the vector components’ values as coefficients
of the formal sum, e.g., in the matrix multiplication. In the case of Z, the entries in the
matrix and the vectors are integers. The +1 and − 1, can denote the orientation of
the abstract simplex. The boundary homomorphism can be formulated as ∂(~vk) = Mk~vk,
where Mk is the incidence matrix that can be defined the following way in this case:
Mk[i, j] = 1, when the i–the |k − 1| simplex is a face of the j–the |k| simplex, otherwise
Mk[i, j] = 0. This representation of the incidence relationships can be handled by the toolset
of linear algebra, and there is no information loss during this kind of transformation. Some
algorithms can be employed to calculate the Betti numbers of S abstract simplicial complex.
One of the computational approaches is to transform the incidence matrix into the Smith
Normal Form [55,56,104,105]. The Smith normal form of a matrix M is an invariant used to
describe the incidence relations, as the representation of the simplicial complex that does
not depend on any ordering. Two matrices with integer entries M1 and M2 are equivalent
over Z if: ∃A, B, det(A) = ±1 and det(B) = ±1 and M2 = AM1B (A and B are
invertible matrices).

AM1B =

m1 0 0 0 · · ·

0
. . . 0 0 · · ·

0 0 mr 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .

 (3)

From the well-known theorem, mi|mi+1, where r is the rank of matrix M1, and mi-s,
as invariants, are determined uniquely (apart from units) [106]. The Betti numbers can be
read from the Smith normal form of the incidence matrix. The columns with zero entries
represent the basis for k cycles, and the rows with non-zero entries constitute the basis of the
k− 1 boundaries. The number of zero columns minus the number of non-zero rows results
in the Betti number βk (the basis of the kernel and image of the mapping represented by
the matrix: Zk(S) = ker ∂k and Bk−1(S) = im ∂k, the group of cycles and the boundary).
Therefore, the homology groups can be computed [55]. Using these invariants, namely the
incidence matrices, the boundary matrices of abstract simplices, Betti numbers, the similar
groups of processes and the potential discrepancies in the dynamically changed processes
can be discerned. A software and analytics experiment was carried out based on manually
generated and synthesized data to prove the viability of the approach [107].

4.2. Hyper-Graphs for Modeling Information Systems from the Aspect of a
Document-Centric Approach

The verification and checking of the models of Information Systems utilizes the formal,
computational representation of the specific organization. Some components are essential
constituents of the organization and IT/IS architecture, namely Business Processes, Work-
flows, and Data Collections. Data Collections include unstructured data, semi-structured
data, and structured data that occur in the format of documents, of data stored in various
database technologies, and of data storage architectures that make it possible for processing
by organizations. The Business Processes and Workflows are represented within Infor-
mation Systems as documents (typically in XML or perhaps JSON format). In [27], we
outlined an overarching document-centric model that perceives the organization, the data/
information, and the processing activities as one generic document that can be represented

Mathematics 2022, 10, 759 20 of 47

in a structured way in a hyper-graph. The Business Processes and Workflows can be con-
sidered to be acyclic directed graphs, hyper-graphs. Maintaining acyclicity at the highest
level of Business Process representation is a reasonable design approach, since the internal
loops within a workflow can be wrapped into sub-processes. The relevant aspect of the
behavior, the input, and the output of the sub-process can be captured in sufficient detail to
assess the overall behavior of the said Business Process. The past development for defining
the standard notations for Business Processes made it possible to define compensation
branches within Business Processes and Workflows, whereby cycles are generated within
the graphs. However, this phenomenon can be handled by separating the compensation
branches into a distinct exception-handling representation, i.e., when an exception occurs
to trigger compensation branches, to handle the exceptional events, these specific events
can be formulated as events that create control flows that lead to separate sub-processes or
a stop event within the said business process, but the stop event initiates a distinct business
process dedicated to compensation activities.

For the sake of unified and uniform handling, the representation language is XML,
since Business Processes, Workflows, documents, and database schemes can be represented
in XML [108]. Many workflows and business process description languages are based
on XML [109]. Therefore, the XML descriptions of these artifacts can be represented in
extended hyper-graphs and directed hyper-graphs. A description of a document in XML
is a graph. It is not a strict tree structure because the XML Schema allows for cross-
references between distinct branches of the XML document structure, i.e., these links are
similar to foreign key relationships in relational algebra. The transformation of traditional
graph representations into hyper-graphs is necessary to depict the complex structure of
our document-centric model. The document-centric model embeds the comprehensive
Enterprise Architecture that includes the following [11,16,17]:

4.2.1. Constituents of Information Systems

Enterprise Architecture
Business Unit An entity partly or wholly fulfills a business function to achieve
strategic objectives.
Business Unit Type Based on certain properties of business units, equivalence classes
are defined as business units types, and the business units are placed into these types.
Job is an elementary constituent of a Business Unit.
Job description describes the access rights, responsibilities, tasks, and obligations of
a Job.
Job Type is a categorization of Jobs through certain properties into equivalence
classes.
Actor is an employee who is associated with a Business Unit.
Actor Type is a categorization of Actors through some properties into equivalence
classes.
Group may consist of either Actors or Business Units that have a common objective
to be achieved.
Location This is a location in cyberspace or a geographical place where a business
unit, actor, actor type, job, or group is situated.
Business Process Management and Models
Business Process is a set of activities or tasks that ingests various input items and
then generates outcomes that are valuable for the human actors of stakeholders. The
collection of activities and tasks are reconciled into the features of the Enterprise
and Technology Architecture. The aim of the set of tasks and activities is to achieve
business/organizational objectives. Every business process is initiated by a definite
business function and may touch several other business processes and business units.
Business Process Model is comprised of a set of models of activities and tasks, and
it contains the specification of constraints for operationalization. An instance of a
business process is composed out of instances of activities and tasks that expound

Mathematics 2022, 10, 759 21 of 47

the description of a particular case of the operation of the enterprise. A Business
Process Model is a description and prescription for instances of a Business Process. A
Business Process Model contains several models of tasks as sub-components. In the
graph representation, a Business Process Model is composed of vertices and directed
edges that represent the linkages among the vertices of the model. The vertices can
represent tasks/activities, decisions, and the directed edges can represent information
and control flows.
Workflow A Workflow Management System (WfMS) is a software package designed to
manage business process design and execution of the business processes represented
in a format that the computer can interpret. A Workflow System (WfS) is based on
a Workflow Management System . The workflow system enables the set of business
processes that have computer-supported process models to be operationalized [110].
Hence, the Workflow can be considered to be the subset of the Business Process
and the Activities. The activities and tasks are coded either by a visual language or
a formal language that can be interpreted directly by a computer system. Thus, a
workflow is a directed graph of activities and tasks that receive inputs in the form
of data and documents and then transforms them into outcomes that appear as
documents (and data).
Activity/Task There could be human tasks to be carried out by an Actor through the
utilization of computer-supported Activities. An activity can be grasped as a “black
box” that embeds data transformation and business rules as its task, and the activity
can be perceived as a triple that includes the task and a pair of information items
that themselves represented documents. A task has a goal and execution steps of a
well-defined algorithm.
Event Events represent those intangible phenomena that initiate changes of state
within the real-world system and their IT representations that are relevant to Business
Processes and Workflows and exert alteration in the data collection.
Logic gate/Decision In several Business Processes and Workflows, description lan-
guage calls this component of the visual representation a “Gateway” that describes
the control structure, checking mechanism, conditions, and flow of control.
Document-centric approach and Models (Section 4.2.6)
Document Model We consider all the constituents of an Information System to be
components of a generic document. The overarching document incorporates all
segments of the ingredients of Information Systems that are apt to be described in
document representation languages, such as XML, JSON, etc.
Document The activities accept documents, and, after processing, the activities
produce outcome documents.
Types of Documents We differentiate between generic, intensional, extensional,
ground, and finalized documents.
Variables/Placeholders/Information items In this perception, every document—
general-template-like or instance—is comprised of variables that, during processing,
become bound [111].

4.2.2. Constituents of Generalized Hyper-Graphs

Pursuing a mathematical and logic-oriented approach means that we think of variables
as bound variables, as opposed to the computational approach that allows continuous
changes of values contained in variables. (The use of binding the variables and bound
variables in a Computer Science analog way that is similar to mathematics is an important
approach to apply the logic and mathematics in Informatics [112].) For several reasons,
the immutable system and data architecture, especially in a distributed environment,
emerged as one of the solutions to handle consistency problems. Even if the underlying
computer architecture does not fulfill the expectation of immutability, there is a software-
architecture-level solution to provide this feature, e.g., through blockchain [113–115]. For
this reason, we assume the immutability of the information items after value assignments.

Mathematics 2022, 10, 759 22 of 47

The above-outlined element of Information Systems represents a complex structure along
with complex relationships that can be described by extended hyper-graphs [44]. The
generalized hyper-graph makes it possible to obtain hyper-edges nested in each other
to represent the complex interactions and interdependencies among the elements that
are represented by vertices (Figure 4). As the above-listed constituents of Information
Systems showcase, there are three realms that interact and are interdependent of each other
even if we represent all constituents in the form of documents (Figures 7 and 11). We can
define an appropriate labeling function that reflects the hierarchy of the nested hyper-edges
(Definition 2).

memberv : E→ P(V), so that memberv(ei) ∈ P(V) and memberv(ei) = {vj ∈ ei ∈ E}, (4)

where P(V) denotes the power set of V.
The member function defines the vertices that belong to a specific edge. As a shorthand

notation, and abusing the notation a little, we can write V(ei) = {vj ∈ ei ∈ E}

labeling : V ∪ E→ Labels = {l ∈ {0, 1}∗| |l| = n ∈ N}, (5)

where labeling is a labeling function for vertices and hyper-edges, and labels are represented
as binary codes for the sake of simplicity. We can assign attributes to edges and vertices,
that represent any components of an Information System, i.e., documents, artifacts of the
architecture, and elements of the Business Processes. (We can naturally use any alphabet
in the labeling function Σ = {ai|i ∈ N, }, w ∈ Σ∗ and |w| = n, so that a label is a string
of literals.)

attribute : V ∪ E→ Attr = {attri ∈ Ti , where Ti is a type, i ∈ N} (6)

The attribute function assigns attributes to vertices and hyper-edges (cf. Equation (1)).
The attributes can be used to attach semantic values to constituents of the generalized
hyper-graph. The T type can be considered a semantic domain, and an attribute attri ∈ T
expounds a value to describe the semantic content of the said component. Besides the
attribute assignment, semantic information can be given to constituents by labeling, too.
Each vertex represents a constituent of the three realms within the generalized hyper-graph.
We assign a unique identifier to each constituent as a constituent identifier (cid). We assign the
label and attributes to constituents to grasp the semantic meaning of the said constituent
and, if necessary, other data values as well.

value : V ∪ E→ Values = {values_set = {x1, . . . , xk}, xi ∈ Tj, (7)

where Tj is any type of the permitted domains, i ∈ N}.

attribute_value : Attr → Value = {vi ∈ Tj, where Tj is a type, and (8)

i, j ∈ N, dom(Tj) is the underlying domain of Tj}.

The nested hyper-edges can depict the subsumption of the elements to each other,
i.e., the sub-element and element hierarchical relationships and the relationships as one
constituent represented as a vertex belongs to another constituent represented as a hyper-
edge. The generalized hyper-graph makes it possible to describe complex relationships
of Information Systems that have three major realms of composition (see Section 4.2.1,
Definition 3). The generalized hyper-edges support the representation of complex re-
lationships that are necessary to depict both the static aspect and the dynamic aspect
of Information Systems, i.e., data and event processing. A generalized hyper-edge can
be considered a simple hyper-graph in its own right. We can depict the hierarchical re-
lationships’ subsumption through appropriate labeling and attribute value within the

Mathematics 2022, 10, 759 23 of 47

generalized hyper-graph. A vertex of the hyper-graph can be depicted by a set of attributes:
vj → {〈attri〉|attri ∈ Labels, attribute_value(attri) ∈ Tj i, j ∈ N}.

The hyper-edges can be characterized by a set of attributes, the vertices that are
contained therein, and the nesting level; in the case of the directed, hyper-graphs are
depicted by the source vertices contained in the tail and the target vertices that are included
in the head; furthermore, to make a difference, a Boolean attribute is devoted to designating
whether the hyper-edge is directed (i.e., a hyper-arc) or undirected (see Definition 2).

In the case of a hyper-arc −→e j →
{〈

V(ej) =
−→
e+j =

(
e+j ; j

)
;
−→
e−j =

(
e−j ; j

)〉
, 〈{attrk}〉 ∈

Labels i, j, k ∈ N
}

, where a specific labelled attribute denotes that the hyper-edge is

directed as directed = true : T(Boolean) . Naturally, when the hyper-edge is undirected,
directed = f alse : T(Boolean). Another attribute is dedicated to the nesting level or level of
hierarchy: level = p ∈ N, besides constituent identifier (cid).

Thus, the generalized hyper-graph can depict the complex relationships of an Infor-
mation System. The highest level of the complex relationships is situated in the docu-
ment/information, processes/workflow, and event/time-related architecture. The architec-
ture building blocks of an Information System are interrelated through their interactions
[1]. A building block of an Information System is in unity with its environment and itself
if it serves as a constituent element of higher-level systems. Elements of an architectural
building block act as lower-level systems. The generalized hyper-graph can represent a
system as a unity, i.e., a set of entities and a set of relationships among the entities. More-
over, the decomposition of the system means that every entity can be decomposed into
a set of other components that can be regarded as individual system in their own right,
and also that they can be perceived as subsystems that can be clearly separated out. This
approach makes it possible for a business and/or a system analyst to concentrate on either
the system or on the subsystems, depending on the actual interests in the analysis in every
specific case (see Figures 3 and 4).

