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Abstract: In this paper, we investigate and develop a new filled function method for solving integer
programming problems with constraints. By adopting the appropriate equivalent transformation
method, these problems are transformed into a class of box-constrained integer programming prob-
lems. Then, an effective nonparametric filled function is constructed, and a new global optimization
algorithm is designed using the discrete steepest descent method. Numerical experiments illustrate
that this algorithm has effectiveness, feasibility, and better global optimization ability.
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1. Introduction

Consider the following integer programming problem with constraints:

(P)


min f (x)

s.t. gi(x) ≤ 0, i = 1, 2, · · · , m,

x ∈ Zn,

where Zn denotes the set of integer points in Rn, and S = {x ∈ Zn | gi(x) ≤ 0, i =
1, 2, · · · , m} is bounded.

Some problems in economy, finance, engineering, and other fields can often be quanti-
fied as a global optimization problem (P). Most of these problems, however, are computa-
tionally and theoretically difficult to solve in polynomial time, so they are often referred to
as NP-hard problems. So far, the existing global optimization algorithms for solving prob-
lem P can be classified into deterministic algorithms [1–5] and stochastic algorithms [6–9].
Among them, the filled function method, which was first proposed by Ge [1], is favored
by many scholars as a deterministic method of global optimization. The main idea of this
method is to continuously construct the filled function (FF) at the local minimizer (x∗k ) in
the current iteration and then take the point near x∗k as the initial point to minimize FF,
so as to get out of the basin where x∗k is located and find the local minimizer x∗k+1 better
than x∗k , which achieves the purpose of global optimization. Therefore, the filled function
method avoids the “precocity” defect of general optimization algorithms. As defined in [1],
if Ψ(x, x∗k ) is called a FF of the objective function f (x) at a local minimizer x∗k , it needs
to satisfy:

(i) x∗k is a strictly local maximizer of Ψ(x, x∗k ), and the basin B∗k of f (x) at x∗k becomes a
part of a hill of Ψ(x, x∗k ) at x∗k ;
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(ii) in the basin where f (x) is higher than B∗k , Ψ(x, x∗k ) has no local minimizer;
(iii) if f (x) has a basin B̄ lower than B∗k , then minimizing Ψ(x, x∗k ) must be able to find its

local minimizer x∗k+1 in the line between x and x∗k in B̄.

In the late 1990s, Zhu [10] first proposed the discrete equivalent method of continuous
FF, and the FF formula is as follows:

Ψγ,ρ,x∗(x) =
1

γ + f (x)
exp

(
−‖x− x∗‖2

ρ2

)
, (1)

where γ and ρ denote parameters to ensure that the algorithm can be executed and the

global minimizer can be obtained. For the exponential term exp
(
− ‖x−x∗k ‖

2

ρ2

)
with large

‖x − x∗k‖
2 or small ρ, this Formula (1) produces an almost flat image, which makes it

difficult for the computer to distinguish between changes in function values. In addition,
Zhu’s approach has been discussed in depth in [11–13]. In 2006, Wu et al. [14] proposed a
FF (2) for solving integer programming problems with box constraints.

Ψ(x, x∗, r, q) =
1

1 + ‖x− x∗‖2 gr( f (x)− f (x∗)
2

) + q fr( f (x)− f (x∗)
2

), (2)

where,

gr(t) =


0, t ≤ −r,

− 2
r3 t3 − 3

r2 t2 + 1, − r < t ≤ 0,

1, t ≥ 0,

fr(t) =


t + r, t ≤ −r,
r− 2

r3 t3 +
r− 3

r2 t2 + 1, − r < t ≤ 0,

1, t > 0.

To address the nonlinear integer programming problem with inequality constraints,
Yang et al. [15] proposed a FF in the following form in 2008:

Ψ(r, x, x∗) =
(

1
1 + ‖x− x∗‖2 + 1

)
h(hr( f (x)− f (x∗))) +

m

∑
i=1

hr(gi(x)− r), (3)

where

hr(t) =


0, t ≤ −r,
r− 2

r3 t3 +
2r− 3

r2 t2 + t + 1, − r < t ≤ 0,

t + 1, t > 0,

h(t) =


0, t ≤ 1

2
,

− 16t3 + 36t2 − 24t + 5,
1
2
< t ≤ 1,

1, t > 1.

To overcome the defect of FF in solving constrained global optimization problems, the
Formula (3) combines the FF in unconstrained optimization with the penalty function in
constrained optimization. For solving the nonlinear integer programming problem with
box constraints, Lin et al. [16] also proposed a FF as follows.

Ψ(x, x∗, q) =
1

q + ‖x− x∗‖φq

(
f (x)− f (x∗)

4

)
, (4)

where

φq(t)

 arctan(− q2

t2 ) +
π

2
, t 6= 0,

0, t = 0.
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The above four FFs contain either parameters or exponential factors, which will reduce
the computational efficiency of the FF algorithm. This is because such FFs are highly
dependent on parameters, but the parameter selection is usually particularly difficult,
and the exponential factors will lead to the overflow of numerical results. In addition
to the above FFs, many scholars have also made innovations, such as [12,17–19]. More
importantly, in [19], these two authors reviewed and summarized nine existing filled
functions, and they believed that these filled functions had a broad development prospect.
However, most of the FFs mentioned above are aimed at box constrained or unconstrained
optimization problems, and some researches on constrained integer programming problems
are still relatively few, so it is necessary to further propose a new filled function, which
can solve constrained integer programming problems. At present, the research methods
of constrained integer programming problems are mainly divided into two categories.
One is to directly construct FF satisfying constraints; the other is to use penalty function
method [20] to convert constrained optimization problems into unconstrained optimization
problems or box-constrained optimization problems. It is satisfying that Lin [18] et al.
cleverly used the idea of equivalent transformation for problem P, that is, the second
type method; on this basis, it is worth us to further improve its transformation process
more accurately.

In this paper, a new equivalent transformation method is used to reconstruct the
problem P into a box-constrained optimization problem (OP). Based on the problem OP, a
nonparametric FF with the same local minimizer as its objective function is constructed, and
a new global optimization algorithm is designed. In the iterative process of the algorithm,
only FF needs to be continuously minimized. A series of numerical experiments are carried
out on a large number of test problems, and the numerical results show that the algorithm
is effective.

The rest of this paper is organized as follows. Section 2 is a review of some assump-
tions and definitions. Section 3 is the detailed description of the equivalent transformation
to the problem P. The nonparametric FF constructed and its properties are analyzed and
proved in Section 4. In Section 5, a new global optimization algorithm is designed com-
bined with the proposed new FF. Numerical experiments and conclusions are given in
Sections 6 and 7, respectively.

2. Assumptions and Definitions

To make the problem P solvable, it is necessary to give some assumptions and defini-
tions. In [21], the content of the improved definition of FF is extended as follows:

Definition 1. Suppose x∗k is a discrete local minimizer of the objective function f (x). If Ψ(x, x∗k )
is called a FF of f (x) at x∗k , then it needs to satisfy:

(i) x∗k is a strictly discrete local maximizer of Ψ(x, x∗k ); and the basin B∗k of f (x) at x∗k becomes a
part of a hill of Ψ(x, x∗k ) at x∗k ;

(ii) Ψ(x, x∗k ) has no discrete local minimizer in set S1
k = {x| f (x) > f (x∗k ), x ∈ S\{x∗k}};

(iii) If x∗k is not a discrete global minimizer of f (x), then S2
k 6= ∅, Ψ(x, x∗k ), and f (x) have the

same discrete local minimizer in S2
k = {x| f (x) < f (x∗k ), x ∈ S}.

Assumption 1. Let τ be the set of all the local minimizers of problem P, and L∗ = { f (x)|x ∈ τ}.

Definition 2. For any integer point x ∈ Zn, the set N(x) ⊆ Zn can be called a discrete neighbor-
hood for x, where N(x) = {x, x± ei : i = 1, 2, · · · , n}. The set of all axial directions d ∈ N(x)
can be defined as D = {d ∈ Rn : d = ±ei, i = 1, 2, · · · , n}, where n denotes the number of
variables of the f (x), and ei is a unit vector with the ith component equal to 1 and the remaining
components equal to 0.

Definition 3. A vector d ∈ D is called a discrete descent direction of f (x) at x ∈ S if d is such
that x + d ∈ S and f (x + d) < f (x).
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Definition 4. A vector d∗ ∈ D is called a discrete steepest descent direction of f (x) at x ∈ S if
f (x + d∗) ≤ f (x + d) for any d ∈ D∗, where D∗ denotes the set of all discrete descent directions
of f (x) at x ∈ S.

Definition 5. A point x0 is called a (strictly) discrete local minimizer of problem P if an integer
point x0 ∈ S is such that f (x)(>) ≥ f (x0) for any x ∈ N(x0) ∩ S.

Definition 6. A point x0 is called a (strictly) discrete global minimizer of problem P if an integer
point x0 ∈ S is such that f (x)(>) ≥ f (x0) for any x ∈ S.

At present, there are many local optimization algorithms to solve continuous optimiza-
tion problems. However, there are few local search methods to solve discrete optimization
problems. Different from continuous optimization problems, the discreteness of discrete
optimization problems makes the gradient of function unusable, which leads to the birth
of discrete descent algorithm. After that, many scholars also improved the algorithm for
different problems, and proposed various discrete local minimization methods, such as
variable neighborhood search algorithm [22], neighborhood search algorithm [22], and dis-
crete steepest descent algorithms [18,23,24]. In this paper, we adopt the following discrete
steepest descent algorithm in [24]:

3. Transformation of the Original Problem

To facilitate the construction of the FF, we first make an equivalent transformation
to the problem P, so that the problem can be easily handled. The specific contents are
as follows:

Theorem 1. For any x̄ ∈ S, let ū = f (x̄), then problem

(P̄)


min f (x)

s.t. gi(x) ≤ 0, i = 1, 2, · · · , m,

x ∈ Zn,

f (x) ≤ ū,

and P have the same global optimal solution.

Proof. Let x∗ be a global optimal solution to P̄. Suppose x∗ is not global optimal for P, there
must exist a x̂ ∈ S = {x ∈ Rn|x ∈ Zn, gi(x) ≤ 0, i = 1, 2, · · · , m} such that

f (x̂) < f (x∗), (5)

and
f (x∗) < ū, (6)

then, it follows from Formulas (5) and (6) that f (x̂) < ū, which indicates that x̂ is feasible
for P̄, so Formula (5) shows that x̂ contradicts the global optimal solution x∗ of P̄.

From the boundness of set S, it follows that there must be a feasible region of the
problem P̄ contained in box Ω.

For convenience, let us define the following two univariate functions:

g(t) =

{
0, t > 0,

1, t ≤ 0,
s(t) =

{
0, t = m + 1,

1, t < m + 1,

where m denotes the number of constraints of problem P.
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Next, consider the following problem:

(OP)

{
min F(x),

s.t. x ∈ Ω ∩Zn,

where

F(x) = f (x) + (ū− f (x))× s

(
m

∑
i=1

g(gi(x)) + g( f (x)− ū)

)
.

Theorem 2. If x̄ is a local minimizer of P̄, then x̄ is also a local minimizer of OP; conversely, if x̄ is
a local minimizer of OP, then x̄ is also a local minimizer of P̄, or F(x̄) = ū + 1.

Proof. In Theorem 3.1 of [18], let M = ū+ 1, then the proof of this theorem can be obtained,
so it will not be repeated here.

Remark 1. According to Theorem 2, we can know that problems P̄ and OP have the same minimizer
except infeasible point. If the global minimizer of problem OP can be found, then the global minimizer
of problem P̄ can also be found.