 A

B

C

D

Tail

Head

Directed hypergraph

𝐷=(𝐴∧𝐵)∨ ¬𝐶

A

B

C

D

Simplicial Complex -
diagram

Business Rule (Horn clause,

Boolean expression)

Tail

Figure 11. Business Rules: logical inferences.

4.2.3. Hyper-Graph Representation for Storing in Databases

We can extend the representation of hyper-graphs in Database Management Systems
(DBMS) as follows (see Section 2.4). A constituent of the hyper-graph representation can be
a vertex or a hyper-edge in a hyper-graph Const_Hyp = Vertex|Hyperedge. A constituent
of the hyper-graph is a tuple:

Mathematics 2022, 10, 759 24 of 47

Const_Hyp =
〈

cid, name ∈ Labels, 〈{attrk} ∈ Labels→ attribute_value(attri) ∈ Tj〉, (9)

{rel_linkl}, cat_const, i, j, k, l ∈ N
〉

, where cat_const = Vertex|Hyperedge,

and rel_linkl may designate a logical relationship between the elements of generalized
hyper-graphs or any other relationship that cannot be successfully encoded by nested
hyper-edges or hyper-arcs. cat_const characterizes the category of the constituent. A set
of operations that fit to the various search, traversing and graph walking algorithms is
defined (see [19]).

4.2.4. Business Rules and Logical Statements

Through an illustrative example, we can look at how the behavior of an Information
System can be determined. The data-intensive hyper-edges can depict the information
content that can be represented in database schemes, meta-data of data collections, and semi-
structured schemes. Each of them is represented as a (nested) hyper-edge that contains
the vertices that store the ground-level facts, i.e., the variables and placeholders that
contain the values assigned to them considering the data-types of related attributes and
characteristics. We showcase a typical template of a workflow that is constructed from
patterns of workflows [116,117]. The workflow patterns were defined to lay the foundation
for building up complex workflows of business processes. The tasks, documents, data
collections, and the related notion of specific business processes are abstracted away to
yield a demonstrative example in Figure 12. The workflow model describes the sequential
and temporal order of tasks; moreover, it describes the actors, artifacts, documents, and
collections of data items that are linked to the tasks. A representation of a business process
in a workflow has one start event and one end event. If there are several end events, we join
them together into one end event by a minor transformation. The splits and joins of control
that flow at gateways of AND/XOR (OR) are used to trigger parallel and alternative
paths of execution. Between the start and the end event, any permitted constituents can
occur that are allowed by the constraints expressed in logical statements and rules. The
actors can be either carbon agents (human) or silicon agents (machine/application system).
The carbon agents are persons, roles, or organizational/business units. The association
between the tasks and actors can be described by documents and attributes of the task
that characterize the type of relationship, for instance, ’is responsible for the execution,
supervision, control, checking, etc. The artifacts are represented by documents or the
collection of data items. Besides business processes and tasks, the artifacts in the workflow
can consist of the following: (a) organizational goals, (b) products, (c) services, (d) markets,
and (e) performance indicators, etc. [11]. The artifacts are stored in sub-documents for
processing; therefore, they can be input and output too. The associations between sub-
documents/collection of data items in the processing and the tasks are represented in the
workflow through document association and explicit connection for designating the role of
sub-documents, namely input, output, or both.

Hyper-edges can be defined for data collections, activities/tasks, and rules/inferences.
Directed hyper-edges can express the directional relationship (i) between tasks and data col-
lections, (ii) between tasks/activities, and (iii) task-to-task, governed by logical statements
or rules. (see Figure 3).

Mathematics 2022, 10, 759 25 of 47

Organisation

3.Task

9. Task

8. Task

5.Task

6.Task

7. Task

DB

4.Task

 DB
1.Task

10. Task

+
11.Task

11. Task decomposition
+

11.1
task

11.2
task

11.3
task

End

Finalized
document

10. Task

Ground document

Claim DB

Claim DB

2.Task

Input
document

Start

Customer Organization

Figure 12. A real workflow; business process description abstracted away.

Such directed hyper-edges contain documents that are input and output to activities
as vertices; moreover, the transformation and constraints between the input and output can
be expressed by logical statements or rules that are associated with the directed hyper-edge.
The representation exploits that vertices can belong to several hyper-edges. In the case
of a generalized hyper-graph, hyper-edges can be embedded into other, distinct hyper-
edges (Definition 3). The nesting of hyper-edges makes it possible to express complex
hierarchical relationships among documents, data collections, and data items. In an analog
way, the activities and tasks comprise businesses processes and workflows that contain sub-
processes that are also considered hierarchical relationships. The description of business
processes is manifested in documents, thereby, the dynamic behavior and the static facets
of an Information System can be handled in a unified and uniform way, in a document-
centric way. In Figure 12, the ellipses designate the activities/tasks and documents that are
associated and wrapped into a hyper-edge. The groups with free-hand-style boundaries
(colored and dashed) denote the interrelated activities that are linked together through
logical gateways that contain conditions, constraints, and logical statements. These hyper-
edges are represented as directed hyper-edges, since they depict directed relationships and
inference rules between the elements. The representation of the whole business process
can be perceived as a hyper-edge that contains the other hyper-edges. The entire business
process consists of tasks that are numbered in Figure 12 from 1 to 11. The set of hyper-edges,
where each hyper-edge encompasses a business process or a workflow description, reflects
the behavior and usage patterns of the Information System. Any activity/task may enclose
several sub-activities, and it can, therefore, be grasped as a sub-process. For the sake of
simplicity in Figure 12, we provided an exemplification of a sub-process representation
and its description in the form of directed hyper-edges. After a transformation of the
decomposition of task 11, its components are configured into hyper-edges. The sub-process
contains 11* (*wildcard denotation) tasks that are numbered from 1 to 3, and the sequential
relationships among them are expressed by hyper-arcs.

After the transformation in Figure 13, some hyper-edges embrace the data and related
tasks as the hyper-edge containing tasks 1 and 2 along with an input document, furthermore
task 8 or task 10 associated with a dataset manifested in a database format. Another example
is that tasks 6 and 7 are logically related through a logic gateway to task 9; hence, they are
embedded in a hyper-arc. The attributes of hyper-edges and vertices, and especially the
link attribute, express the directed relationships between the components (see Equation (9)).
Furthermore, the attributes can explicate that the dataset in the hyper-edge associated
with a task can be of input, output, or both roles. A database, which stores the data and

Mathematics 2022, 10, 759 26 of 47

documents that flow, can be a data source and a data sink too, as in the case of tasks 8 and
10. An attribute data_ f low_dir = a f f erent|e f f erent|a f f erent&e f f erent designates what
the roles of a document or a set of data items linked to a task are. Tasks 6 and 10 use the
same document that is mediated through the database.

OrganisationCustomer

Input
document

Ground
document

 DB

Start
Claim

DB

End

Finalized
document

Claim
DB

2.Task

3.Task

8.Task

DB

10.Task

11.Task

09.Task

12.Task

7.Task

6.Task

5.Task

4.Task

1.Task

Figure 13. Transforming into adequate hyper-graph components: logical inference and document
processing.

This model transformation of business processes and the related collections of data
yield a high degree of flexibility. The uniform concept of hyper-edges and vertices of hyper-
graphs makes allowances for unified and flexible representations of data, documents,
business processes, and workflows, and all of these artifacts can be perceived as documents
used to handle them in a unified way. The objective of the behavior of an Information
System is to achieve its targets, which have been formulated as the requirements. The
requirements against an Information System can be formulated as a set of goals. In a
document-centric approach, we perceive the goals as documents that should be in an end-state
that is a ’finalized document’, which occurs after a ’ground-document’ state that is achieved
through transformation steps that are carried out within single tasks. The aim of a workflow
is the coordination of all constituents and artifacts that are embroiled in the performance
of a business process. The coordination can be described by the dependencies among the
activities. A workflow handles the data and document dependencies among the activities
(one task relies on the outcome of other tasks in the form of data items and documents, see
Figure 12) that are governed by control and data flows. The activities use shared resources
(e.g., databases and documents), whose usage is controlled through the scheduling of tasks
and staff allocation mechanisms. A workflow management system provides the automation
of the coordination activities and the components of business processes to support the goals
of the Information System [118]. The classical formulation of hierarchy of goals as follows:

H_G = 〈Set_Goal,≺〉 , where H_G is the hierarchy of goals, (10)

Set_Goal = {gj|j ∈ N} is the set of goals, and ≺ is a partial ordering relation.

The ordering relation ≺ is a partial ordering of multiple goals, since a lower level
goal in the hierarchy, or more accurately in the network, according to ≺ the ordering
relation, should be satisfied to fulfill the requirements of perhaps several higher-level goals.
How to accomplish the goals is coded into the hyper-edges and hyper-arcs that come
into existence after a transformation of the business processes that are represented in an

Mathematics 2022, 10, 759 27 of 47

adequate denotation, e.g., BPMN Business Process or UML Activity Diagram. The behavior
of an Information System can be represented this way (see Equation(10)):

Behaviour_IS = 〈H_G, B_A〉 , where Behaviour_IS describes the overall behavior of the system, (11)

H_G is the hierarchy of goals and , B_A_G = {b_a_gi|b_a_gi = 〈gj, ek〉 i, j, k = 1 . . . n ∈ N}

where b_a_gi denotes business activity interconnected to a goal, gj the associated goal,
and ek the hyper-edge associated with the activity and consisting of the related tasks and
documents/data items, altogether representing the activity. Thus, the goals that are organized
into a forest of hierarchies depict the decomposition of the system behavior into elementary
aims that can be realized by services and microservices [87]. The overarching generic
document contains the description of business processes and sub-documents that are in the
data-flow of data processing. The generic document contains the workflows at the highest
hierarchy level that characterizes the behavior of the system. The workflows are interrelated
and linked to each other, and they are represented by hyper-edges at the highest level.

4.2.5. Horn Clauses and the Hyper-Graph Representations

Workflows are composed of business processes that consist of tasks. This hierarchy
can be described by nested hyper-edges (see Figure 13). The goals are represented as
documents, a set of data items, or documents depicting states to be achieved. These goals
are displayed as vertices or nested hyper-edges. The goals are attached to specific fragments
of business processes that comprise certain tasks. These fragments are represented as hyper-
edges as well. For the sake of simplicity, we assume that the workflows and the business
processes involved are sound in the sense of either Petri Nets, UML, or BPMN [119,120]
(see Figure 10). The nested hyper-edges contain AND/XOR graphs that depict various,
specific fragments of business processes within a workflow [121]. The hyper-arcs may
connect a parent vertex to a set of successor vertices, and vice versa, several vertices may
be connected to one successor node. These hyper-arcs are the connectors between vertices.
We can define the connectivity between two vertices as follows: two vertices are connected
to each other if there is a directed hyper-path between them, the connectivity relationship
is denoted by �. A hyper-path H_Pathot with length(H_Pathot) = n in

−→
H is a series of

vertices and hyper-arcs H_Pathot = (v1 = o,−→e i1 , v2,−→e i2 , . . . ,−→e in , vn+1 = t), where

o ∈ −→e +
i1 (tail), t ∈ −→e +

i1 (head), and vj ∈ −→e
+
ij−1
∩−→e −ij

, j = 2, . . . , n. (12)

Vertex o ∈ −→e i (tail) is the origin or starting point, and t ∈
−→
e−i is the terminus. If

t ∈ −→e +
i1 (tail), then H_Pathot is a cycle. If each hyper-arc in a hyper-path is different

from the others, then a simple path exists; if every vertex is different from each other,
then it is an elementary path. In the case of an L-hyper-path, it is required for vertices
and hyper-arcs in the series to all be distinct, see Equation (12) [122]. Moreover, it holds
that vj ∈ −→e

+
ij

, vj+1 ∈ −→e
−
ij

, and −→e +
ij
⊆ {o} ∪ −→e −i1 ∪

−→e −i2 , . . . ,∪−→e −ij−1
. We can associate

a sub-hyper-graph with L_P = (v1,−→e i1 , v2,−→e i2 , . . . ,−→e in , vn+1), an L-path from vertex
v1 to vertex vn+1. Let HL_P be the hyper-graph representation of L_P L-path, where
V(HL_P) = {v1} ∪ −→e i1 ∪

−→e i2 , . . . and ∪−→e in and E(HL_P) = {−→e i1 ∪
−→e i2 , . . . ,∪−→e in}.

Mathematics 2022, 10, 759 28 of 47

A B-arcis a backward hyperarc (F-arc forward hyperarc) is a hyper-edge (13)

−→ei = (
−→
e+i ,
−→
e−i) = (T(ei), H(ei)) (tail, head), where|H(ei))| = 1 (respectively, |T(ei))| = 1).

A directed B-hyper-graph (F-hyper-graph) is a directed hyper-graph
−→
H , such that every (14)

hyper-edge in
−→
H is a B-arc (respectively, F-arc).

A B-hyperpath from o to t in
−→
H is a minimal directed subhyper-graph

−→
H ′, such that (15)

the hyperedges of
−→
H ′can be arranged into a sequence (−→e1 . . .−→en), where

∀−→ei ∈ E(
−→
H ′). It holds that T(ei) ⊆ {o} ∪ H(e1) ∪ . . . ∪ H(ei−1), t ∈ H(ek)).

A transversal of
−→
H is a set T ⊆ V, such that T intersects all hyperedges of (16)

T ∩−→ei 6= ∅ −→ei ∈
−→
H .