4. Nonparametric Filled Function and Its Analytical Properties

Based on the previous three sections, we propose a new nonparametric FF:

Ψ(x, x∗k ) =
(

π − arctan
(
‖x− x∗k‖

2
))
× φ(F(x)− F(x∗k )) + min{0, (F(x)− F(x∗k ))

3}, (7)

where

φ(r) =

{
1, r ≥ 0,

0, r < 0,

‖ · ‖ denotes Euclidean norm and x∗k represents a discrete local minimizer. This FF avoids
some of the disadvantages discussed in Section 1 and has the nice property of having the
same local minimizer as the objective function.

Now, we define two sets:

S1
k = {x ∈ Ω ∩Zn | F(x) ≥ F(x∗k )},

S2
k = {x ∈ Ω ∩Zn | F(x) < F(x∗k )},

the following is the verification that Ψ(x, x∗k ) satisfies the FF defined in Section 2.

Theorem 3. If x∗k ∈ τ, x1 ∈ S1
k , then x∗k is a strictly discrete local maximizer of Ψ(x, x∗k ).

Proof. It follows from x1 ∈ S1
k that F(x1) ≥ F(x∗k ). From the definition of φ, there is

Ψ(x1, x∗k ) = π − arctan
(
‖x1 − x∗k‖

2
)
< π = Ψ(x∗k , x∗k ).

Obviously, x∗k is a strictly discrete local maximizer of Ψ(x, x∗k ).

Theorem 4. If x∗k ∈ τ and xa, xb ∈ S1
k satisfy ‖xa − x∗k‖ < ‖xb − x∗k‖, then

Ψ(xb, x∗k ) < Ψ(xa, x∗k ) < π = Ψ(x∗k , x∗k ).

Proof. Since xa, xb ∈ S1
k , then F(xa) ≥ F(x∗k ), F(xb) ≥ F(x∗k ). From the definition of

function φ, it follows that

Ψ(xa, x∗k ) = π − arctan
(
‖xa − x∗k‖

2
)

,
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Ψ(xb, x∗k ) = π − arctan
(
‖xb − x∗k‖

2
)

,

Upon the condition ‖xa − x∗k‖ < ‖xb − x∗k‖, we have

Ψ(xb, x∗k )−Ψ(xa, x∗k ) = − arctan
(
‖xb − x∗k‖

2
)
−
(
− arctan

(
‖xa − x∗k‖

2
))

< 0,

thus Ψ(xb, x∗k ) < Ψ(xa, x∗k ) < π = Ψ(x∗k , x∗k ).

Theorem 4 shows that, on the high level set S1
k , the farther away from the current local

minimizer x∗k , the faster the FF value decreases. Thus, it ensures that the minimization
process of Ψ(x, x∗k ) can always be realized and a better point can be found faster.

Lemma 1. For any x, x∗ ∈ S, if there is an i ∈ {1, 2, · · · , n} such that x + ei ∈ S, there must be
a d ∈ D that satisfies ‖x + d− x∗k‖ > ‖x− x∗k‖.

Proof. If x = x∗k , the conclusion is obvious. If x 6= x∗k , there must be an i ∈ {1, 2, · · · , n}
such that xi 6= x∗ki. If xi > x∗ki, let d = ei; otherwise, let d = −ei.

Theorem 5. If x∗k is a discrete local minimizer of F(x), then Ψ(x, x∗k ) has no discrete local mini-
mizer over the set S1

k .

Proof. For any x ∈ S1
k , we know Ψ(x, x∗k ) = π− arctan

(
‖x− x∗k‖

2). The existence of d ∈ D
is such that ‖x + d− x∗k‖ > ‖x− x∗k‖. Hence, we discuss the conclusion in the following
two cases:

(1) If F(x + d) ≥ F(x∗k ), then

Ψ(x + d, x∗k )−Ψ(x, x∗k ) = arctan(‖x− x∗k‖)
2 − arctan(‖x + d− x∗k‖)

2 < 0;

(2) If F(x + d) < F(x∗k ) < F(x), then

Ψ(x + d, x∗k )−Ψ(x, x∗k ) = (F(x + d)− F(x∗k ))
3 −

(
π − arctan(‖x− x∗k‖)

2
)
< 0.

Therefore, for all x ∈ S1
k , there is always a d ∈ D∗ such that Ψ(x + d, x∗k ) < Ψ(x, x∗k ),

i.e., Ψ(x, x∗k ) has no discrete local minimizers in the set S1
k .

Theorems 6 and 7 state that F(x) and Ψ(x, x∗k ) have the same local minimizer over S2
k .

Theorem 6. If x∗1 is a discrete local minimizer of F(x) and satisfies F(x∗1) < F(x∗k ), then x∗1 is
also a discrete local minimizer of Ψ(x, x∗k ).

Proof. If x∗1 is a discrete local minimizer of F(x) and satisfies F(x∗1) < F(x∗k ), then x∗1 ∈ S2
k

and Ψ(x1, x∗k ) = (F(x1)− F(x∗k ))
3 < 0. For any x ∈ N(x∗1), there is F(x) > F(x∗1); let us

consider the following two cases:

(1). If x ∈ S1
k ∩ N(x∗1), then Ψ(x, x∗k ) = π − arctan(‖x− x∗k‖

2) > 0 > Ψ(x1, x∗k ).
(2). If x ∈ S2

k ∩ N(x∗1), then Ψ(x, x∗k ) = (F(x)− F(x∗k ))
3 ≥ (F(x∗1)− F(x∗k ))

3 = Ψ(x∗1 , x∗k ).

Theorem 7. If x∗2 is a discrete local minimizer of Ψ(x, x∗k ) and satisfies Ψ(x∗2) < 0, then x∗2 is also
a discrete local minimizer of F(x), and F(x∗2) < F(x∗k ).

Proof. Let x∗2 be a discrete local minimizer of Ψ(x, x∗k ) and satisfies Ψ(x∗2) < 0, then
Ψ(x∗2) < Ψ(x∗k ) and x∗2 ∈ S2

k .
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Now, let us prove that x∗2 is also a discrete local minimizer of F(x). Suppose x∗2 is
not a local minimizer of F(x), there must be a x∗3 ∈ N(x∗2) such that F(x∗3) < F(x∗2). Since
F(x∗2) < F(x∗k ), then F(x∗3) < F(x∗k ). Thus,

Ψ(x∗3 , x∗k ) = (F(x∗3)− F(x∗k ))
3 < (F(x∗2)− F(x∗k ))

3 = Ψ(x∗2 , x∗k ),

which contradicts the fact that x∗2 is a discrete local minimizer of Ψ(x, x∗k ).

In summary, it is proved by Theorems 3–7 that Ψ(x, x∗k ) is a nonparametric FF.

5. Filled Function Algorithm

In this section, we develop a new nonparametric FF algorithm NPFFA based on the
FF constructed in the previous section. The local descent method adopts the Algorithm 1.
In this algorithm, the problem of boundary overflow is improved and some unnecessary
computation is avoided. Moreover, the proposed FF has the same local minimizer as the
objective function, so the constructed algorithm only needs to minimize the FF in the
iterative process, which greatly reduces the amount of calculation.

Algorithm 1: (DSDA)

• Step 1. Select a starting point x0 ∈ S.
• Step 2. If x0 is a local minimizer for f (x), then stop. Otherwise, let

d∗ = arg min{ f (x0 + di) : di ∈ Dx0 , f (x0 + di) < f (x0)},

where Dx0 = {d ∈ D : x0 + d ∈ S} is a set of feasible directions at x0;
• Step 3. Let x0 = x0 + d∗, and return to step 2.

6. Numerical Experiment

This section uses MATLAB (2016a) to encode and execute the Algorithm 2 and the
algorithm in [18]. All calculations are performed on a desktop computer with Intel(R)
Core(TM)i5-8500 3.00 GHz power processor 8.00 GB memory and Win10 operating system.
The reliability and effectiveness of Algorithm 2 are verified using 13 test problems (a total
of 84 test instances) to test and compare these two algorithms.

Algorithm 2: (NPFFA)

• Step 0. Give a starting point x0 ∈ S; Let ū = f (x0), D = {d1, d2, . . . , d2n}, where
di = ei, dn+i = −ei, i = 1, 2, . . . , n.

• Step 1. Use Algorithm 1 to minimize F(x) with x0 and obtain a local minimizer x∗1 .
Set k = 1.

• Step 2. Construct the following FF

Ψ(x, x∗k ) = (π − arctan
(
‖x− x∗k‖

2
)
)× φ(F(x)− F(x∗k )) + min{0, (F(x)− F(x∗k ))

3}.

• Step 3. Take xi = x∗k + di as the initial point to minimize φ(x, x∗k ) and obtain the

local minimizer x f
k .

• Step 4. If F(x f
k ) < F(x∗k ), let x∗k = x f

k , F(x∗k ) = F(x f
k ), k = k + 1, and return to

step 2.
• Step 5. If i ≥ 2n, go to step 6; otherwise, let i = i + 1 and return to step 3.
• Step 6. Output x∗k .
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6.1. Test Function

This section mainly gives 13 test functions, where f (x) denotes the objective func-
tion, x0 is the initial point, and the global minimizer and the global minimum value are
represented by x∗ and f (x∗), respectively.

Problem 1 ([25]).

min f (x) = x2
1 + x2

2 + 3x2
3 + 4x2

4 + 2x2
5 − 8x1 − 2x2 − 3x3 − x4 − 2x5,

s.t. x1 + x2 + x3 + x4 + x5 ≤ 400, x1 + 2x2 + 2x3 + x4 + 6x5 ≤ 800,

2x1 + x2 + 6x3 ≤ 200, x3 + x4 + 5x5 ≤ 200,

x1 + x2 + x3 + x4 + x5 ≥ 55, x1 + x2 + x3 + x4 ≥ 48,

x2 + x4 + x5 ≥ 34, 6x1 + 7x5 ≥ 104,

0 ≤ xi ≤ 99, xi ∈ Zn, i = 1, 2, 3, 4, 5.

For Problem 1, the discrete global optimal solution is x∗ = (16, 22, 5, 5, 7)T , f (x∗) = 807.
This problem was tested with five different initial points, and the numerical results are shown in
Table 1.

Problem 2 ([26]).
min f (x) = 100(x2 − x2

1)
2 + (1− x1)

2,

s.t. x2
1 + x2

2 ≥ 0.25, − 1
3

x1 + x2 ≥ −0.1,

xi = yi/10,000, 0 ≤ yi ≤ 105,

yi ∈ Zn, i = 1, 2.

Problem 2 has about 8.413× 109 points in the feasible region. The discrete global optimal
solution is x∗ = (1, 1)T , f (x∗) = 0. This problem was tested with nine different initial points, and
the numerical results are shown in Table 1.

Problem 3 ([27]).

min f (x) = 2x1x2
2 − 4x1x2 + x2

1 + x2
2 − 27x2

1x2
2,

s.t. x2
1 + 2x1x2 + x2

2 ≤ 500, x1 + 2x2
2 ≤ 400,

0 ≤ x1 ≤ 500, 0 ≤ x2 ≤ 100,

xi ∈ Zn, i = 1, 2.

Problem 3 has a lot of feasible points. The discrete global optimal solution is x∗ = (11, 11)T ,
f (x∗) = −392,887. This problem was tested with two different initial points, and the numerical
results are shown in Table 1.