This is a minimal transversal, T, if it does not include other transversal as a subset. (17)

In a transversal hyper-graph T R(−→H) =
⋃

T minimal

, T is a set of all minimal transversals T. (18)

The B-arc connects several vertices of the tail to one vertex in the head, and, vice versa,
the F-arc connects one vertex in the tail to several vertices in the head. A BF-graph is a hyper-
graph which depicts directed hyper-edges, either B-arcs or F-arcs. This representation of
a hyper-arc and a directed hyper-graph is apt to the representation of the AND/XOR
graphs of business processes and workflows. A task can be described in a sub-document
format by variables, state variables, and attributes. A task can be formally defined such
that task = 〈In, Ou, Constraint, State, var1, . . . varn〉.

Definition 8. where:

1. ’In’ represents inputs that could be sub-documents or collections of data items.
2. ’Ou’ describes the outputs that could be sub-documents or collections of data items.
3. ’Constraint’ depicts behavioral constraints and goals to be achieved (see Equation (11)).
4. ’vari’ contains the actual valuation of the variable, and, moreover, whether it is free or has a

value, it is denoted as well through the meta-attribute of the variable valuated.
5. ’free-document’ is a document with free variables.

The AND/XOR (OR) graph related to a fragment of a workflow displayed as hyper-
edge can be conceptualized as a predicate according to the dependencies between tasks
and conditions that are captured in the logical gateways. A predicate that describes a rule
for dependency between tasks can be given by the following:

task1 ∧ task2 . . . ∧ taskk → taskn (dependency rule), (19)

equivalently it can be written ¬task1 ∨ ¬task2 . . .¬ ∨ taskk ∨ taskn, (20)

taski ⊗ task j → taskh (dependency rule), (21)

taski ⊗ task j ⇔ (taski ∨ task j) ∧ (¬taski ∨ ¬task j),

taski ⊗ task j ⇔ (taski ∧ ¬task j) ∨ (¬taski ∧ task j),

an exlusive-or logical statement can be formulated as a system of equations ,

Ax = b mod 2 where A is matrix with element 0-1,
−→
b is a 0-1 vector, (22)

and x represents the variables.

The system of equations can be perceived as a conjunction of clauses, where the
single equations can be considered to be clauses (Equation (22)). These variables are the
input/output variables of the tasks and the state attribute of variables of single tasks
that designate whether the variable is valuated or not. The XOR relationship can be

Mathematics 2022, 10, 759 29 of 47

converted into CNF (Conjunctive Normal Form), since any propositional logic formula
can be reformulated as a CNF. The selection structure that chooses the next task can be
represented by the logical formulae, if it is necessary, the splitting (XOR gateway) branches
can be separated into two distinct statements. The implication can be formulated as a
Horn clause [123] (Equation (20)). An atomic formula is either a variable or a predicate
with variables, xi or P(x1, . . . , xn). A Horn clause is the disjunction (∨) of atomicand
negated-atomic formulae, where at most one formula is atomic, i.e., it is not negated. An
implication can be considered a Horn clause if it contains exactly one atomic formula and
at least one negated-atomic formula [124]. A CNF/DNF Transformation can be carried out
automatically [125]. An alloy makes it possible to apply an efficient SAT solver [126–128].
We can formulate a goal of the Information System and a fact, for instance, a finalized
document or a collection of data items represented in document format in Horn clauses as
an end-state as follows Equation (11).

→ doci (fact), (23)

doci → (goal). (24)

The logical formulae are associated with the hyper-edges. The goals of the Information
Systems and the single Business Processes are expressed in logical formulae, too (see
Equation (10)). The goals are manifested as such documents that represent sub-documents or
collections of data items in the flow of processing. The goals can be formulated in an enterprise as
follows: (i) specific, (ii) measurable, (iii) achievable, (iv) relevant, and (v) time-framed [129],
p. 506. For each end-goal of the Information System—a certain head of a hyper-arc, at
the highest level according to the partial-ordering relation—a chain of hyper-arcs should
be built up that is based on the ordering relation ‘≺’ (Equations (10) and (11)). The
antecedent goal, according to the partial ordering relation, is placed into the head of the
hyper-arc; the consequent or subsumed goals are placed into the tail of the hyper-arc.
This step is repeated recursively until the lowest level, the leaves, is reached. The partial
ordering relation of the goals is transitive, non-reflexive, and antisymmetric. Goal hierarchy
can be represented in this way in an AND/OR tree. We can describe these features in the
form of first-order predicates and implications and transform them into Horn-clauses.

cons_goal(goal1, goal2) ∧ con_goal(goal2, goal3)→ cons_goal(goal1, goal3) (transitivity), (25)

where cons_goal designates a consequent or a sub-goal,

¬cons_goal(goal, goal) (non reflexive), (26)

cons_goal(goal1, goal2)→ ¬cons_goal(goal2, goal1) (anti-symmetric). (27)

4.2.6. The Document Model in Hyper-Graphs

A sub-document or the collection of data items in processing can be perceived as
a set of variables and attributes, so the goals can be depicted by a set of variables or
attributes of a sub-document, respectively. In an analog way, the activities/tasks are
represented by sub-documents and the variables of these sub-documents (Definition 8).
The activities/tasks and the associated logical rules indicate which variables are valuated
and stored in the sub-document or linked sub-documents. The dependency rules express
the valuation relationship between activities/tasks and sub-documents. The dependency
rules between activities/tasks signify whether a variable will be valuated if it occurs in the
sub-document format of the activities/tasks.

The document model can be formalized (Figures 14 and 15):

(1) A finite set of variables (attributes) that are represented by vertices in a hyper-edge,
doci = {xi1 , . . . , xin};

(2) A finite set of documents that are represented by hyper-edges DOC = { doc1, . . . , docn};

Mathematics 2022, 10, 759 30 of 47

(3) The variables that are contained in documents belong to attribute types Attr =
{ T1, . . . , Tn};

(4) The finite set of domains is DOMSET={ D1,.Dk} that contains the domain of each
single type, Ti, attribute type;

(5) The relationship between an OGDT generic document type (overarching document of
organization) and its constituents that are the document types that belong to a DTH
(document type hierarchy) can be described by hyper-arcs representing is-a relationships;
the hierarchy is a mapping of super-type—subtype relationships between document
types. The relationships can be deduced from the variables, their attributes, and
the types of attributes. A document type is realized either by a DTD or an XML
Schema [130];

(6) The relationship between a document, doci, and a document type, DT, can be described
by a hyper-arc representing the instance-of relationship.

The document types comprise the document model (Figure 15). The assignment
of document types to documents denominates the actual state of their variables in the
document flow. The variables receive values by the valuation function (Section 4.2.7).

The actual state of documents in the process flow can be implicated from the fact of
how many variables are already assigned to specific values. A generic document consists of
sub-classes and super-classes of documents that compose a forest of trees of the constituents.
Finalization of a document instance results in the fact that all free variables take a certain
value. The free documents similar to free rows in tableaux queries [131] can be perceived
as documents that contain unvalued variables. While the document progresses through
the flow of document processing, the variables are valuated incrementally. Valuation of a
free variable may require external data; these data are shipped by system roles outside the
enterprise, i.e., outside the Information System. The assignment of values to the variables
is determined by the business rules of the enterprise. For that reason, we create differences
between the states of finalized and ground documents. A finalized document is perhaps not
yet a finished document in processing. It may still encompass free variables, moreover,
error signaling variables that earmark the requirement for further activities by roles in the
enterprise. The problem and conflict resolution of documents with defects happens typically
by roles in the organization, i.e., outside the Information System. Applying an automated
approach for defect removal makes necessary a kind of procedure that can be regarded
as intensional treatment from a logics points of view, thereby the utilization of intensional
documents takes place. Intensional documents are instances of generic document types
that are based on business rules implemented by particular tasks. Such a task constructs
documents based on business rules. These documents are extensional instances of the said
generic, intensional document types. The instances of the extensions with free variables are
created from an intensional document through performing the business rules embedded
into the intensional document. Then, the variables of these extensional documents and the
documents themselves can be manipulated as free-variables and free-documents.

During the document evolution stages, through the impact of activities, the generic
document type and document types that are contained in the document hierarchy are instan-
tiated into documents with free variables (free-document). Then, the variables are valuated
until the documents reach a finalized status; however, the finalized state (document-to-be-
finalized) does not mean an end-state in an enterprise environment in practice (Definition 8).
The finalized document should be modified according to specific requirements until it
achieves the end state that may be called a ground-document. When all the free variables
are valuated, and no change can be executed on the document, then it is in a frozen status.
Any modification can be carried out only on a new instance of the document type. This
means that the life cycle of a new instance of the document type starts that continues the
document development of the said document at a certain point of its life cycle.

Mathematics 2022, 10, 759 31 of 47

Overarching
document of
organization

1

*

«struct»Documents to-be-

finalized

Ground document

1

*

"Free" document

1

*

part of document to be
processed

«derived»

«struct»
"Free" unit

Parameter1

«struct»
"Free" unit

Parameter1

Free variable1

Free variable_n

Free variable_k-1

Free
variable_k-n

Unit to-be finalized

Free variable

Free variable

Taks3

Task4

Task1

Task9

Task7

Task5

Task6

Task8

Figure 14. The interrelationships between sub-documents in processing and tasks.

Generalization

SubConceptOf

Whole-part

Aggregation

Composition

Association

Generic document Document element

Extensional

document

Intensional

document

Document-to-be

finalized

Ground document

Legend

Hyperedges

Element

Text Atrribute

Free variable

Place holder

Document sructure by Document Object Model
Document Sructure of an Organization

Figure 15. Hyper-graph model of documents.

4.2.7. Exploring the Dependency Rules in the Hyper-Graph Model

The function ν is the valuation function that assigns constants to each variable. If
A = P(x1, . . . , xn) is an atomic formula, then Aν is the result of the substitution when
every xi is substituted by ν(xi). A goal can be described by the variables of the associated
sub-document in the process flow. When a static analysis is performed, whether a goal

Mathematics 2022, 10, 759 32 of 47

is attained is investigated, i.e., the sub-document representing the goal accomplishing
the ground-document status that means that all variables are valuated is investigated. This
fact can be checked by the meta-attribute of the variables, i.e., “valuated” (Definition 1).
The dependency rule between the variables of a task is represented as a sub-document
(inputs) and the variables of the impacted sub-documents (outputs). The starting event
of a workflow yields output variables for the consequent tasks, while the ending event
demands to receive the output variables of the antecedent tasks. If the goal of the business
process or workflow is attained, then all variables are valuated, at least. The sub-document,
as a result of the workflow, will be at least in a finalized document state or perhaps in a
ground document state, i.e., in an immutable status.

taski(xi1 , . . . , xik), docj(xj1 , . . . , xjk), (28)

xi1 ∧ . . . ∧ xik → xj1 ∧ . . . ∧ xjk ,

when the tasks’variables are outputted into documents ,

xj1 ∧ . . . ∧ xjk → xi1 ∧ . . . ∧ xik ,

when the documents variables are inputted into tasks ,

(dependency rule between task’s and sub-document’s variables) .

The dependency rules induce a hyper-graph (see Equations (5), (19) and (25)):

Definition 9. Dependency hyper-graph

(i) for each variable, ∀xij ∈ doci ∈ DOC, there is a vertex in the hyper-graph;
(ii) for each dependency rule, there is a hyper-edge that contains the variables from both the

left-hand side and right-hand side of the rule ∀x1, . . . , xn, A1, . . . , An → B, where n ≥ 1
where each variable occur at least once in Ai or B;

(iii) The hyper-edges that contains the variables —either of the left-hand side or right-hand side of a
rule or of a sub-document or a task —are labeled as composite hyper-edges (hyper-vertices);

(iv) The hyper-edges that represent the dependencies are labelled by attribute functional depen-
dency, and the content of the attribute is the dependency rule in Horn-clause format.

The reason that the composite hyper-edge notion is introduced —besides to exploit the
properties of the generalized hyper-graph —is that we can handle the composite hyper-edge
as a “hyper-vertex”, which is represented and substituted as a vertex in a hyper-path in
one of the representation views of the adequate sub-hyper-graph, that consists of variables.
If we consider the dependency rules as functions, the dependency graph can be regarded
as a primal graph (Definition 1). For each fragment of a workflow, we can associate a
hyper-edge that can be considered, in the generalized hyper-graph, as a hyper-graph itself.

Step 1 For each task, locate the task or tasks that are indicated by the logical rule
(Equation (19)).

Step 2 Then, identify the linked sub-documents and collection of data items.
Step 3 For each logical implication between tasks, create an incidence matrix for a directed

graph A = [aij]. This directed graph is manifested as a directed hyper-edge −→e i
(Equation (2)). A task is displayed as an embedded hyper-edge that represents
the sub-document describing the task and contains the variables as vertices in
the sub-document that are related to the said task and manipulated by this task.
The tasks that are on the left-hand side of the implication will be embedded into

the tail of hyper-edge, taskk ∈
−→
e+i = T(ei) → aki = −1. The tasks that are on

the right-hand side of the implication will be included in the head of the hyper-

edge taskh ∈
−→
e−i = H(ei) → ahi = 1. This way, there is a hyper-arc between the

hyper-edges that contains the variables of the left-hand and right-hand sides of
the dependency rules and represents the dependency rule that is formulated in a
Horn clause.

Mathematics 2022, 10, 759 33 of 47

Step 4 For each document or collection of data items, create an incidence matrix for the
representation of the related hyper-edges D = [dij]. The directed incidence matrix
describes the directed relationships between tasks and documents (data items).
When the document or collection of the data items docj is input for a task or for
tasks, then the documents or the collection of data items is placed in the tail of
the hyper-edge, and the related task or tasks are placed in the head of the hyper-

edge: docj ∈
−→
e+i = T(ei) → dji = −1 and taskh ∈

−→
e−i = H(ei) → dhi = 1. When

the document or collection of the data items, docj, is output for a task or tasks,
then the documents or the collection of data items are placed in the head of the
hyper-edge, and the related task or tasks are placed in the tail of the hyper-edge:

docj ∈
−→
e−i = H(ei) → dji = 1 and taskk ∈

−→
e+i = T(ei) → dki = −1. In an

analog way, we can build up an incidence matrix, Var = [varij], for every variable
contained in a document to track the fate of the variables.