Problem 4 (Powell’s singular function [19,21]).

min F(x) = (x1 + 10x2)
2 + 5(x3 − x4)

2 + (x2 − 2x3)
4 + 10(x1 − x4)

4,

s.t. xi =
yi

1000
, − 10,000 ≤ yi ≤ 10,000, i = 1, 2, 3, 4. yi ∈ Zn

Problem 4 has 1.60032× 1017 feasible points and multiple local minimizers. The discrete
global minimizer is x∗ = (0, 0, 0, 0)T , F(x∗) = 0. This problem was tested with four different
initial points, and the numerical results are shown in Table 1.
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Problem 5 (Goldstein and Price’s function [19,21]).

min F(x) = g(x)h(x),

s.t. xi =
yi

1000
, − 2000 ≤ yi ≤ 2000, i = 1, 2. yi ∈ Zn.

g(x) = 1 + (x1 + x2 + 1)2(19 − 14x1 + 3x2
1 − 14x2 + 6x1x2 + 3x2

2), h(x) = 30 + (2x1 −
3x2)

2(18− 32x1 + 12x2
1 + 48x2 − 36x1x2 + 27x2

2) There are 1.60018001× 107 feasible points
and many discrete local minimizers in the feasible region of Problem 5. The discrete global optimal
solution is x∗ = (0,−1)T , F(x∗) = 3. This problem was tested with six different initial points, and
the numerical results are presented in Table 1.

Problem 6 ([27]).

min f (x) = 6x2
1 + 18x2

2 + 7x2
3 − 2x1 − 16x2 − 31x3 − 12x1x2x3,

s.t. x1 + x2 + 2x3 ≤ 2000, x1 + 17x2 ≤ 8000,

x2 + 5x3 ≤ 4000, x1 + 7x2 + x3 ≥ 200,

x1 + x2 + x3 ≥ 200, x2
1 + x2x3 ≥ 900,

0 ≤ xi ≤ 999, xi ∈ Zn, i = 1, 2, 3.

This problem has a great number of feasible points. The discrete global optimal solution is
(720, 424, 428)T , f (x∗) = −1,560,310,784. This problem was tested with one initial point, and the
numerical results are presented in Table 2.

Problem 7 ([18]).

min f (x) = −24 ×
4

∏
i=1

xi
100

,

s.t.
4

∑
i=1

( xi
100

)2
= 1,

0 ≤ xi ≤ 100,

xi ∈ Zn, i = 1, 2, 3, 4.

The global optimal solution of Problem 5 is x∗ = (50, 50, 50, 50)T , f ∗ = −1. This problem
was tested with three initial points, and the results are listed in Table 2.

Problem 8 ([9,18]).
min f (x) = (x1 − 10)3 + (x2 − 20)3,

s.t.− (x1 − 5)2 − (x2 − 5)2 + 100 ≤ 0,

− x1 + 10 ≤ 0, − x2 + 5 ≤ 0,

0 ≤ xi ≤ 100, xi ∈ Zn, i = 1, 2.

The discrete global optimal solution of Problem 6 is x∗ = (15, 5)T , f ∗ = −3250. This problem
was tested with three initial points, and the results are listed in Table 2.
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Problem 9 ([9,18]).

min f (x) = −25(x1 − 2)2 − (x2 − 2)2 − (x3 − 1)2 − (x4 − 4)2 − (x5 − 1)2 − (x6 − 4)2,

s.t. − (x3 − 3)2 − x4 + 4 ≤ 0, − (x5 − 3)2 − x6 + 4 ≤ 0,

x1 − 3x2 − 2 ≤ 0, − x1 + x2 − 2 ≤ 0,

x1 + x2 − 6 ≤ 0, − x1 − x2 + 2 ≤ 0,

0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 8, 0 ≤ x3 ≤ 5,

0 ≤ x4 ≤ 6, 0 ≤ x5 ≤ 10, 0 ≤ x6 ≤ 10,

xi ∈ Zn.

The global optimal solution of Problem 7 is x∗ = (5, 1, 5, 0, 5, 10)T , f ∗ = −310. The problem
was tested with three initial points and the results are listed in Table 2.

Problem 10 (Colville’s function [1,2,19]).

min F(x) = 100(x2 − x2
1)

2 + (1− x1)
2 + 90(x4 − x2

3)
2 + (1− x3)

2

+ 10.1[(x2 − 1)2 + (x4 − 1)2] + 19.8(x2 − 1)(x4 − 1),

s.t. − 10 ≤ xi ≤ 10, i = 1, 2, 3, 4. x ∈ Zn.

Problem 10 has 1.94481× 105 feasible points and 41 discrete local minimizers. The discrete
global minimizer is x∗ = (1, 1, 1, 1)T , F(x∗) = 0. This problem was tested with four different
initial points, and the numerical results are shown in Table 2.

Problem 11 (Beale’s function [5]).

min F(x) = [1.5− x1(1− x2)]
2 + [2.25− x1(1− x2

2)]
2 + [2.625− x1(1− x3

2)]
2,

s.t. xi =
yi

1000
, − 10,000 ≤ yi ≤ 10,000, i = 1, 2. x ∈ Zn.

This problem has 4.00040001× 108 feasible points in the feasible region. The discrete global
optimal solution is x∗ = (3, 0.5)T , F(x∗) = 0. This problem was tested with six different initial
points, and the numerical results are presented in Table 2.

Problem 12 (Rosenbrock’s function [1]).

min f (x) =
n−1

∑
i=1

[100(xi+1 − x2
i )

2 + (1− xi)
2],

s.t. − 5 ≤ x1 ≤ 5, i = 1, 2, · · · , n. x ∈ Zn.

This problem has about 11n feasible points and many discrete local minimizers in the feasible
region (it is known that this problem has 5, 6, 7, 9, and 11 discrete local minimizers when n is set to
2, 3, 4, 5, and 6, respectively, but for any n, it has only one discrete global minimizer). Besides, its
discrete global optimal solution is x∗ = (1, 1, . . . , 1)T , (x∗) = 0. The test results are presented in
Table 3.

Problem 13 (Consider the following n-dimensional function [5]).

min F(x) = (x1 − 1)2 + (xn − 1)2 + n
n−1

∑
i=1

[(n− i)(x2
i − xi+1)

2],

s.t. − 5 ≤ x1 ≤ 5, i = 1, 2, · · · , n. x ∈ Zn.

There are about 11n feasible points and many discrete local minimizers in the feasible region
of Problem 11. When n = 2, 3, 4, 5, 6, the problem has 4, 6, 7, 10, 12 local minimizers, respectively,
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but it has only one discrete global minimizer x∗ = (1, 1, · · · , 1)T for any n. The global minimum
is f (x∗) = 0. The test results are presented in Table 3.