A process chain, an overarching workflow that embeds several business processes,
can be represented in a generalized hyper-graph as a chain of business processes that
can be depicted as a directed acyclic graph. The single business processes or workflows
are constituents of the generalized hyper-graph, and they are represented as embedded
hyper-edges that contain other hyper-edges, that can be perceived as stand-alone hyper-
graphs; the hyper-arc connects the tasks and the sub-documents, the inputs/outputs, to
each other [132] p. 314. The single business processes are connected by directed hyper-
edges, the output of the antecedent process in the tail, and the inputs of the successor in the
head. Thereby, the sequence of business processes as a chain can be depicted, so that they
appear as one of the overarching workflows. Exploiting the flexibility of the generalized
hyper-graph and the linked labeling functions, various problems can be investigated. The
typical question is whether all variables of a ground document in its end-state are valuated.
The issue can be reformulated so that whether each variable in a ground-document is
valuated. This formulation makes it possible to check individual variables for whether they
have been valuated, and a separate issue is the variables in the logical expressions and
whether they are all valuated, i.e., the logical expression is true according to the property
of valuation. Another question is whether a variable in an end state of a business process
can be reached from a starting state ((reachability)). For each document, i.e., set of data
items, we identify which task/activity produces the specific document or the set of data
items that assigns values to the related variables, respectively, we can determine which
task/activity the document expects and the possible valuated variables as input. For each
task that has a dependency relationship, we can pinpoint which document plays the role
of input and which the role of output. If [D]ij = dij = −1, then the document is input;
if [D]ij = dij = 1, then the document is output for the respected task (see Step 4). In
an Information System, we have several business process chains. A huge ERP system
contains roughly 800 process chains [132], p. 314. Every process chain consists of numerous
workflows; one workflow can be comprised of a few business processes, a business process
is composed of tasks/activities. We describe these complex, partly hierarchical, structures
by hyper-edges that are embedded in each other. Hence, we can investigate whether a
single process chain achieved the required end-result that can be formulated in such a way
whether the variables and data items in the output documents are valuated and connected
to input data items variables in input documents. The analysis can be recursively repeated
down to every single task/activity to perform the model checking.

Step 6 B-hyper-graph and L-path computation (see Equations (12) and (14)). We locate an
end-state and the document that represents the attained state of a business process
chain. Each variable in this document is represented as a vertex. We select one
variable/vertex, then we identify the tasks that are related to that variable through
the incidence matrix that describes the input/output variables and tasks (Step 4)
and start building up an L-hyper-path through B-arcs. Then, we pursue the tasks and
their input variables. These input variables are the output variables of antecedents

Mathematics 2022, 10, 759 34 of 47

tasks that can be determined again by the incidence matrix. Since an L-hyper-path
is an alternating sequence of vertices and hyper-edges containing tasks and a set
of variables, an L-hyper-path connects the variables in an end-state of a business
process or chain to the variables of one of the start-states of another business process
or the business process chain. The B-arcs are determined by the incidence matrix
of the variables and the tasks, so that the matrix makes it possible to establish
several continuations of the respected L-hyper-path. The collection of L-hyper-
paths constitutes a B-hyper-graph. It is the set of domains of data types that cares
for the values of variables. For every process chain and each of their end-states,
the collection of L-hyper-paths and B-arcs that are encompassed by their related
B-hyper-graphs should be constructed. This procedure should be repeated for each
workflow and business process that is a constituents of a business process chain,
then for every task within a business process.

The business process chains and the business processes that constitute them can be
represented by acyclic directed graphs. The loops and the cycles can be hidden in sub-
processes without abusing the integrity of the processes themselves. A business process can
be regarded as a long transaction, since the requirement of interaction with other systems,
batch services, and human actors can take hours or even days. In the case of any failure,
it is a necessary kind of rollback, although it differs from a typical database transaction
that is performed in a short time [133]. In business process modeling, to make the rollback
mechanism operable, every task should have a related compensation activity that can
reverse the impact—in the sense of the data and the state of the system—of the task [66,134].
Nevertheless, the modeling properties of BPMN can be exploited so that the compensation
transactions coupled to a specific business process can be separated into distinct process.
In this way, the coupled business processes communicate to each other through status
messages to reverse the effects in the case of any faults of the business process and the
underlying transactions. Thus, we avoid cycles in the hyper-graphs. Nevertheless, there is
a duplication of the business processes. The compensation process is carried out in reverse
order according to the original respective business process. Thereby, model checking can be
executed for the hyper-graph representation of the business process whether all required
variables within the compensation process are valuated in the related documents and set
of data items. Using this representation approach, we can eliminate the cycles within
the graph that would be built in by design and the representation transformation. We
apply the generalized hyper-graph representation to depict the complex, partly hierar-
chical relationships among the numerous relevant constituents of an Information System.
Exploiting the labeling function and the attributes assigned by the labeling function to
hyper-edges and vertices, we can distinguish directed hyper-graphs describing single
business process chains, single workflows, and single business processes. Thus, we can
associate a hyper-graph with a business process chain, a workflow, or a business process.
We call a directed hyper-graph, for instance, a hyper-graph associated with workflow
w- fi, a hyper-graph associated with a business process chain b-p-chainj, or hyper-graph
associated with a business process b-pk.

Step 7 B-hyper-path computation. After identifying the B-hyper-graphs that are associated
with business process chains, workflows, and business processes, we can calculate
the B-hyper-path. In the case of B-hyper-paths, we start again with one variable
in some end-state, then we create a B-hyper-path Equation (15). We repeat this
procedure for all variables that can be found in documents representing end-states
in business process chains, workflows, and business processes.

Step 8 Transversals and path computations from hyper-vertices [44], p. 37. After discovering
the possible B-hyper-graphs that are associated with business process chains, work-
flows, and business processes, we can calculate the transversals for each identified
B-hyper-graph. In the case of transversal computation, we start with the hyper-edge
that represents the documents in some end-state and contains a set of variables.

Mathematics 2022, 10, 759 35 of 47

A minimal transversal T of B-hyper-graph
−−−−−−→
Hb-p-chainj

/
−−→
Hw- fi

/
−−→
Hb-pk

is a collection
of the tasks whose output variables can be used as input variables of b-p-chainj,
w- fi, b-pk (Equation (18)). We repeat this procedure for all documents that can
be found in documents representing the end-state. We compute the L-hyper-paths
repeatedly in such a way that the set of variables in a document within an end-state,
which is enclosed in an adequate hyper-edge, is replaced in the representation by
one vertex (hyper-vertex = hyper-edge identified with one compound vertex) that
contains all variables with their properties. Thereby, we acquire another collection
of L-hyper-paths.

The L-hyper-paths, B-hyper-paths, and B-hyper-graphs describe a possible connection
between a variable stored in a document representing an end-state and a possible input
variable or variables that play a role of value-setting to give an initial value to the variables.
After this, we built up all possible L-hyper-paths, B-hyper-paths, and B-hyper-graphs that can
be explored from the single variables and sets of variables in documents representing the
end-state of business process chains and single business processes. Thus, we have the
opportunity to investigate several questions regarding the integrity and consistency of the
Information System. All minimal transversals of a hyper-graph T R(−→H) can be computed,
where

−→H =
−−−−−−→
Hb-p-chainj

|−−→Hw- fi
|−−→Hb-pk

. If the hyper-graph size is reasonable in the sense of
hyper-edges, there are efficient algorithms to calculate the minimal transversals [135,136].

Step 9 Consistency checking of generated dependency rules. Each minimal transversal,
−→
T ∈ T R(−→H), is a representation of dependency rules that can be identified

from the models. For every edge
−→
T and the minimal transversal T R(−→H) contain-

ing it, we check whether, when starting from the head part of some end-state, the
associated attributes and logical statements are consistent (see Equation (9)) .When
a new workflow or new business process is inserted into the system, the attainable
goals are formulated as variables of documents stored in some end-state, either of
the business process chain, particular workflow, or the said business process. If
transversals T, in a minimal transversal T R(−→H) (that is associated with b-p-chainj,

w- fi, b-pk) fulfills the behavior and other constraints, then the tail T(
−→
T) containing

logical conjunctions of tasks and the head Head(
−→
T) containing either variables of

documents or a task represent a valid dependency rule (Equation (11)).

The B-hyper-graphs constructed during the procedure contain the B-hyper-paths. A B-
hyper-path connects one variable or a set of variables in the document (hyper-vertex) stored
in an end-state to variables in the documents in one or more start-states. In the generalized
hyper-graph, there may exist numerous B-hyper-graphs (Figure 16). A B-hyper-path can be
used to check whether one variable or a set of variables can be linked to input variables.
Since the B-hyper-path is created backward from the vertex that represents a variable,
the path connects the said variable to a set of variables to input variables of tasks within
business processes. The L-hyper-path is strictly linear, the B-hyper-path allows branching.
Thereby, a B-hyper-path connects a variable to a set of input variables of various tasks
according to the dependency rules. Alternatively, a hyper-path may start backward from a
hyper-vertex—a set of variables contracted to one vertex that represents one document—and
locate the potential input documents in the form of a hyper-vertex that is valuated within
the backward walk. The L-hyper-paths are strictly linearized sequences of vertices and
edges (Equation (15)), so that they connect a variable in some end-state to a variable in
some start-state or a set of variables in the end-state to a set of variables in a start-state. It
depends on which type of vertices are selected for constructing an L-hyper-path, a simple
one representing one variable or a compound one that represents a set of variables as a
hyper-vertex.

Mathematics 2022, 10, 759 36 of 47

4.2.8. Model Improvement through Model Checking

We explore the conceivable application of the hyper-graph model to find either a
business process, business processes, or a workflow to address a particular issue to solve
problems. We constructed the imaginable hyper-paths, which are chains of hyper-edges
that can be deduced from the models through transformation into hyper-graphs in the
previous section (Section 4.2.7). The incidence matrices associated with hyper-graphs
and sub-hyper-graphs are a suitable basis for dealing with these problems, besides the
hyper-paths. There are two realms of the potential investigation; one is the examination of
the existing system, and the other is the analysis of the incrementally enhanced system by
new services. We should look at these issues as follows: (a) seeking out the appropriate
business processes (chains or workflows) to figure out which would produce the anticipated
output in the form of a variable or data item, (b) finding the appropriate business processes
(chains or workflow) that generate the expected document or documents, and (c) and
recognition of the problematic or “critical” business processes (chains or workflow). Since
the tasks, workflows, business processes, business process chains, and documents are
represented in XML, the meta-attributes and properties of the variables for navigation and
walking through the hyper-graph representations can be denoted by elements or attributes
of elements in the related XML document (tagging) [109]. For example, if we select a single
output variable, xj, then we can identify the related document and the incidence matrix,
Var = [varij] (see Step 4). Then, there are some options:

Option 1. ∀i, [Var]ij = varij = 0, there is no hyper-edge representing a task that contains
that variable in its head. It should be investigated whether this variable is
necessary and, if yes, which business process and its task should produce it as
an outcome.

Option 2. ∃i, [Var]ij = varij = 1, then the meta-attribute of this variable should be checked
to see which task gives value to this variable. If there is at least one task that
sets the meta-attribute of the variable to “valuated”, then the relevant business
processes and tasks can be found through an L-hyper-path and a B-hyper-path.
If there does not exist a task that valuates the variable, then it should again
be investigated whether this variable is necessary and, if yes, which business
process and its task should produce it as an outcome, i.e., it seems to be that
a valid input does not exist, or it did not succeed in constructing a hyper-path
that connects the resultant variable to any valid input variable or set of input
variables. The causes should be investigated, and the possible solution should
be identified.

Option 3. If [D]ij = dij = 0, then there is no hyper-edge representing a task that contains
that document—and the set of variables in the document—in its head. Whether
this document is necessary should be investigated and, if yes, which business
process and its task should produce it as an outcome, if this situation occurred.

Option 4. ∃i, [D]ij = dij = 1 then the meta-attribute of these variables in the document
should be checked to see which task gives value to these variable. If there is at
least one task that sets the meta-attribute of the variable “valuated” to true, then
the relevant business processes and tasks can be found through an L-hyper-path
and a B-hyper-path. If a task that valuates one of the variables does not exist,
then it should again be investigated whether this variable is necessary and, if
yes, which business process and its task should produce it as an outcome, i.e., it
seems to be that a valid input does not exist, or it did not succeed in constructing
a hyper-path that connected the resultant variable to any valid input variable
or set of input variables. The causes should be investigated, and the possible
solution should be identified.

Option 5. ∃i, [Var]ij = varij = 1 and the meta-attribute “valuated” of this variable is true,
then at least one or more L-hyper-path and B-hyper-path exist that yield viable
sequences of variables and tasks in business processes that lead back to valid
start-states and associated input variables. If there are several allowed sequences,

Mathematics 2022, 10, 759 37 of 47

which path is worth retention should again be investigated. Other factors can
be contemplated in the selection procedure: e.g., the length of the path of the
alternating tasks and input variables; the complexity of the paths investigated;
and, moreover, the reliability and trustability of tasks and contained business
processes; furthermore, the cost factors in an IT sense should also be investigated.

The L-hyper-path that connects a single variable through the dependency rules to an-
other single variable when the variables are perceived as single vertices is strictly linearized.
Instead of a single variable, we can select a composite hyper-edge, a hyper-vertex that
exhibits a document, then we can build up an L-hyper-path that represents an alternating
path between document vertices and hyper-edges, including tasks. The construction of a
hyper-path happens while backward walking, starting from the designated t terminus to
the o origin. A B-hyper-path permits a more loose connection; the starting point for building
up is either a single variable or a document in a backward walking. We may eventually
acquire a set of tails that contains a set of variables or documents that are connected to a
terminus. The terminus can be either a single variable or a single document containing a set
of variables.