6.2. Numerical Results

This section is a numerical test of numerical examples, the results of which are given
in Tables 1–4.

Table 1. Numerical comparison results of Problems 1–5.

PN Alg DN x0 x∗ f(x∗) T Iter NF+Ψ

1

ours

5 (17, 18, 7, 7, 9) (16, 22, 5, 5, 7) 807 0.9520 4 48,861
5 (21, 34, 0, 0, 0) (16, 22, 5, 5, 7) 807 2.9375 11 150,531
5 (0, 0, 0, 48, 15) (16, 22, 5, 5, 7) 807 3.4343 42 177,769
5 (100, 0, 0, 0, 40) (16, 22, 5, 5, 7) 807 4.9339 28 252,769
5 (0, 8, 32, 8, 32) (16, 22, 5, 5, 7) 807 1.7434 34 88,589

[18]

5 (17, 18, 7, 7, 9) (16, 22, 5, 5, 7) 807 2.5070 4 116,365
5 (21, 34, 0, 0, 0) (16, 22, 5, 5, 7) 807 5.0296 11 231,931
5 (0, 0, 0, 48, 15) (16, 22, 5, 5, 7) 807 14.1812 44 636,267
5 (100, 0, 0, 0, 40) (16, 22, 5, 5, 7) 807 10.8155 33 486,107
5 (0, 8, 32, 8, 32) (16, 22, 5, 5, 7) 807 11.1178 34 496,607

2

ours

2 (2, 2) (1, 1) 0 0.0095 1 245
2 (4, 4) (1, 1) 0 0.0114 2 413
2 (6, 6) (1, 1) 0 0.0124 2 429
2 (8, 8) (1, 1) 0 0.0141 3 541
2 (10, 10) (1, 1) 0 0.0148 3 549
2 (0, 0.5) (1, 1) 0 0.0161 4 653
2 (0, 10) (1, 1) 0 0.0141 3 533
2 (10, 3.2334) (1, 1) 0 0.0172 4 645
2 (0.3536, 0.3536) (1, 1) 0 0.0185 5 753

[18]

2 (2, 2) (1, 1) 0 0.0162 2 418
2 (4, 4) (1, 1) 0 0.0129 2 433
2 (6, 6) (1, 1) 0 0.0149 2 500
2 (8, 8) (1, 1) 0 0.0160 3 614
2 (10, 10) (1, 1) 0 0.0164 3 608
2 (0, 0.5) (1, 1) 0 0.0175 4 710
2 (0, 10) (1, 1) 0 0.0154 3 582
2 (10, 3.2334) (1, 1) 0 0.0180 4 675
2 (0.3536, 0.3536) (1, 1) 0 0.0191 5 777

3 ours 2 (0, 13) (11, 11) −392,887 0.1396 3 7093
2 (0, 0) (11, 11) −392,887 0.1378 2 7127

[18] 2 (0, 13) (11, 11) −392,887 0.1808 3 10,205
2 (0, 0) (11, 11) −392,887 0.1444 2 7127

4

ours

4 (10, 10, 10, 10) (0, 0, 0, 0) 0 0.0725 2 4131
4 (−10,−10,−10,−10) (0, 0, 0, 0) 0 0.0538 2 2907
4 (10,−10,−10, 10) (0, 0, 0, 0) 0 0.0736 2 4131
4 (1,−1,−1, 1) (0, 0, 0, 0) 0 0.0575 2 3843
4 (−10, 1, 0, 5) (0, 0, 0, 0) 0 0.0456 2 2731
4 (0, 0, 0, 0) (0, 0, 0, 0) 0 0.0392 1 2585
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Table 1. Continued.

PN Alg DN x0 x∗ f(x∗) T Iter NF+Ψ

[18]

2 (10, 10, 10, 10) (0, 0, 0, 0) 0 0.0777 2 4439
4 (−10,−10,−10,−10) (0, 0, 0, 0) 0 0.0725 2 4599
4 (10,−10,−10, 10) (0, 0, 0, 0) 0 0.0715 2 4439
4 (1,−1,−1, 1) (0, 0, 0, 0) 0 0.0560 2 4151
4 (−10, 1, 0, 5) (0, 0, 0, 0) 0 0.0653 2 4423
4 (0, 0, 0, 0) (0, 0, 0, 0) 0 0.0343 1 2585

5

ours

2 (2,−2) (0,−1) 3 1.3741 2 84,013
2 (0,−1) (0,−1) 3 0.8289 2 72,013
2 (−2,−2) (0,−1) 3 1.3745 1 84,013
2 (−0.5,−1) (0,−1) 3 0.8986 2 74,013
2 (1,−1.5) (0,−1) 3 1.0622 1 78,013
2 (1,−1) (0,−1) 3 0.9923 1 76,013

[18]

2 (2,−2) (0,−1) 3 1.5708 2 84,013
2 (0,−1) (0,−1) 3 0.9917 2 71,922
2 (−2,−2) (0,−1) 3 1.5720 1 84,077
2 (−0.5,−1) (0,−1) 3 1.1065 2 74,103
2 (1,−1.5) (0,−1) 3 1.2851 1 78,031
2 (1,−1) (0,−1) 3 1.1790 1 76,101

Table 2. Numerical comparison results of Problems 6–11.