10. Task

9. Task

8. Task

5.Task

6.Task

7. Task

Claim
DB DB

4.Task

Ground
document

5.Task

6.Task

7.Task

Back-arc
B-arc

8.Task

9.Task

10.Task

Forward-arc
F-arc

(¬ X1∨¬ X2∨ ¬ X3∨X4)∧(¬X4 ∨X5) ∧(¬X5∨ ¬X6 ∨ X7)
 X1∧ X2∧ X3→X4

X4→X5
X5∧ X6 ∨ →X7

Horn formula represented in a directed hypergraph

X1

X2

X3

X4 X5

X6

X7

Figure 16. Workflow fragments and their relationships with the transformed B-arc and F-arc.

Option 6. ∃i, [D]ij = dij = 1 and the meta-attribute “valuated” of all variables in the
document is true, then at least one or more L-hyper-paths and B-hyper-paths exist
that produce a feasible series of variables/documents and tasks in business
processes that lead back to valid start-states and associated input variables. As in
Option 5, we should investigate which path is viable, reasonable, and consistent
with the intentions of the system.

Option 7. If either ∃i, [D]ij = dij = 1 or ∃i, [Var]ij = varij = 1 and the meta-attribute
“valuated” of all variables in the document is true, however, neither L-hyper-path

Mathematics 2022, 10, 759 38 of 47

nor B-hyper-path exist that provide a feasible sequence of variables/documents
and tasks in business processes that lead back to any valid start-states and
associated input variables, the required input variables are not known or not
reachable.

When new requirements in the form of new goals are specified, then we translate the
requirements into documents and variables in the documents so that the same approach
can be applied as before (Equation (10)).

In the case of Option 7, the unavailable or unreachable input variables should be inves-
tigated additionally for every potential L-hyper-path or B-hyper-path to figure out whether
the necessary input variables can be generated through an adequate path, i.e., through
a valid and reasonable path of tasks and business processes. During the computation of
B-hyper-paths, B-hyper-graphs come into existence, and the issues can be investigated within
these hyper-graphs. The investigation of the issues that emerged is a supervised operation,
i.e., a recursive procedure, because there is no guarantee that the solutions can be found
automatically if there is a specification error. During the analysis, we can use the theorem
from Ref. [122].

Theorem 1. Let
−→
H = (V, E), E ⊆ P(V) be a directed B-hyper-graph. Let U ⊆ V, and let

F ∈ E . Then, there is at most one L-hyper-path in
−→
H with the set of vertices that are exactly U and

with the set of hyper-edges that are exactly F.

The consequence of the Theorem 1 is that a polynomial-time greedy algorithm exists.
The algorithm makes it possible to check whether there is a path between an outcome
variable and a required input variable. This checking is interesting, especially in the case of
a new goal formulation. We tried to close out possible cyclic behavior inherent in business
process modeling and design that appear because of compensation processes, so that the
compensation processes were separated into distinct processes. Despite that, some hidden
cycles may exist that may cause the issues mentioned in Option 7. Ref. [137] analyzes
and discusses the various notion of acyclicity of hyper-graphs and their interrelationships,
namely alpha, beta, and gamma acyclicity. That paper provides a rule-based characteriza-
tion for checking the acyclicity of hyper-graphs in all three reasonable acyclicity definitions.

Proposition 1.

1. alpha (α) acyclicity:

1.1 The hyper-graph H is α acyclic if it is conformal, where conformal means that a hyper-
graph H is conformal if every clique of the hyper-graph is included in a hyper-edge,
and free of cycles, i.e, cycle-free.

1.2 The hyper-graph H is GYO reducible [138].

2. beta (β) acyclicity:

2.1 The hyper-graph H is β acyclic if each subset of H (or each sub-hyper-graph of H) is α
acyclic.

2.2 The hyper-graph H can be reduced to an empty set by repeatedly removing nest points.
A vertex v is a nest point if there is a linearly ordered sequence of hyper-edges that
include each other consecutively and all contain v, {e1, . . . , en}, ei+1 ⊂ ei, ∀i < n,
and v ∈ en [139].

3. gamma (γ) acyclicity:

3.1 The hyper-graph H is γ acyclic, if H is β acyclic and there are no vertices v1, v2, v3
so that {{v1, v2}, {v1, v3}, {v1, v2, v3}} ⊆ H[{v1, v2, v3}], where H[{v1, v2, v3}]
is the induced sub-hyper-graph, e.g., W = {v1, v2, v3} , W ⊆ V the vertices of H,
H[W] = {e ∩W|e ∈ H} \ {∅}.

3.2 The hyper-graph H can be reduced to an empty set by repeatedly removing nest points.
3.3 The hyper-graph is DM reducible [140].

Mathematics 2022, 10, 759 39 of 47

Corollary 1. Alpha (α) acyclicity, beta (β) acyclicity, gamma (γ) acyclicity are in the complexity
class of polynomial time [137].

According to Ref. [141], the alpha acyclicity belongs to the complexity class of linear
time. The GYO, DM, and beta elimination reduction algorithms for directed hyper-graphs
can be employed to detect the cycles in single hyper-graphs (B-hyper-graphs) [36,142]. The
issues that were conceptualized in Option 7 must be examined further through exploiting
the cycle elimination algorithms and through scrutinizing the models and designs of the
sequences of the inputs, tasks, and outputs. Detecting L-hyper-paths, B-hyper-paths, and
hyper-graphs that contain a cycle provides the opportunity to investigate the cause of the
cycle that remains after placing out the compensation processes. Since we applied an en-
coding for the model of Information Systems that alternately deposited the variables/data
items and the manipulating tasks of the processes in the tail and head of the hyper-arcs, the
hyper-arcs express dependency rules between the variables and the manipulating tasks
between the tasks.If the cycle is justified from an organizational point of view, then the tasks
and coupled variables can be inserted into a sub-process; thereby, the cycle is eliminated
at the topmost hierarchical level of the processes, and it is replaced by composite sub-
processes and their input and output variables. This solution makes it possible to continue
the analysis of whether the necessary input variables are reachable or exist at all. In an
agile development environment, or dynamically changing business process environment,
this evaluation method assists in pinpointing problem areas. The incidence matrices for
documents permit the investigation into whether a set of variables can be produced. If
there are problems with some variables, then the incidence matrices for those variables
can be used along with L-hyper-paths and B-hyper-paths. If there is no reasonable path
between a specific variable and the required inputs, or suitable input variables cannot be
found, then this situation compels model modification and intervention from the modelers.

5. Discussion

The Information Systems in an organizational environment are highly complex sys-
tems like the Enterprise Resource Planning systems (ERP) [143]. Hence, one of the op-
portunities to investigate the disparate phenomena of system behavior is to simulate the
activities of Business Processes. The recent technologies make it possible to simulate a
reasonable part of relevant business processes. The traditional rule of thumb in the case
of Corporate and Enterprise Information Systems is that three separate software/system
environments should be maintained, namely development, testing, and production [37]
p. 7. The modeling and simulation of any parts or components of the operating Information
System in a virtual environment through the exploitation of Model Checking technologies
that are based on formal mathematical representation, i.e., hyper-graphs and simplicial
complexes, and the above-outlined set of algorithms is a viable approach. Change Man-
agement in a quasi-real-time and dynamic environment becomes a critical issue, since the
required modifications at any level of the Enterprise Architecture should yield advanta-
geous alterations of the operating Information Systems and, at the same time, should care
about the minimal disruption of Information System functions [144].

The described operationalized formal approaches can be placed into a unified frame-
work. The framework consists of a simulation environment, a transformation system,
and the development environment of Information Systems. The transformation environ-
ment translates the models into representations based on graphs and related theories.
The simulation environment contains analytical methods and model-checking algorithms
to investigate the models’ consistency and integrity and also to highlight problems and
explore similarities and dissimilarities between the changed and original components. A
transformation method and algorithm has been created that can translate UML Activity
Diagrams (then later Business Process Model Notation descriptions) into a Yawl work-
flow interpretation engine [145,146]. The reason for this transformation is that Yawl is an
open access system that can operationalize the representation of Workflows and Business

Mathematics 2022, 10, 759 40 of 47

Processes [147]. The representation of the Business Process can be examined by using
transformations into Finite State Machines that are described in hyper-graphs and then
performing Model Checking activities on the representations [77].

The Business Processes’ description in hyper-graphs is transformed into bipartite
graphs and presented in matrices according to the Smith Normal Form. The Smith Normal
Form representation offers the opportunity to evaluate the dissimilarities between Busi-
ness Processes, i.e., the violation of integrity and consistency in the case of dynamically
changed Business Processes can be highlighted [107]. The hyper-graphs can be perceived
as simplicial complexes or mapped onto simplicial complexes. The homology groups and
Betti numbers (i.e., the ranks of homology groups) that can be calculated indicate the loops
within simplicial complexes and, thereby, the phenomena in hyper-graphs that are worth
investigating. The description logic statements can be represented by components of hyper-
graphs, hyper-edges, and their labels [30]. The labeling functions make it possible to link
the first-order and description logic statements to constituents of hyper-graphs representing
single models of Information Systems. The description logic statements themselves can be
represented in hyper-graphs, and proofs can be automated by adequate engines so that the
model checking and the satisfaction of constraints and formulated business rules can be
carried out as well [148,149].

The various transformations and applications of diverse representations focus on
supporting model checking in terms of consistency, integrity, compliance, and confor-
mity to the established rule set. The checking of the disparate models of Information
Systems from distinct viewpoints requires different representations and sets of algorithms,
since single specific representations and the linked theoretical backgrounds alongside the
operationalizing methods yield only as many interpretable results as will cover specific
aspects of Information Systems. Thus, the approaches described in this paper can highlight
the potential problem areas in ongoing development projects. In tandem with human
interactions, issues can be explored, and then mitigation actions can be initiated. The
P = NP or P 6= NP concern does not cause any serious consequences nowadays regarding
the problems regarding size being within the class of the problems that can be managed
and handled by humans [38]. Especially in the field of Information Systems, the num-
ber of workflows and business processes are finite. The workflows, business processes,
sub-processes, and tasks can be measured by their graphical representations in vertices
and edges, these numbers—even in the cases of large ERP systems —are bounded so that,
in a computation sense, model checking remains in reasonable complexity. Moreover,
the practical investigation of a large set of Horn-clauses is computationally feasible since
efficient SAT solvers are available [128].

We selected and used generalized hyper-graphs instead of other graph-based ap-
proaches, since the hyper-graph makes generalization and specialization both possible
at once. Other graphical approaches, such as, e.g., meta-graphs, are feasible and viable
approaches. Notwithstanding this, meta-graphs lack the flexibility of defining various
layers of views and the capability of the superimposed viewpoints that can be handled
simultaneously [150]. Moreover, the mathematical theory of hyper-graphs is broad, and the
related mathematical theories involve various finely distinguished versions of hyper-graphs
that have coupled a rich set of computer science approaches, methods, and algorithms. The
computer science-based algorithms make it possible to operationalize the models coded
in hyper-graphs; therefore these methods provide application opportunities in numerous
fields, including Information Systems.

6. Future Directions of the Research

The Virtual Twin of Operating Information Systems within an Enterprise is such an
important approach to mimic the actual system in such a way that it becomes a mapping of
the real system onto a simplified representation (Figure 17).The representation contains
those essential components and models taking into account the essential constituents
from the viewpoint of the current analysis. The Virtual Twin approach can follow the

Mathematics 2022, 10, 759 41 of 47

same thinking line as the Digital Twin approach in the context of Cyber-physical Systems
[151]. The major ERP systems have models and representations of their business processes.
They use one of the standard notations, e.g., SAP [143]. In an industrial environment, the
representation of those models is accessible so that they can be uploaded into in-memory
databases. The available libraries within in-memory databases possess advanced graph
algorithms and data analytics functions. The new business processes are designed, typically
by agile or lean methods, to roll out rapidly. Then, the new business or dynamically
changed business processes can be placed into this environment, and model checking
can be efficiently and effectively executed through exploiting the available function of the
in-memory database development environment.

The future research question is how the differing representation described in the paper
can be integrated at a higher level. The Virtual Twin approach provides a viable and feasible
approach, since an apt architecture for a Virtual Twin configuration can be placed in the
testing environment of Information Systems that is prescribed in the disciplined system
development methods [37]. Despite that fact, that our approach uses the mathematical basis
of a hyper-graph and graph theories more generally in the interpretation, explanation, and
transparency of issues requires disparate specific methods, algorithms, and procedures. The
proposed representation and encoding of the Information System model make it possible to
apply further mathematical analysis tools for problem detection and optimization, as well as
the exploration of “critical” constituents (business processes, tasks), etc. The augmentation
of the services of this representation requires further encoding of the properties of the
Information System Model and also requires experimental design, development, and
measurement of the effectiveness of various possible approaches to be carried out.The
uniform basis of representation, however, offers the chance for integration among the
various aspects and distinct algorithmic approaches.

Information
System

Business Processes
(Data processing)

 Information,
Architecture (Document and Data)

Services

Virtual Twin of Business
Processes and

Information Architecture

Virtual Twin of Model
Checking

(Consistency, integrity)

Virtual Twin of Change
Management/Control

Virtual Twin of Information
System

Events (Documents,
Resources)

Real-life sources
(data and

documents of
events)

Synthetic data
(generated and
documents of

events)

Models for
Operationalizing

Extraction and ingestion

Mimicking of
Operations of
Information

System

Compliance
checking

Controlling the
soundness of the
dynamic changes

Examining the
root-cause of the

problems

Figure 17. The Virtual Twin Framework for Mimicking the Behavior of Information Systems.