PN Alg DN x0 x∗ f(x∗) T Iter NF+Ψ

6 ours 3 (700, 400, 450) (720, 424, 428) −1,560,310,784 0.7027 1 35,971

[18] 3 (700, 400, 450) (720, 424, 428) −1,560,310,784 0.9201 1 46,178

7
ours

4 (25, 25, 25, 25) (50, 50, 50, 50) −1 0.3793 1 5869
4 (50, 50, 50, 50) (50, 50, 50, 50) −1 0.1189 1 5509
4 (75, 75, 75, 75) (50, 50, 50, 50) −1 0.1888 2 8949

[18]
4 (25, 25, 25, 25) (50, 50, 50, 50) −1 0.1429 1 5968
4 (50, 50, 50, 50) (50, 50, 50, 50) −1 0.1228 1 5670
4 (75, 75, 75, 75) (50, 50, 50, 50) −1 0.2517 3 11,930

8
ours

2 (25, 25) (15, 5) −3250 0.0576 5 2421
2 (50, 50) (15, 5) −3250 0.0655 5 2620
2 (75, 75) (15, 5) −3250 0.0755 5 2819

[18]
2 (25, 25) (15, 5) −3250 0.0621 5 2730
2 (50, 50) − − − − −
2 (75, 75) (15, 5) −3250 0.0840 5 3132

9
ours

6 (0, 0, 0, 0, 0, 0) (5, 1, 5, 0, 5, 10) −310 0.2280 5 11,263
6 (3, 4, 2, 3, 5, 5) (5, 1, 5, 0, 5, 10) −310 0.1689 3 8639
6 (6, 8, 5, 6, 10, 10) (5, 1, 5, 0, 5, 10) −310 0.1304 1 6589

[18]
6 (0, 0, 0, 0, 0, 0) (5, 1, 5, 0, 5, 10) −310 0.3489 5 16,037
6 (3, 4, 2, 3, 5, 5) (5, 1, 5, 0, 5, 10) −310 0.2197 3 10,017
6 (6, 8, 5, 6, 10, 10) (5, 1, 5, 0, 5, 10) −310 0.2649 3 12,153

10

ours

4 (5, · · · , 5) (1, 1, 1, 1) 0 0.1000 5 5761
4 (−5, · · · ,−5) (1, 1, 1, 1) 0 0.0448 2 2667
4 (10, · · · , 10) (1, 1, 1, 1) 0 0.1169 6 7969
4 (−10, · · · ,−10) (1, 1, 1, 1) 0 0.0542 2 2827

[18]

4 (5, · · · , 5) (1, 1, 1, 1) 0 0.1075 5 6761
4 (−5, · · · ,−5) (1, 1, 1, 1) 0 0.0707 2 4615
4 (10, · · · , 10) (1, 1, 1, 1) 0 0.1245 6 7969
4 (−10, · · · ,−10) (1, 1, 1, 1) 0 0.0756 2 4775
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Table 2. Continued.

PN Alg DN x0 x∗ f(x∗) T Iter NF+Ψ

11

ours

2 (10,−10) (3, 0.5) 0 1.0960 5 742,921
2 (9.997,−6.867) (3, 0.5) 0 12.5392 5 730,377
2 (0,−1) (3, 0.5) 0 4.0511 4 244,019
2 (1, 1) (3, 0.5) 0 3.8061 4 237,587
2 (2, 2) (3, 0.5) 0 3.7028 4 237,579
2 (0, 0) (3, 0.5) 0 3.8508 4 240,019

[18]

2 (10,−10) (3, 0.5) 0 15.7839 5 892,789
2 (9.997,−6.867) (3, 0.5) 0 15.1406 5 880,245
2 (0,−1) (3, 0.5) 0 6.0974 4 470,075
2 (1, 1) (3, 0.5) 0 5.8505 4 463,643
2 (2, 2) (3, 0.5) 0 5.8602 4 463,635
2 (0, 0) (3, 0.5) 0 5.9400 4 466,075

Table 3. Numerical comparison results of Problems 12 and 13.

PN Alg DN x0 x∗ f(x∗) T Iter NF+Ψ

12

ours

25 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 7.1418 1 258,951
25 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 13.4385 2 496,651
25 (5, · · · , 5) (1, · · · , 1) 0 14.1907 2 495,451
25 (−5, · · · ,−5) (1, · · · , 1) 0 8.8529 1 318,901

[18]

25 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 7.4281 1 269,332
25 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 15.7155 2 580,802
25 (5, · · · , 5) (1, · · · , 1) 0 14.0939 2 495,451
25 (−5, · · · ,−5) (1, · · · , 1) 0 9.1232 1 328,637

ours

50 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 59.5855 1 2,035,301
50 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 113.7989 2 3,985,901
50 (5, · · · , 5) (1, · · · , 1) 0 114.7591 2 3,980,901
50 (−5, · · · ,−5) (1, · · · , 1) 0 73.8136 1 2,525,301

[18]

50 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 62.4965 1 2,134,733
50 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 116.8327 2 4,092,162
50 (5, · · · , 5) (1, · · · , 1) 0 116.1587 2 4,029,451
50 (−5, · · · ,−5) (1, · · · , 1) 0 75.7253 1 2,590,704

ours

100 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 515.5150 1 16,140,600
100 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 996.9730 2 31,941,801
100 (5, · · · , 5) (1, · · · , 1) 0 983.3028 2 31,921,800
100 (−5, · · · ,−5) (1, · · · , 1) 0 637.1618 1 20,100,602

[18]

100 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 523.2555 1 16,382,953
100 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 1026.1101 2 32,874,946
100 (5, · · · , 5) (1, · · · , 1) 0 996.5619 2 32,352,242
100 (−5, · · · ,−5) − − − − −

13

ours

25 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 7.1793 1 240,873
25 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 14.0434 2 443,610
25 (5, · · · , 5) (1, · · · , 1) 0 12.7954 2 495,453
25 (−5, · · · ,−5) (1, · · · , 1) 0 8.5232 1 318,902

[18]

25 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 7.7181 1 258,951
25 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 15.7225 2 496,652
25 (5, · · · , 5) (1, · · · , 1) 0 13.8766 2 537,318
25 (−5, · · · ,−5) (1, · · · , 1) 0 9.3565 1 350,080

ours

50 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 58.2227 1 2,035,301
50 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 134.6884 2 4,931,800
50 (5, · · · , 5) (1, · · · , 1) 0 108.2429 2 3,980,891
50 (−5, · · · ,−5) (1, · · · , 1) 0 70.6625 1 2,525,306