7. Materials and Methods

Our research group developed methods and customized algorithms that can interpret
and analyze specific aspects of the models in Information Systems. The programs and
codes can be accessed at sites that are listed below:

— Hyper-graph visualization; source code of implementation:

– https://github.com/stsoor/MScFinalProject (accessed on 30 Augest 2021).
– https://github.com/stsoor/MScThesis(accessed on 30 Augest 2021).

— Clustering Business Processes for Evaluation of Similarities and Dissimilarities:

– https://github.com/KumundzhievMaxim/ELTE-EFOP-2020(accessed on 25
July 2021).

https://github.com/stsoor/MScFinalProject
https://github.com/stsoor/MScThesis
https://github.com/KumundzhievMaxim/ELTE-EFOP-2020

Mathematics 2022, 10, 759 42 of 47

— Operationalized transformation of UML AD into YAWL:

– https://github.com/ahmadmukashaty/An-Operationalized-M2P-Transformation-
for-Activity-Diagram-into-YAWL (accessed on 26 January 2022).

8. Conclusions

The described and proposed combination of methods, algorithms, and checking
mechanisms can provide a viable and feasible approach even in a dynamically changing
organizational environment. The transformation and model-checking methods can be
exploited in agile project and organization development environments. The methods can
be used when a well-defined part of an Information System needs dynamic alteration, main-
tenance, or further and incremental development. When the task is to check the consistency
and integrity of the system which undergoes modifications, the proposed approach proves
very useful. Furthermore, when the soundness of the particular aspects of the Information
System, e.g., behavior, functional, and information facets and models, should be analyzed,
the proposed method is fruitful. The encoding of the Information System model by the
proposed method is not only a representation tool, but is also a tool for profound analysis.
This mathematical structure, which is based on hyper-graphs and exploits several proper-
ties of the generalized hyper-graphs, yields a foundation for rich analytical methods. The
various transformations into distinct representations are necessary because of the different
capabilities of the specific single representation solutions to be interpreted. This is similar
to other mathematical disciplines, where adequate representation that can be applied to
gain insights into problems to be solved should be sought.

Author Contributions: B.M. and A.B. worked on the conceptualization of the raised issue; they wrote
the original draft version, then they carried out the editing and revision. B.M. and A.B. proofread the
draft and revision. B.M. supervised the process. B.M. acquired funding to support the creation of the
paper. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by grants of “Application Domain Specific Highly Reliable IT
Solutions” project that has been implemented with the support provided from the National Research,
Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme
TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was supported by grants of “Application Domain Specific Highly
Reliable IT Solutions” project that has been implemented with the support provided from the National
Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence
Programme TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Article specific
IS Information System
IT Information Technology
IT/IS Information Technology and Information System
ERP Enterprise Resource-Planning System
ITIL Information Technology Infrastructure Library
TOGAF The Open Group Architecture Framework
ASC Abstract Simplicial Complex
XML Extensible Markup Language

https://github.com/ahmadmukashaty/An-Operationalized-M2P-Transformation-for-Activity-Diagram-into-YAWL
https://github.com/ahmadmukashaty/An-Operationalized-M2P-Transformation-for-Activity-Diagram-into-YAWL

Mathematics 2022, 10, 759 43 of 47

JSON JavaScript Object Notation
DBMS Database Management System
BPMN Business Process modeling Notation standard version 2.0
CNF Conjunctive Normal Form
DNF Disjunctive Normal Form
DTD Document Type Definition
GYO non-deterministic algorithm described by Graham, Yu, and Özsoyoglu
DM DM-reduction algortihm originates from D’Atri and Moscarini
DOM Document Object Model

References
1. Bertalanffy, L.V. General System Theory: Foundations, Development, Applications, revised ed.; George Braziller, Inc.: New York, NY,

USA, 2015.
2. Alter, S. Defining information systems as work systems: Implications for the IS field. Eur. J. Inf. Syst. 2008, 17, 448–469.

[CrossRef]
3. Cardoso, J.; Fromm, H.; Nickel, S.; Satzger, G.; Studer, R.; Weinhardt, C. Fundamentals of Service Systems; Springer:

Berlin/Heidelberg, Germany, 2015.
4. Demirkan, H.; Spohrer, J.C.; Krishna, V. The Science of Service Systems; Springer: Berlin/Heidelberg, Germany, 2011.
5. Mattyasovszky-Philipp, D.; Molnár, B. Adaptive/cognitive Resonance and the Architecture Issues of Cognitive Information

Systems. In Proceedings of the 2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom),
Mariehamn, Finland, 23–25 September 2020; IEEE: New York, NY, USA, 2020; pp. 000479–000484.

6. Molnár, B.; Mattyasovszky-Philipp, D. Cognitive Information Systems-artificial Intelligence & Management Decisions. In Pro-
ceedings of the 12th IADIS International Conference Information Systems, Vilnius, Lithuania, 10–12 October 2019; Volume 2019,
pp. 290–294.

7. Spohrer, J.; Maglio, P.P.; Bailey, J.; Gruhl, D. Steps toward a Science of Service Systems. Computer 2007, 40, 71–77. [CrossRef]
8. Mattyasovszky-Philipp, D.; Molnár, B. Cognitive Resonance and the Architecture Issues of Cognitive Information Systems. In

Accentuate Innovations in Cognitive Info-Communication in Series: Topics in Intelligent Engineering and Informatics Infocommunications
and Human Centred Engineering (Working Title); Springer: Berlin/Heidelberg, Germany, 2021; in press.

9. Molnár, B.; Mattyasovszky-Philipp, D.A. An Architectural Approach to Cognitive Information System. In Proceedings of the
10th IEEE International Conference on Cognitive Infocommunications, Naples, Italy, 23–25 October 2019; IEEE: Manhattan, NY,
USA, 2019; pp. 459–462.

10. Ogiela, L.D. Cognitive Information Systems in Management Sciences; Academic Press: Boston, MA, USA, 2017.
11. Open Group. Togaf: The Open Group Architecture Framework, Version 9.2. 2010. Available online: http://www.opengroup.

org/togaf/ (accessed on 26 January 2022).
12. Zachman, J.A. A Framework for Information Systems Architecture. IBM Syst. J. 1987, 26, 276–292. [CrossRef]
13. CCTA. (Ed.) Ssadm Version 4 Reference Manuals (Volumes 1–4); NCC Blackwell: Oxford, UK, 1990.
14. Skidmore, S.; Farmer, R.; Mills, G. Ssadm Models and Methods, Version 4; Blackwell Pub.: Oxford, UK, 1992.
15. Duncan, J. Ssadm in Practice: A Version 4 Text; Macmillan International Higher Education: London, UK, 1995.
16. Molnár, B.; Őri, D. Towards a Hypergraph-based Formalism for Enterprise Architecture Representation to Lead Digital

Transformation. In European Conference on Advances in Databases and Information Systems; Springer: Berlin/Heidelberg, Germany,
2018; pp. 364–376.

17. Őri, D.; Molnár, B. A Hypergraph Based Formal Description Technique for Enterprise Architecture Representation. In
Proceedings of the 2018 7th International Congress on Advanced Applied Informatics (IIAI-AAI), Yonago, Japan, 8–13 July
2018; IEEE: New York, NY, USA, 2018; pp. 799–804.

18. Kozák, M.; Stárka, J.; Mlýnková, I. Schematron Schema Inference. In Proceedings of the 16th International Database Engineering &
Applications Sysmposium; Association for Computing Machinery (ACM): New York, NY, USA, 2012; pp. 42–50.

19. Molnár, B.; Béleczki, A.; Sarkadi-Nagy, B. Storing Hypergraph-based Data Models in Non-hypergraph Data Storage and
Applications for Information Systems. Vietnam. J. Comput. Sci. 2021, 8, 375–395. [CrossRef]

20. Krogstie, J.; Opdahl, A.L.; Brinkkemper, S. Conceptual Modeling in Information Systems Engineering; Springer: Berlin/Heidelberg,
Germany, 2007.

21. Evans, A.; Sammut, P.; Willans, J.S. Metamodeling for Mda; First International Workshop: York, UK, 2003.
22. Zhang, Z. Big Data Mining for Climate Change; Elsevier: Amsterdam, The Netherlands, 2020.
23. Aubin, J.P.; Désilles, A. Traffic Networks as Information Systems; Springer GmbH: Berlin/Heidelberg, Germany, 2016.
24. Blokdijk, A.; Blokdijk, P. Planning and Design of Information Systems; Academic Press: London, UK, 1994.
25. Kipling, R. Just So Stories for Little Children; Oxford Paperbacks: Oxford, UK 1998. Available online: https://amzn.to/34yuKka

(accessed on 26 January 2022).
26. Flood, R.L. I Keep Six Honest Serving Men: They Taught Me All I Knew. Syst. Dyn. Rev. 1994, 10, 231–243. [CrossRef]
27. Molnár, B.; Benczúr, A. Issues of Modeling Web Information Systems Proposal for a Document-centric Approach. Procedia

Technol. 2013, 9, 340–350. [CrossRef]

http://doi.org/10.1057/ejis.2008.37
http://dx.doi.org/10.1109/MC.2007.33
http://www.opengroup.org/togaf/
http://www.opengroup.org/togaf/
http://dx.doi.org/10.1147/sj.263.0276
http://dx.doi.org/10.1142/S2196888821500160
 https://amzn.to/34yuKka
http://dx.doi.org/10.1002/sdr.4260100210
http://dx.doi.org/10.1016/j.protcy.2013.12.038

Mathematics 2022, 10, 759 44 of 47

28. Gewertz, M. Defining Enterprise: A Systems View of Capability Management; Marc H. Gewertz. 2016. Available online: https:
//www.eabooks.net/ (accessed on 26 January 2022).

29. Olivier Curé, G.B. Rdf Database Systems: Triples Storage and Sparql Query Processing; MORGAN KAUFMANN PUBL INC.:
Burlington, MA, USA, 2014.

30. Molnár, B.; Béleczki, A.; Benczúr, A. Information Systems modeling Based on Graph-theoretic Background. J. Inf. Telecommun.
2017, 2, 68–90. [CrossRef]

31. Sawyer, S.; Crowston, K.; Wigand, R.T. Digital assemblages: Evidence and theorising from the computerisation of the US
residential real estate industry. New Technol. Work. Employ. 2014, 29, 40–56. [CrossRef]

32. Sassen, S. Territory, Authority, Rights: From Medieval to Global Assemblages; PRINCETON UNIV PR: Princeton, NJ, USA 2008.
33. Latham, R. Digital formations: IT and New Architectures in the Global Realm; Princeton University Press: Princeton, NJ, USA, 2005.
34. Shanahan, J. Soft Computing for Knowledge Discovery: Introducing Cartesian Granule Features; Springer: Boston, MA, USA, 2000.
35. Savić, M.; Ivanović, M.; Jain, L.C. Complex Networks in Software, Knowledge, and Social Systems; Springer International Publishing:

Berlin/Heidelberg, Germany, 2019. [CrossRef]
36. Abiteboul, S.; Hull, R.; Vianu, V. Foundations of Databases; Addison-Wesley: Singapore, 1995.
37. Cohrs, M. Ein Architekturmodel Für SAP®-Anwendungen (An Architecture Model for SAP® Applications); Vieweg + Teubner Verlag:

Berlin, Germany, 2011.
38. Fortnow, L. Fifty years of P vs. NP and the possibility of the impossible. Commun. ACM 2022, 65, 76–85. [CrossRef]
39. Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference; Morgan Kaufmann Publishers: San Mateo,

CA, USA, 1988.
40. Maier, D. Theory Relational Databases; Computer Science Press: Rockville, MD, USA, 1983.
41. Gottlob, G.; Pichler, R.; Wei, F. Tractable database design through bounded treewidth. In Proceedings of the Twenty-Fifth ACM

SIGMOD-SIGACT-SIGART symposium on Principles of Database Systems—PODS, Chicago, IL, USA, 26–28 June 2006; ACM
Press: New York, NY, USA, 2006. [CrossRef]

42. Marini, J. Document Object Model; McGraw-Hill, Inc.: New York, NY, USA, 2002.
43. Friesen, J. Java XML and JSON; Apress: Berlin/Heidelberg, Germany, 2019. [CrossRef]
44. Bretto, A. Applications of Hypergraph Theory: A Brief Overview. In Hypergraph Theory; Springer: Berlin/Heidelberg, Germany,

2013; pp. 111–116.
45. Iordanov, B. HyperGraphDB: A Generalized Graph Database. In Web-Age Information Management—WAIM 2010 International

Workshops: IWGD 2010, XMLDM 2010, WCMT 2010, Jiuzhaigou Valley, China, 15–17 July 2010, Revised Selected Papers; Shen, H.T.,
Pei, J., Özsu, M.T., Zou, L., Lu, J., Ling, T.W., Yu, G., Zhuang, Y., Shao, J., Eds.; Springer: Berlin/Heidelberg, Germany, 2010,
Volume 6185, pp. 25–36. [CrossRef]

46. Kobrix Software. Hypergraphdb—A Graph Database. 2010. Available online: http://hypergraphdb.org (accessed on 30
January 2022).

47. Michael, R.; Marcus, P.; Christof, B.; Wolfgang, L. The Graph Story of the SAP HANA Database. In Datenbanksysteme für Business,
Technologie und Web (BTW), 15. Fachtagung des GI-Fachbereichs “Datenbanken und Informationssysteme” (DBIS), 11.-15.3.2013 in
Magdeburg, Germany. Proceedings; Markl, V., Saake, G., Sattler, K., Hackenbroich, G., Mitschang, B.; Härder, T., Köppen, V., Eds.;
Gesellschaft für Informatik e.V.: Bonn, Germany, 2013; Volume P-214, pp. 403–420.

48. Newman, M. The Smith normal form. Linear Algebra Its Appl. 1997, 254, 367–381. [CrossRef]
49. Dummit, D.; Foote, R. Abstract Algebra, 3rd ed.; Wiley: New York, NY, USA, 2004; p. xii + 932.
50. Scheinerman, E.R.; Ullman, D.H. Fractional Graph Theory; A Wiley-Interscience publication; Wiley: New York, NY, USA, 1997.
51. Ferrario, D. A Simple Algorithm for Computing the Smith Normal Form of a Matrix in Z. 2016. Available online: https:

//www.dlfer.xyz/post/2016-10-27-smith-normal-form/ (accessed on 8 June 2021).
52. Purvine, E.; Aksoy, S.; Joslyn, C.; Nowak, K.; Praggastis, B.; Robinson, M. A Topological Approach to Representational Data

Models. In Human Interface and the Management of Information. Interaction, Visualization, and Analytics; Chapter A Topological
Approach to Representational Data Models; Yamamoto, S., Mori, H., Eds.; Springer International Publishing: Berlin/Heidelberg,
Germany, 2018; Volume 10904, pp. 90–109. [CrossRef]

53. Vick, J.W. Homology Theory: An Introduction to Algebraic Topology; Springer Science & Business Media: Berlin/Heidelberg,
Germany, 2012; Volume 145,

54. Kahle, M. Topology of random clique complexes. Discret. Math. 2009, 309, 1658–1671. [CrossRef]
55. Praggastis, B.; Arendt, D.; Joslyn, C.; Purvine, E.; Aksoy, S.; Monson, K. PNNL HyperNetX. 2020. Available online: https:

//pnnl.github.io/HyperNetX/build/index.html (accessed on 20 March 2021).
56. Earl, J. Computing Homology of Hypergraphs. 2019. Available online: https://digitalcommons.calpoly.edu/star/561

(accessed on 30 January 2022).
57. Dumas, J.G.; Heckenbach, F.; Saunders, D.; Welker, V. Computing Simplicial Homology Based on Efficient Smith Normal Form

Algorithms. In Algebra, Geometry and Software Systems; Springer: Berlin/Heidelberg, Germany, 2003; pp. 177–206. [CrossRef]
58. Robinson, I. Graph Databases; O’Reilly Media, Inc., O’Reilly Media: Sebastopol, CA, USA, 2013.
59. Deka, G.C. (Ed.) NoSQL; Taylor & Francis Ltd.: Abingdon, UK, 2017.
60. Brien, P.M.; Poulovassilis, A. A Semantic Approach to Integrating Xml and Structured Data Sources. In Advanced Information

Systems Engineering; Springer: Berlin/Heidelberg, Germany, 2001; pp. 330–345.

 https://www.eabooks.net/
 https://www.eabooks.net/
http://dx.doi.org/10.1080/24751839.2017.1375223
http://dx.doi.org/10.1111/ntwe.12020
http://dx.doi.org/10.1007/978-3-319-91196-0
http://dx.doi.org/10.1145/3460351
http://dx.doi.org/10.1145/1142351.1142370
http://dx.doi.org/10.1007/978-1-4842-4330-5
http://dx.doi.org/10.1007/978-3-642-16720-1_3
 http://hypergraphdb.org
http://dx.doi.org/10.1016/S0024-3795(96)00163-2
https://www.dlfer.xyz/post/2016-10-27-smith-normal-form/
https://www.dlfer.xyz/post/2016-10-27-smith-normal-form/
http://dx.doi.org/10.1007/978-3-319-92043-6_8
http://dx.doi.org/10.1016/j.disc.2008.02.037
https://pnnl.github.io/HyperNetX/build/index.html
https://pnnl.github.io/HyperNetX/build/index.html
https://digitalcommons.calpoly.edu/star/561
http://dx.doi.org/10.1007/978-3-662-05148-1_10

Mathematics 2022, 10, 759 45 of 47

61. Meier, A.; Kaufmann, M. SQL & NoSQL Databases; Springer Fachmedien Wiesbaden: Berlin/Heidelberg, Germany, 2019. doi:
[CrossRef]

62. Dietrich, S.W.; Urban, S.D. Fundamentals of Object Databases. Object-Oriented and Object-Relational Design; Morgan & Claypool
Publishers: San Rafael, CA, USA, 2010; Volume 12, p. xxi + 151. [CrossRef]

63. Merunka, V.; Molhanec, M. Object Normalization as Contribution to the area of Formal Methods of Object-Oriented Database
Design. In Advances in Computer and Information Sciences and Engineering; Springer: Berlin/Heidelberg, Germany, 2008;
pp. 300–304. [CrossRef]

64. Libkin, L. Normalization Theory for XML. In Database and XMLTechnologies; Springer: Berlin/Heidelberg, Germany, 2007;
pp. 1–13. [CrossRef]

65. Lv, T.; Yan, P. XML Normal Forms Based on Constraint-Tree-Based Functional Dependencies. In Lecture Notes in Computer
Science; Springer: Berlin/Heidelberg, Germany, 2007; pp. 348–357. [CrossRef]

66. Fischer, L. BPMN 2.0 Handbook Second Edition: Methods, Concepts, Case Studies and Standards in Business Process Management
Notation; Future Strategies: Lighthouse Point, FL, USA, 2012.

67. White, S. BPMN Modeling and Reference Guide: Understanding and Using BPMN: Develop Rigorous Yet Understandable Graphical
Representations of Business Processes; Future Strategies Inc.: Lighthouse Point, FL, USA, 2008.

68. Reisig, W. Understanding Petri Nets; Springer: Berlin/Heidelberg, Germany, 2013. [CrossRef]
69. Davis, R. The Event-Driven Process Chain. In Business Process Modeling with ARIS: A Practical Guide; Springer: London, UK,

2001; pp. 111–139. [CrossRef]
70. Singer, R.; Teller, M. Process Algebra and the Subject-Oriented Business Process Management Approach. In S-BPM ONE-

Education and Industrial Developments; Springer: Berlin/Heidelberg, Germany, 2012; pp. 135–150. [CrossRef]
71. Wong, P.Y.; Gibbons, J. Formalisations and applications of BPMN. Sci. Comput. Program. 2011, 76, 633–650. [CrossRef]
72. Jensen, K.; Rozenberg, G. (Eds.) High-Level Petri Nets; Springer: Berlin/Heidelberg, Germany, 2012. [CrossRef]
73. Mutarraf, U.; Barkaoui, K.; Li, Z.; Wu, N.; Qu, T. Transformation of Business Process Model and Notation models onto Petri

nets and their analysis. Adv. Mech. Eng. 2018, 10, 168781401880817. [CrossRef]
74. Eshuis, R.; Wieringa, R. Verification support for workflow design with UML activity graphs. In Proceedings of the 24th

International Conference on Software Engineering, Orlando, FL, USA , 19–25 May 2002; ACM Press: New York, NY, USA, 2002;
pp. 166–176. [CrossRef]

75. Larman, C. Applying Uml and Patterns: An Introduction to Object-Oriented Analysis and Design and Iterative Development, 3/e;
Pearson Education India: New Delhi, India, 2012.

76. Scheer, A.W.; Thomas, O.; Adam, O. Process Modeling using Event-Driven Process Chains. In Process-Aware Information Systems;
John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2005; pp. 119–145. [CrossRef]

77. Bouafia, K.; Molnár, B. Formal Verification of Analysis Approach for Enterprise Information Systems Architecture Using
Hypergraph Representation Based on Finite State Machines for Supporting Business Process Requirements. J. Appl. Bus. Econ.
(JABE) 2020, 22, 265. [CrossRef]

78. Saligny, L.; Bouillé, F. La Méthode Hbds: Hypergraph-based Data Structure; Information Spatiale Et Archéologie; 2011; pp. 62–65.
Available online: https://halshs.archives-ouvertes.fr/halshs-00959477 (accessed on 26 January 2022).

79. Sun, L.; Ji, S.; Ye, J. Hypergraph Spectral Learning for Multi-label Classification. In Proceedings of the Fourteenth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Las Vegas, NV, USA, 24–27 August 2008; pp. 668–676.
[CrossRef]

80. Ducournau, A. Hypergraphes: Clustering, Réduction Et Marches Aléatoires Orientées Pour La Segmentation D’images Et De
Vidéo. Ph.D. Thesis, Ecole Nationale d’ingénieurs, Saint-Etienne, France, 2012.

81. Rital, S. Hypergraphe De Voisinage Spatiocolorimétrique: Application En Traitement D’images. Ph.D. Thesis, Université de
Bourgogne, Dijon, France, 2004.

82. Tian, Z.; Hwang, T.; Kuang, R. A Hypergraph-Based Learning Algorithm for Classifying Gene Expression and arrayCGH Data
with Prior Knowledge. Bioinformatics 2009, 25, 2831–2838. [CrossRef]

83. Koppen, E.; Neumann, G. Active Hypertext for Distributed Web Applications. In Proceedings of the IEEE 8th International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises (WET ICE’99). IEEE Comput. Soc. 1999,
297–302. [CrossRef]

84. Atzeni, P.; Merialdo, P.; Mecca, G. Data-intensive Web Sites: Design and Maintenance. World Wide Web 2001, 4, 21–47. [CrossRef]
85. Rossi, G.; Schwabe, D.; Lyardet, F. Web Application Models Are More Than Conceptual Models. In International Conference on

Conceptual Modeling; Springer: Berlin/Heidelberg, Germany, 1999; pp. 239–252.
86. Erl, T. Service-Oriented Architecture: Concepts, Technology, and Design; Pearson Education India: New Delhi, India, 2005.
87. Erl, T. Service-Oriented Architecture; Pearson Education: London, UK, 2017.
88. Wilde, E.; Pautasso, C. (Eds.) REST: From Research to Practice; Springer: New York, NY, USA, 2011. [CrossRef]
89. Chinnici, R.; Moreau, J.J.; Ryman, A.; Weerawarana, S. Web Services Description Language (wsdl) Version 2.0 Part 1: Core

Language. W3C Recomm. 2007, 26, 19.
90. MacKenzie, C.M.; Laskey, K.; McCabe, F.; Brown, P.F.; Metz, R.; Hamilton, B.A. Reference Model for Service Oriented

Architecture 1.0. Oasis Standard. 2006. Available online: http://angeldeacero.wdfiles.com/local--files/start/oasissoa.pdf
(accessed on 26 January 2022).

http://dx.doi.org/10.1007/978-3-658-24549-8
http://dx.doi.org/10.2200/S00315ED1V01Y201012DTM012
http://dx.doi.org/10.1007/978-1-4020-8741-7_55
http://dx.doi.org/10.1007/978-3-540-75288-2_1
http://dx.doi.org/10.1007/978-3-540-72909-9_39
http://dx.doi.org/10.1007/978-3-642-33278-4
http://dx.doi.org/10.1007/978-1-4471-0321-9_7
http://dx.doi.org/10.1007/978-3-642-29294-1_10
http://dx.doi.org/10.1016/j.scico.2009.09.010
http://dx.doi.org/10. 1007/978-3-642-84524-6
http://dx.doi.org/10.1177/1687814018808170
http://dx.doi.org/10.1145/581360.581362
http://dx.doi.org/10.1002/0471741442.ch6
http://dx.doi.org/10.33423/jabe.v22i9.3686
https://halshs.archives-ouvertes.fr/halshs-00959477
http://dx.doi.org/10.1145/1401890.1401971
http://dx.doi.org/10.1093/bioinformatics/btp467
http://dx.doi.org/10.1109/enabl.1999.805216
http://dx.doi.org/10.1023/A:1012456311864
http://dx.doi.org/10.1007/978-1-4419-8303-9
http://angeldeacero.wdfiles.com/local--files/start/oasissoa.pdf

Mathematics 2022, 10, 759 46 of 47

91. Bernauer, M.; Schrefl, M. Self-maintaining Web Pages: From Theory to Practice. Data Knowl. Eng. 2004, 48, 39–73. [CrossRef]
92. Chiu, C.M.; Bieber, M. A Dynamically Mapped Open Hypermedia System Framework for Integrating Information Systems. Inf.

Softw. Technol. 2001, 43, 75–86. [CrossRef]
93. Nam, C.K.; Jang, G.S.; Bae, J.H.J. An Xml-based Active Document for Intelligent Web Applications. Expert Syst. Appl. 2003,

25, 165–176. [CrossRef]
94. Molnár, B.; Benczúr, A.; Tarcsi, Á. Formal Approach to a Web Information System Based on Story Algebra. Singidunum J. Appl.

Sci. 2012, 9, 63–73. [CrossRef]
95. Suh, N.P. Axiomatic Design: Advantages and Applications; Oxford University Press: New York, NY, USA, 2001.
96. Broekstra, J.; Kampman, A.; van Harmelen, F. Sesame: A Generic Architecture for Storing and Querying RDF and RDF Schema.