[18]

50 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 62.0151 1 2,185,716
50 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 117.6758 2 3,985,901
50 (5, · · · , 5) (1, · · · , 1) 0 117.5395 2 4,322,674
50 (−5, · · · ,−5) (1, · · · , 1) 0 76.3166 1 2,727,364

ours

100 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 483.2232 1 16,140,601
100 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 994.5747 2 39,723,601
100 (5, · · · , 5) (1, · · · , 1) 0 927.8696 2 31,921,801
100 (−5, · · · ,−5) (1, · · · , 1) 0 594.7694 1 20,100,601

[18]

100 (5, · · · , 5,−5, · · · ,−5) (1, · · · , 1) 0 516.1914 1 17,241,803
100 (−5, · · · ,−5, 5, · · · , 5) (1, · · · , 1) 0 1555.5000 2 62,127,119
100 (5, · · · , 5) (1, · · · , 1) 0 995.4259 2 34,245,962
100 (−5, · · · ,−5) − − − − −
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Table 4. Numerical results of Problems 10 and 12.

PN DN x0 x∗ f(x∗) T Iter NF+Ψ

10 4 (1, 1, 0, 0) (1, 1, 1, 1) 0 0.0500 3 3023
4 (1, 1, 1, 1) (1, 1, 1, 1) 0 0.0362 1 2393
4 (−10, 10,−10, 10) (1, 1, 1, 1) 0 0.4176 7 8947
4 (−10,−5, 0, 5) (1, 1, 1, 1) 0 0.0730 3 4539
4 (−10, 0, 0,−10) (1, 1, 1, 1) 0 0.0548 3 3201
4 (0, 0, 0, 0) (1, 1, 1, 1) 0 0.0462 3 3041

12 25 (0, · · · , 0) (1, · · · , 1) 0 8.5956 2 312,651
25 (3, · · · , 3) (1, · · · , 1) 0 9.3240 1 493,051
25 (−5, · · · ,−5) (1, · · · , 1) 0 8.6237 3 318,901
25 (2,−2, · · · , 2,−2, 2) (1, · · · , 1) 0 7.0355 1 315,151
25 (3,−3, · · · , 3,−3, 3) (1, · · · , 1) 0 11.7225 2 611,549
25 (5,−5, · · · , 5,−5, 5) (1, · · · , 1) 0 12.7954 2 613,949

To better reveal the effectiveness of our algorithm, we compared it with the algorithm
in [18]. For fair, these two algorithms all use the same initial point and the same local
descent Algorithm 1. Then, these two algorithms are adopted to test 13 kinds of test
problems (72 test examples in total) in the same computing environment. Finally, the T, Iter,
and NF+Ψ of these two algorithms are compared, respectively. Furthermore, all boldface
data in these tables indicate that our algorithm is superior to that in [18].

The numerical results in Tables 1–3 show that the proposed algorithm can accurately
find the global minimizers of these 72 test instances and solve the test problem of up to
100 variables, which indicates that our algorithm is feasible. Among all the test instances,
the algorithm in [18] fails to solve three of them. The comparison results of numerical
calculation of the 72 test examples in Tables 1–3 show that these two algorithms have almost
the same number of iterations, which indicates that their performance may be similar in a
sense. However, the proposed algorithm can always find the global minimizer faster than
the algorithm in [18] for 66 test instances, and our algorithm had 64 test instances with
less NF+Ψ than the latter, which shows that our algorithm can save more CPU time than
the latter.

To further test the effectiveness of our algorithm, we calculated Problems 4–6, 8,
and 9 using our algorithm and algorithms A, B, C, and D in [19] and compared the total
evaluation times of functions (include filled function and objective function) solved by the
five algorithms. The comparison results are shown in Table 5. Note that for problems 4,
5, and 11, the initial points (in Tables 1 and 2) adopted by our algorithm are the same as
those in [19]; however, for problems 10 and 12, the initial points used in Tables 2 and 3 are
different from those in [19]. Therefore, by adopting the same initial point as in [19], we
have carried out additional numerical experiments on problems 10 and 12, which ensures
the fairness of the numerical results (see Table 4).

Table 5. Numerical comparison results of Problems 4, 5, and 10–12.

PN DN x∗ f(x∗)
NF+Ψ

Ours A B C D

4 4 (0, 0, 0, 0) 0 3388 9065 6472 37,906 18,936
5 2 (0,−1) 3 78,041 266,455 173,605 1,218,432 663,573

10 4 (1, 1, 1, 1) 0 4024 9735 6927 39,650 19,252
11 2 (3, 0.5) 0 405,417 1,970,575 1,145,488 245,235 2,826,691
12 25 (1, · · · , 1) 0 396,936 1,173,742 646,390 3,558,639 1,732,339

The numerical comparison results of NF+Ψ in Table 5 indicate that our algorithm
is superior to A, B, and D in solving these five problems and is inferior to C in solving
Problem 11. This means that algorithm C may be better than the other four algorithms at
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solving certain problems. Besides, the above results also show that most numerical results
of algorithm B are better than algorithms A, C, and D, except for Problem 11.

To sum up, on the premise of ensuring the effectiveness, the proposed algorithm can
solve the difficult constrained integer programming problem with few function evaluations
in a short time, and the computational performance is better than the algorithms in [18,19],
which shows that our algorithm is efficient. The disadvantage of our algorithm is that it is
difficult to solve higher-dimensional problems.

7. Conclusions

In this paper, a new nonparametric filled function is constructed, which not only
has good discreteness but also has no exponential and logarithmic terms. On the basis
of theoretical analysis, a new global algorithm for solving constrained integer program-
ming problems is designed, and its feasibility and effectiveness are verified by numerical
comparison experiments. In future studies, we will try to apply the proposed algorithm
to other problems in the optimization field, such as fractional programming problems
with constraints [28]. The equivalent transformation method in this paper is promising, so
further work could propose the filled function with better properties.
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PN The number of the problem
Alg Algorithm type
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