In The Semantic Web — ISWC 2002; Springer: Berlin/Heidelberg, Germany, 2002; pp. 54–68. [CrossRef]
97. Šmite, D.; Moe, N.B.; Ågerfalk, P.J. (Eds.) Agility Across Time and Space; Springer: Berlin/Heidelberg, Germany, 2010. [CrossRef]
98. Lankhorst, M. (Ed.) Agile Service Development; Springer: Berlin/Heidelberg, Germany, 2012. [CrossRef]
99. Berliner BPM-Offensive. BPMN 2.0 Poster—Business Process Model and Notation. Available online: http://www.bpmb.de/

index.php/BPMNPoster (accessed on 12 September 2021).
100. Emam, K.E.; Mosquera, L.; Hoptroff, R. Practical Synthetic Data Generation; O’Reilly Media, Inc.: New York, NY, USA, 2020.
101. Edwards, H.M. Linear Algebra; Birkhäuser: Boston, MA, USA, 2013.
102. David, S.; Dummit, R.M.F. Abstract Algebra; WILEY: Hoboken, NJ, USA, 2003.
103. A Tool for Computing the Smith Normal Forms over Arbitrary Principle Ideal Domains. Available online: https://pypi.org/

project/smithnormalform/ (accessed on 26 September 2021).
104. Peltier, S.; Alayrangues, S.; Fuchs, L.; Lachaud, J.O. Computation of homology groups and generators. Comput. Graph. 2005,

30, 62–69. [CrossRef]
105. Agoston, M. Algebraic Topology: A First Course; M. Dekker: New York, NY, USA, 1976.
106. Smith, H.J.S. Arithmetical notes. Proc. Lond. Math. Soc. 1976, 4, 236–253. [CrossRef]
107. Bouafia, K.; Molnár, B. Hypergraph Application on Business Process Performance. Information 2021, 12, 370. [CrossRef]
108. Geroimenko, V. Dictionary of XML Technologies and the Semantic Web; Springer: London, UK, 2013.
109. van der Aalst, W.; ter Hofstede, A.; Kiepuszewski, B.; Barros, A. Workflow Patterns. Distrib. Parallel Databases 2003, 14, 5–51.

[CrossRef]
110. Fischer, L. Workflow Handbook, 2nd ed.; Future Strategies: Lighthouse Point, FL, USA, 2002.
111. Molnár, B.; Benczúr, A. Facet of Modeling Web Information Systems from a Document-centric View. Int. J. Web Portals (IJWP)

2013, 5, 57–70. [CrossRef]
112. Thompson, S. Type Theory and Functional Programming; Addison-Wesley: Wokingham, UK, 1991.
113. Sharvit, Y. Data-Oriented Programming: Unlearning Objects; MANNING PUBN: New York, NY, USA, 2022.
114. Perry, M.L. The Art of Immutable Architecture; Apress: New York, NY, USA, 2020. [CrossRef]
115. Lazuashvili, N.; Norta, A.; Draheim, D. Integration of Blockchain Technology into a Land Registration System for Immutable

Traceability: A Casestudy of Georgia. In Business Process Management: Blockchain and Central and Eastern Europe Forum; Springer
International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 219–233. [CrossRef]

116. Malone, T.W.; Crowston, K.; Herman, G.A. Organizing Business Knowledge: The MIT Process Handbook; The MIT Press: Cambridge,
MA, USA, 2003.

117. Russell, N.; van der Aalst, W.M.P.; ter Hofstede, A.H. Workflow Patterns; MIT Press Ltd.: Cambridge, MA, USA, 2016.
118. Fischer, L. Workflow Handbook, 1st ed.; Future Strategies: Lighthouse Point, FL, USA, 2000.
119. Kiepuszewski, B.; ter Hofstede, A.H.M.; Bussler, C.J. On Structured Workflow modeling. In Notes on Numerical Fluid Mechanics

and Multidisciplinary Design; Springer International Publishing: Berlin/Heidelberg, Germany, 2000; pp. 431–445. [CrossRef]
120. Dehnert, J.; Rittgen, P. Relaxed Soundness of Business Processes. In Notes on Numerical Fluid Mechanics and Multidisciplinary

Design; Springer International Publishing: Berlin/Heidelberg, Germany, 2001; pp. 157–170. [CrossRef]
121. Ye, Y.; Roy, K. Efficient synthesis of AND/XOR networks. In Proceedings of the ASP-DAC’97: Asia and South Pacific Design

Automation Conference, Chiba, Japan, 28–31 January 1997; IEEE: New York, NY, USA, 1997.
122. Thakur, M.; Tripathi, R. Linear connectivity problems in directed hypergraphs. Theor. Comput. Sci. 2009, 410, 2592–2618.

[CrossRef]
123. Chandra, A.K.; Harel, D. Horn clause queries and generalizations. J. Log. Program. 1985, 2, 1–15. [CrossRef]
124. Kowalski, R.A. Predicate Logic as Programming Language. Information Processing. In Proceedings of the 6th IFIP Congress

1974, Stockholm, Sweden, 5–10 August 1974; Rosenfeld, J.L., Ed.; North-Holland: New York, NY, USA, 1974; pp. 569–574.
125. Ligeza, A. Logical Foundations for Rule-Based Systems; Springer GmbH: Berlin/Heidelberg, Germany, 2006.
126. Gammaitoni, L.; Kelsen, P. F-Alloy: A relational model transformation language based on Alloy. Softw. Syst. Model. 2019,

18, 213–247. [CrossRef]
127. Gammaitoni, L.; Kelsen, P. F-alloy: An alloy based model transformation language. In International Conference on Theory and

Practice of Model Transformations; Springer: Berlin/Heidelberg, Germany, 2015; pp. 166–180. [CrossRef]
128. Jackson, D. Alloy: A language and tool for exploring software designs. Commun. ACM 2019, 62, 66–76. [CrossRef]
129. Armstrong, M. A Handbook of Human Resource Management Practice; Kogan Page: London, UK, 2006.
130. Ullman, J.D. A First Course in Database Systems; Pearson Education India: Upper Saddle River, NJ, USA, 2007.

http://dx.doi.org/10.1016/S0169-023X(03)00109-5
http://dx.doi.org/10.1016/S0950-5849(00)00139-7
http://dx.doi.org/10.1016/S0957-4174(03)00044-7
http://dx.doi.org/10.5937/sjas1202063M
http://dx.doi.org/10.1007/3-540-48005-6_7
http://dx.doi.org/10.1007/978-3-642-12442-6
http://dx.doi.org/10.1007/978-3-642-28188-4
http://www.bpmb.de/index.php/BPMNPoster
http://www.bpmb.de/index.php/BPMNPoster
https://pypi.org/project/smithnormalform/
https://pypi.org/project/smithnormalform/
http://dx.doi.org/10.1016/j.cag.2005.10.011
http://dx.doi.org/10.1112/plms/s1-4.1.236
http://dx.doi.org/10.3390/info12090370
http://dx.doi.org/10.1023/A:1022883727209
http://dx.doi.org/10.4018/ijwp.2013100105
http://dx.doi.org/10.1007/978-1-4842-5955-9
http://dx.doi.org/10.1007/978-3-030-30429-4_15
http://dx.doi.org/10.1007/3-540-45140-4_29
http://dx.doi.org/10.1007/3-540-45341-5_11
http://dx.doi.org/10.1016/j.tcs.2009.02.038
http://dx.doi.org/10.1016/0743-1066(85)90002-0
http://dx.doi.org/10.1007/s10270-017-0630-9
http://dx.doi.org/10.1007/978-3-319-21155-8_13
http://dx.doi.org/10.1145/3338843

Mathematics 2022, 10, 759 47 of 47

131. Klug, A.; Price, R. Determining View dependencies using tableaux. ACM Trans. Database Syst. 1982, 7, 361–380. [CrossRef]
132. Curran, T. SAP R/3 Business Blueprint: Understanding Enterprise Supply Chain Management; Prentice Hall PTR: Upper Saddle

River, NJ, USA, 2000.
133. Garcia-Molina, H.; Salem, K. Sagas. ACM SIGMOD Rec. 1987, 16, 249–259. [CrossRef]
134. Liu, L.; Özsu, M.T. (Eds.) Web Services Business Process Execution Language; Encyclopedia of Database Systems; Springer: Boston,

MA, USA, 2009. [CrossRef]
135. Eiter, T.; Gottlob, G. Hypergraph Transversal Computation and Related Problems in Logic and AI. In Logics in Artificial

Intelligence; Springer: Berlin/Heidelberg, Germany, 2002; pp. 549–564. [CrossRef]
136. Bailey, J.; Manoukian, T.; Ramamohanarao, K. A fast algorithm for computing hypergraph transversals and its application in

mining emerging patterns. Third IEEE International Conference on Data Mining. IEEE Comput. Soc. 2003, [CrossRef]
137. Brault-Baron, J. Hypergraph Acyclicity Revisited. ACM Comput. Surv. 2016, 49, 1–26. [CrossRef]
138. Marc, H.; Graham. On the Universal Relation; Technical report; University of Toronto: Toronto, ON, Canada, 1979.
139. Brault-Baron, J.; Capelli, F.; Mengel, S. Understanding model counting for beta-acyclic CNF-formulas. arXiv 2014,

arXiv:1405.6043.
140. D’Atri, A.; Moscarini, M. On the recognition and design of acyclic databases. In Proceedings of the 3rd ACM SIGACT-SIGMOD

Symposium on Principles of Database Systems-PODS; ACM Press: New York, NY, USA, 1984. [CrossRef]
141. Tarjan, R.E.; Yannakakis, M. Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and

Selectively Reduce Acyclic Hypergraphs. SIAM J. Comput. 1984, 13, 566–579. [CrossRef]
142. Yu, C.; Ozsoyoglu, M. An algorithm for tree-query membership of a distributed query. In Proceedings of the COMPSAC 79

Computer Software and The IEEE Computer Society’s Third International Applications Conference, Chicago, IL, USA, 6–8
November 1979; IEEE: New York, NY, USA, 1979; pp. 306–312. [CrossRef]

143. Ahituv, N.; Neumann, S.; Zviran, M. A System Development Methodology for ERP Systems. J. Comput. Inf. Syst. 2002, 42, 56–67.
[CrossRef]

144. Yamakawa, P.; Noriega, C.O.; Linares, A.N.; Ramírez, W.V. Improving ITIL compliance using change management practices: A
finance sector case study. Bus. Process Manag. J. 2012, 18, 1020–1035. [CrossRef]

145. Kherbouche, M.; Bouafia, K.; Molnár, B. Transformation of Uml State Machine to Yawl. In Proceedings of the Ninth IEEE
International Conference on Intelligent Computing and Information Systems, Washington, DC, USA, 11–14 October 2009.
[CrossRef]

146. Kherbouche, M.; Mukashaty, A.A.; Molnár, B. An Operationalized Transformation for Activity Diagram into YAWL. In
Developments in Computer Science, 17–19 June 2021, ELTE, Hungary; Csuhaj Varjú, E., Ed.; Eötvös Loránd University of Budapest,
Faculty of Informatics, Eötvös Loránd University of Budapest, Faculty of Informatics: Budapest, Hungary,2021. Available
online: http://dcs.elte.hu/wp-content/uploads/2022/01/DCS_proceedings.pdf (accessed on 30 January 2022).

147. Hofstede, A.H.M.; Aalst, W.M.P.; Adams, M.; Russell, N. (Eds.) Modern Business Process Automation; Springer: Berlin/Heidelberg,
Germany, 2010. [CrossRef]

148. Kherbouche, M.; Molnár, B. Formal Model Checking and Transformations of Models Represented in UML with Alloy. In
Modeling to Program; Thalheim, B., Ed.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 127–136.
[CrossRef]

149. Alrabbaa, C.; Baader, F.; Borgwardt, S.; Koopmann, P.; Kovtunova, A. Finding Good Proofs for Description Logic Entailments
using Recursive Quality Measures. In Automated Deduction—CADE 28; Springer International Publishing: Berlin/Heidelberg,
Germany, 2021; pp. 291–308. [CrossRef]

150. Amit Basu, R.W.B. Metagraphs and Their Applications; Springer GmbH: Berlin/Heidelberg, Germany, 2006.
151. Tao, F. Digital Twin Driven Smart Manufacturing; Academic Press: London, UK, 2019.

http://dx.doi.org/10.1145/319732.319738
http://dx.doi.org/10.1145/38714.38742
http://dx.doi.org/10.1007/978-0-387-39940-9_4015
http://dx.doi.org/10.1007/3-540-45757-7_53
http://dx.doi.org/10.1109/icdm.2003.1250958
http://dx.doi.org/10.1145/2983573
http://dx.doi.org/10.1145/588011.588013
http://dx.doi.org/10.1137/0213035
http://dx.doi.org/10.1109/cmpsac.1979.762509
http://dx.doi.org/10.1080/08874417.2002.11647504
http://dx.doi.org/10.1108/14637151211283393
http://dx.doi.org/10.1109/ICICIS46948.2019.9014793
http://dcs.elte.hu/wp-content/uploads/2022/01/DCS_proceedings.pdf
http://dx.doi.org/10.1007/978-3-642-03121-2
http://dx.doi.org/10.1007/978-3-030-72696-6_6
http://dx.doi.org/10.1007/978-3-030-79876-5_17

	Introduction
	Hyper-Graph Representation of Information Systems
	Graph Models of Systems
	The Fundamentals of Hyper-Graphs
	Operationalization and Implementation
	Implementation Details in Graph Databases
	Hyper-Graph Representation by Simplicial Complexes
	Homology and Similarities
	Modeling and Verification of Information Systems

	Literature Review—Related Works
	Hyper-Graph Application Domains
	Documents and Information Systems
	Enterprise Architecture and Information Systems

	The Application of Graph-Theoretic Approaches in the Context of Information Systems
	Model Checking for Dynamically Modified Business Processes
	Hyper-Graphs for Modeling Information Systems from the Aspect of a Document-Centric Approach
	Constituents of Information Systems
	Constituents of Generalized Hyper-Graphs
	Hyper-Graph Representation for Storing in Databases
	Business Rules and Logical Statements
	Horn Clauses and the Hyper-Graph Representations
	The Document Model in Hyper-Graphs
	Exploring the Dependency Rules in the Hyper-Graph Model
	Model Improvement through Model Checking

	Discussion
	Future Directions of the Research
	Materials and Methods
	Conclusions
	References

